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Table 1: Partial sampling results in SemanticKITTI [1] benchmark based on batch-
wise evaluation following [4]. TTA indicates the test time augmentation and the results
"w/o" TTA are reported based on the checkpoints from the official GitHub 1. The best
results are marked in red.

TTA Method SemanticKITTI (partial)
5% 10% 20% 40%

✗
GPC [4] 42.10 48.30 57.90 59.32

IT2 45.97 (3.87↑) 50.87 (2.57↑) 60.33 (2.43↑) 63.31 (3.99↑)

✓
GPC [4] 42.45 48.77 58.78 59.96

IT2 46.44 (3.99↑) 51.97 (3.20↑) 61.43 (2.69↑) 64.83 (4.87↑)

1 Different Evaluation Process

The partial sampling approach GPC [4] employs a distinct evaluation pro-
tocol2 comparing to the common LiDAR point semantic segmentation meth-
ods [7,8,18]3. We emphasise that different evaluation protocols can lead to unfair
competition. In Tab. 1, we present our results based on the evaluation process
following the approach in GPC [4]. We highlight that our reported results with
all the labelled ratios are derived from consistent checkpoints in the main paper
Tab. 2. The ‘TTA’ indicates the test-time augmentation, where the paper results
of GPC [4] are all based on the ‘TTA’.
Our method achieves the best performance across various labelled ratios. For
instance, in the case of 5% and 40% labelled data with TTA post-processing, we
outperform GPC [4] by 3.99% and 4.87% in mIoU, respectively. These consistent
improvements underscore the robustness of peer representation in label-efficient
LiDAR segmentation and also show the effectiveness of the IT2 approach.

2 Representation-specific Data Augmentation

As shown in the Fig. 1, we perform the augmentations for distinct representations
to cases (a), (b) and (c) in a batch of inputs and the mixed results (d) are
in the last column. We experimentally observed that utilising such different
augmentations in different representations can achieve better performance.
Voxel representation augmentation. We implement LaserMix [6] for aug-
mentation of our voxel inputs as illustarted in the top row of Fig. 1. We set
1 https://github.com/llijiang/GuidedContrast/tree/main?tab=readme-ov-file#semantickitti-2
2 https://github.com/llijiang/GuidedContrast/blob/add37a8ecf68a59698d6b6aa73735d94ae9c002d/
util/utils.py#L23

3 https : / / github . com / xinge008 / Cylinder3D / blob / 30a0abb2ca4c657a821a5e9a343934b0789b2365 /
utils/metric_util.py#L19

https://github.com/llijiang/GuidedContrast/tree/main?tab=readme-ov-file#semantickitti-2
https://github.com/llijiang/GuidedContrast/blob/add37a8ecf68a59698d6b6aa73735d94ae9c002d/util/utils.py#L23
https://github.com/llijiang/GuidedContrast/blob/add37a8ecf68a59698d6b6aa73735d94ae9c002d/util/utils.py#L23
https://github.com/xinge008/Cylinder3D/blob/30a0abb2ca4c657a821a5e9a343934b0789b2365/utils/metric_util.py#L19
https://github.com/xinge008/Cylinder3D/blob/30a0abb2ca4c657a821a5e9a343934b0789b2365/utils/metric_util.py#L19
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case (a) case (b) case (c) mix

Fig. 1: Illustration of our representation-specific data augmentation. In the first row,
we apply single-inclination LaserMix [6] for the voxel grids and in the second row,
we apply multi-boxes CutMix [16] for the range images. The mixed results for each
representations are displayed in the last column, where the different colors demonstrate
the mix protocol of case (a), (b) and (c).

α = 360
batch size and ϕ = 1 to achieve optimal performance, where α represents

azimuth, and ϕ denotes the inclination direction. For further details, please refer
to Table 4 in the LaserMix [6] paper.
Range representation augmentation. As demonstrated in the bottom row
of Fig. 1, we incorporate CutMix [16] into our range images, utilising multi-boxes
cropped within the same mini-batch. To prevent overlap between these boxes,
we set the width of each box to image width

batch size and they are mixed in box-by-box
manner.

Algorithm 1.1: Pseudo code of the data augmentation process
# xvoxel, xrange: voxel, range representations from same point scan.
# fvoxel, frange: voxel, range networks.
yvoxel = range2voxel(modelrange(xrange)) # transfer pseudo labels: range → voxel
yrange = voxel2range(modelvoxel(xvoxel)) # transfer pseudo labels: voxel → range
xvoxel, yvoxel = voxel_augment(xvoxel, yvoxel) # voxel augmentation [6]
xrange, yrange = range_augment(xrange, yrange) # range augmentation [16]
# {xrange, yrange} and {xvoxel, yvoxel} are the augmented samples and labels.

Algorithm 1.1 shows the whole process of the representation-specific data
augmentation in our approach in python coding style. Following [10, 15], these
augmentations are carried out after generating the pseudo-labels (i.e., Eq. (2)
from the main paper) for each representation. These augmentations are applied
for both inputs and the labels, while their mixed results are utilised for the
training of the unlabelled data.

3 Additional Implementation Details

In this section, we provide more implementation details of the model configura-
tion and our proposed contrastive learning approach.
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3.1 Model Configuration

Cylinder3D [18] setup. Following Lasermix [6], we employ the Cylinder3D [18]
network for the voxel representation. For the Uniform Sampling strategy in Se-
manticKITTI [1] and nuScenes [2] benchmarks, we use an input resolution of
[240, 180, 20] and reduce the feature map to 16 for fair comparison. We adopt
the original configuration from the paper [18] with a resolution of [480, 360, 32]
and a feature map size of 32 for all other experiments.

FidNet [17] setup. We use FidNet [17] for the range images, following [6],
where we employ ResNet-34 [3] variants for all experiments. Similarly, in the
Uniform Sampling strategy of SemanticKITTI [1] and nuScenes [2] benchmarks,
we set the resolution to 32× 1920 and 64× 2048 for a fair comparison with [6].
For all other experiments, we maintain a fixed image width of 64 × 960 for the
enhanced efficiency.

3.2 Contrastive Learning Configuration

Following [5, 14], we employ a 3-layer projector to generate embedding results
for intermediate features. The projector has the architecture of ‘convolution
layer, batch-norm layer, convolution layer’. For the voxel representation,
we use the 3D convolution layer from the SparseConv library4, while 2D convo-
lution is utilised for the range images following the common setup [8,9,14]. The
depth of the embedding features is fixed at 64 for all experiments.

Sampling Strategies. The current hardware cannot handle the contrastive
learning in the dense tasks, and a sampling strategy is necessary for all con-
trastive learning based methods [9, 14]. We adopt the easy-hard mining for the
dense embedding samples based on [14]. The easy embedding samples are ran-
domly selected based on the dense results where the predictions equal with
(pseudo or real) labels, while the hard embedding samples are chosen based
on the results that exhibit disagreement between the prediction and the (pseudo
or real) label. We follow [14] to split the ratio of these easy and hard samples
with the ratio being 1 : 1, and the total number is set to 200 for both voxel and
range representations in all experiments.

3.3 Training Configuration

In the nuScenes [2] dataset, we use a batch size of 4 for both labelled and
unlabelled data. The learning rate is set to 6e−3, and the maximum number
of epochs is set to 90. In the SemanticKITTI [1] dataset, we opt for a smaller
batch size of 2 for both labelled and unlabelled data, with a learning rate of
8e−3 and a maximum of 105 epochs. For both datasets, we employ 4 GPUs for
distributed data parallel training, incorporating a polynomial learning rate decay
4 https://github.com/traveller59/spconv

https://github.com/traveller59/spconv
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Table 2: The fusion results in the nuScenes [2] dataset based on the prediction from
range and voxel representations. The best results are in red and the second best results
are in italic.

Repr. nuScenes [2]
1% 10% 20% 50%

range 56.76 71.33 73.27 74.04
voxel 56.96 72.12 73.55 74.14

ensemble 58.14 (1.18↑) 73.77 (1.65↑) 75.29 (1.74↑) 76.54 (2.40↑)

of (1− iter
max_iter )

0.9. We use the AdamW [11] optimizer for all experiments with
a decay of 0.001, and beta values in the range [0.9, 0.999].

3.4 Gaussian Mixture Model Configuration

We employ category-wise Gaussian Mixture Model (GMM) to learn from the
incoming embedding features for both range and voxel representations in Eq.
(5) of the main paper, where each category in the dataset have 5 Gaussian
Curves. The GMMs’ parameters are updated in each iteration based on the
exponential moving average (EMA) to keep track of their historical distribution
via Γ (t+1) = α×Γ (t)+(1−α)×Γ , where α = 0.996 for all experiments, where Γ
is from Eq. (6) main paper. In the sampling strategy of the virtual prototype, we
firstly identify the related GMMs based on the categories of each of the incoming
feature samples. Then we choose the Gaussian within the GMMs based on the
probability distribution of qy

m from Eq. (7) in the main paper for each of the
samples. After that, we assign the random variable ξ ∈ [0, 1] and generate the
prototypes zp for each feature samples, where zp = µy

m + ξ ×Σy
m with µy

m, Σy
m

from Eq. (7).

4 Fusion Results

In Tab. 2, we present the fusion results obtained from the models’ outputs of
both voxel and range representations in the nuScenes [2] dataset. Notably, we
observe consistent improvements in the fusion results compared to the individual
representation results. For example, it demonstrates 1.18% and 2.40% improve-
ments in 1% and 50% labelled partition protocol, respectively. Given that the
fusion prediction yields better generalisation, how to ensemble the pseudo label
of the unlabelled data during the training can be an interesting topic in the
future research.

5 Detailed Results

We have provided the class-wise Intersection-over-Union (IoU) validation results
in the Tab. 3, Tab. 4 and Tab. 5 for the nuScenes [2], SemanticKITTI [1] and
ScribbleKITTI [13] datasets, respectively. The mIou results follow the table re-
sults in the main paper and they are highlighted in red.



IT2 (Supp.) 5

Table 3: The class-wise IoU results in nuScenes [2] dataset among different partition
protocol. The mIoU results are highlighted in red.

Repr. ratio mean barr bicy bus car const moto ped cone trail truck driv othe walk terr manm veg

1% 56.5 63.6 1.9 63.0 84.8 9.0 57.7 62.8 51.1 17.2 44.1 94.5 53.2 64.1 69.9 83.4 83.5

10% 71.3 75.0 26.4 81.1 90.1 39.9 77.2 76.0 61.5 56.5 73.3 96.2 66.7 72.5 74.4 87.8 86.6

20% 73.4 75.9 36.9 84.4 90.7 43.9 79.9 77.8 64.8 58.1 75.6 96.3 68.6 73.2 74.3 88.0 87.1R
an

ge

50% 74.0 76.1 38.2 85.0 89.4 45.5 76.6 77.9 64.9 66.7 76.3 96.3 69.5 73.4 74.2 88.2 87.0

1% 57.5 58.2 3.8 67.6 83.3 16.9 63.0 62.9 47.2 18.5 47.1 94.0 53.5 64.8 70.3 83.8 84.8

10% 72.1 72.4 26.7 89.7 91.0 46.8 75.7 73.2 58.2 57.1 80.0 95.8 68.4 72.4 73.2 87.5 85.9

20% 73.6 74.0 34.0 90.7 91.3 47.9 76.8 76.4 60.9 57.8 79.8 95.8 67.8 73.6 73.3 88.7 86.5V
ox

el

50% 74.1 73.3 33.5 91.7 91.1 46.9 77.8 75.2 59.8 65.3 80.9 95.8 72.4 73.3 74.1 88.1 86.4

Table 4: The class-wise IoU results in SemanticKITTI [1] dataset among different
partition protocol. The mIoU results are highlighted in red.

Repr. ratio mean car bicy moto truck bus ped b.cyc m.cyc road park walk o.gro build fence veg trunk terr pole sign

5% 57.0 93.1 44.8 51.5 67.3 42.5 44.8 54.0 0.0 93.9 42.4 80.4 0.0 87.7 54.0 87.3 62.5 77.4 58.6 40.1

10% 62.4 95.2 46.3 56.5 69.7 47.9 73.2 80.7 0.0 95.3 46.9 83.1 1.9 87.9 57.4 88.6 67.5 77.6 65.1 44.8

20% 62.7 95.4 46.3 59.1 90.6 51.1 71.1 81.8 0.0 95.5 39.1 82.7 1.6 86.7 51.1 87.4 66.5 76.1 66.5 43.1R
an

ge

40% 63.9 94.8 54.8 62.1 70.9 45.0 73.6 82.3 0.0 95.6 52.1 83.9 10.7 88.9 59.4 87.1 67.2 74.8 65.8 45.3

5% 60.3 92.9 49.5 43.9 85.7 40.6 65.0 83.0 0.0 91.5 35.8 77.5 0.3 89.4 54.2 86.5 66.5 73.0 64.6 45.7

10% 63.3 94.9 50.9 70.9 78.8 48.2 74.5 84.2 0.0 94.1 42.9 79.8 2.9 87.4 51.3 87.7 66.3 74.3 63.0 50.8

20% 64.0 96.7 54.1 73.6 74.4 59.5 75.4 86.8 0.3 93.5 41.8 79.5 1.2 88.3 50.6 86.1 67.6 69.5 64.8 52.1V
ox

el

40% 64.8 95.7 50.3 75.4 79.4 52.5 75.4 90.8 1.6 94.7 46.9 81.6 1.0 87.3 52.4 87.5 69.2 75.1 64.6 49.6

Table 5: The class-wise IoU results in ScribbleKITTI [13] dataset among different
partition protocol. The mIoU results are highlighted in red.

Repr. ratio mean car bicy moto truck bus ped b.cyc m.cyc road park walk o.gro build fence veg trunk terr pole sign

1% 46.6 79.4 31.8 28.3 35.9 11.4 39.2 60.0 0.0 73.2 16.7 65.8 0.2 86.5 46.7 82.1 62.2 66. 60.8 40.2

10% 57.1 92.4 47.5 45.4 67.4 30.3 55.2 62.8 0.0 92.9 40.9 79.4 1.6 87.7 52.6 84.7 66.3 72.5 60.2 45.9

20% 57.3 87.9 33.0 43.9 66.8 43.3 59.6 63.0 0.0 91.7 40.6 79.6 6.1 88.2 53.3 82.6 67.5 74.3 61.3 46.7R
an

ge

50% 58.6 86.7 35.1 51.7 77.4 49.3 66.1 74.5 0.1 87.5 31.1 76.3 8.7 88.3 45.3 85.0 66.8 71.1 64.0 47.7

1% 47.9 85.4 29.2 37.7 20.4 24.2 45.9 53.1 0.0 77.0 20.3 67.7 0.5 83.2 49.4 77.6 64.5 64.9 61.7 48.1

10% 56.7 93.1 43.1 47.2 63.8 33.2 60.6 70.0 0.0 89.5 34.1 74.6 1.4 87.4 51.9 84.7 61.1 72.5 60.9 48.8

20% 57.5 92.0 49.5 45.1 68.4 30.6 56.1 60.8 0.0 93.2 41.2 80.1 2.9 88.5 52.1 85.4 66.9 73.4 60.8 46.2V
ox

el

50% 58.3 89.2 48.7 46.7 73.2 42.0 62.2 74.0 0.0 83.3 40.3 79.1 3.2 85.3 54.2 80.6 67.1 64.4 64.2 50.1

6 Error Maps Visualisation

In Fig. 2, we present additional visualizations of our IT2 framework on the
nuScenes [2] dataset, under 10% labelled partition protocol, comparing it with
LaserMix [6]. Each case has two rows, with the top row showing the bird’s eye
view results and the bottom row presenting the range images. Correct predic-
tions are highlighted in green, and mistakes are indicated in red. Our approach
consistently yields visually superior results across all cases.
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(a) Ground truth (b) LaserMix [6] (c) Ours

Fig. 2: Additional error maps visualised from LiDAR bird’s eye view (top) and
range view (bottom) in the nuScenes [12] dataset under 10% labelled partition protocol.
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7 Additional Ablation studies

Importance of the number of GMM components. We study the number
of GMM components in Tab. 6, using the nuScenes dataset [2] under the 10%
labelled data protocol. When M = 5, we notice an improvement over the single
multi-variate component (M = 1), with an increase of 0.9 mIoU in range and 0.7
mIoU in voxel representations. However, increasing the number of components
to M = 7 results in a slight decrease in performance.

Table 6: Ablation study of Components (M) in Gaussian Mixure Model (GMM)
on the nuScenes dataset under the 10% labelled data protocol. The best results are
highlighted in red.

nuScenes (with 10% labelled data)
Component (M) M=1 M=3 M=5 M=7

range Repr. 70.4 70.8 71.3 71.2
voxel Repr. 71.4 71.7 72.1 71.9

LaserMix [6] with contrastive learning. As shown in Tab. 7, we applied our
cross-distribution (GMM-based) contrastive learning (ctrs.) to LaserMix [6] us-
ing the voxel representation, as their range model’s code is not public. Although
LaserMix+ctrs. improves over the original LaserMix by 0.9% and 1.2% under
the 1% and 10% labelled protocols on the nuScenes dataset [2], respectively,
our IT2 provides further improvements over LaserMix+ctrs of 1.3% and 1.1%,
respectively.

Table 7: Comparison between our IT2 and LaserMix [6] with our contrastive learning
(i.e., ctrs.) on the nuScenes dataset based on voxel representation. Our results are
highlighted in red.

Method nuScenes
1% 10%

LaserMix [6] 55.3 69.9
LaserMix [6] +ctrs. 56.2 71.0

IT2 57.5 (1.3↑) 72.1 (1.1↑)

Sensitiveness of the parameter Temperature (Temp.) in Contrastive
learning. As demonstrated in Tab. 8, the Temp. parameter significantly influ-
ences both the ContrasSeg [14] method and our approach. Minor adjustments
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from t = 0.05 to t = 0.10 and from t = 0.10 to t = 0.15 result in nearly 1%
performance differences for both methods. Such large differences have also been
noted in the ‘Supervised Contrastive Learning’ paper [5] (Page 8, Fig.4). A po-
tential reason for this is the relatively high weight of 1 to the InfoNCE loss for
all experiments.

Table 8: Ablation study of different temperature (Temp.) values comparing our
methods with ContrasSeg [14] on the nuScenes dataset, under the 10% labelled data
protocol. The best results for both methods are highlighted in red.

Repr. range voxel
Temp. (t) t=0.05 t=0.10 t=0.15 t=0.05 t=0.10 t=0.15

ContrasSeg [14] 69.4 70.3 69.3 70.1 71.2 70.5
Ours 70.3 71.3 70.4 71.0 72.1 71.5
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