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1 Additional Qualitative Results

1.1 Additional Motion Generation Results

Additional generated 3D motion sequences for are shown in Figures 3 and 4.
Please refer to the video1 for more 3D animation visualizations. As shown in
the video, by sampling the learned motion latent VAE, we can generate diverse
motion patterns, such as eating with the head bending towards the ground,
walking with the legs moving alternately, and jumping with the front legs lifted
up.

We trained our VAE model with a sequence length of 10 frames. To produce
longer motion sequences as demonstrated in the video, we first sample 2 latent
codes to generate 2 motion sequences, each comprising 10 frames. We then opti-
mize 1 additional transition motion latents by encouraging the poses of the first
frame and the last frame to be consistent with the last frame and the first frame
of two consecutive sequences previously generated.

1.2 Qualitative Comparison of Video Reconstruction Results

Figure 1 compares the 3D reconstruction results on video sequences obtained
from the MagicPony [6] model and our proposed method. Although MagicPony
predicts a plausible 3D shape in most cases, it tends to produce temporally
inconsistent poses, including both the rigid pose ξ̂t,1 and bone rotations ξ̂t,2:B ,
as highlighted in Figure 1. In contrast, our method leverages the temporal signals
in training videos, and produces temporally coherent reconstruction results.

2 Additional Ablation Studies

2.1 Spatio-Temporal Transformer Architecture

We conduct an ablation study to verify the effectiveness of the proposed spatio-
temporal transformer architecture. In particular, we remove each individual com-
ponent from the final model or replace it with a default option, train the model
* Equal contribution. †Equal advising.
1 https://youtu.be/poc7c-9hCvQ?si=3k874zHackOre94R
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Fig. 1: Comparison of 3D Reconstruction Results with MagicPony [6]. With
the video training framework, our method produces temporally coherent and more ac-
curate pose predictions. In comparison, the baseline model of MagicPony often predicts
incorrect rigid poses ξ̂t,1 (red boxes), and incorrect bone articulation ξ̂t,2:B (blue boxes),
resulting in inaccurate 3D reconstruction.

Table 1: Ablation study on the architecture of the motion VAE model.

Row Method PCK@0.1 Mask IoU

1 Final (with ST-Transformer) 37.6% 62.0%
2 without spatial Transformers Es, Ds 33.4% 58.9%
3 without Teacher Loss Lteacher 32.4% 57.9%
4 without motion VAE 44.3% 66.7%

on the same dataset, and evaluate its performance on 3D reconstruction with
the same protocol described in Section 4.3 of the main paper.

First, we remove the spatial transformer encoder and decoder, Es and Ds,
and report the results in row 2 of Table 1. In this variant, specifically, instead
of using the spatial transformer encoder Es to fuse bone-specific local image
features before passing them to the temporal transformer encoder Et, we directly
feed the global image features {ϕ1, · · · , ϕT } into the temporal encoder. Similarly,
we also remove the spatial decoder Ds, and directly decode a fixed set of bone
rotations from the temporal transformer decoder Dt.

Compared to the final model with spatio-temporal transformer architectures
in row 1 of Table 1, the variant without spatial transformer results in less accu-
rate reconstructions, and hence lower scores on the metrics. This confirms the
effectiveness of the proposed spatial transformer in extracting motion-specific
spatial information from the images.

2.2 Teacher Loss

We also demonstrate the effect of the Teacher Loss Lteacher introduced in Section
3.3 of the main paper. We train a variant motion VAE model without this
loss, and report its reconstruction performance in Row 3 of Table 1. Without
Lteacher, the model fails to learn accurate poses effectively, leading to degraded
reconstruction results. This is mainly because that training the motion VAE
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Table 2: Ablation study with different sequence lengths for motion generation evalu-
ated using Motion Chamfer Distance (MCD) on APT-36K [7].

Sequence Length K = 10 K = 20 K = 50

MCD ↓ 38.03 38.25 39.25

Table 3: Ablation study on the weight of the KL divergence loss λLKL.

PCK@0.1 Mask IoU

λKL = 0.01 33.58% 59.85%
λKL = 0.001 37.63% 62.03%
λKL = 0.0001 35.75% 61.11%

from scratch is computationally inefficient with an expensive rendering step in
the loop, and the Teacher Loss can significantly improve training efficiency.

2.3 Sequence Length.

We conducted experiments to understand the effect of different sequence lengths
during training (K = 10, 20, 50 frames). For a fair comparison, to evaluate the
longer motion sequences generated by these variants (K = 20, 50), we divide
them into consecutive sub-sequences of 10 frames, and average the MCD metric
across the subsequences. We use the same metric as introduced in Section 4.2
of the main paper, the Motion Chamfer Distance (MCD) calculated between
generated sequences and the annotated sequences in the APT-36K dataset [7].
The results are presented in Table 2.

Upon analyzing the results, we observed that the generated sequences still
look plausible as the sequence length increases from 10 to 20. However, a notable
degradation in quality is observed as the sequence length increases to 50. This
could potentially be attributed to the limited capacity of the motion VAE model
as well as the limited size of the training dataset. For our final model, we set the
sequence length to 10, which tends to yield the most satisfactory results with a
reasonable training efficiency.

2.4 KL Loss Weight.

To train the motion VAE, in addition to the reconstruction losses, we also use the
Kullback–Leibler (KL) divergence loss LKL in Equation (6) in the main paper.
We conducted an ablation study on its weight λKL to assess its impact on the
overall 3D reconstruction accuracy. As shown in Table 3, λKL = 0.001 achieves
the best reconstruction results, and is used in all experiments in the main paper.
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Fig. 2: Illustration of the Spatio-temporal Transformer-based Motion En-
coder. For each frame, the bone-specific features {νt,b}Bb=2 are first extracted from
image features and fused by a spatial encoder Es to obtain a single feature vector νt,∗.
A temporal encoder Et then further fuses the feature vectors of all frames {νt,∗}Tt=1

and produces the motion VAE distribution parameters µ̂ and Σ̂. Please refer to the
Section 3.2 in the main paper for detail.

3 Additional Technical Details

3.1 Architecture Details

As explained in the paper, we adopt a spatio-temporal transformer architecture
for sequence feature encoding and motion decoding. For better illustrating the
architecture, we depict the framework of the spatial and temporal transformer
encoders in Figure 2. Also, as presented in Table 4, we use the 4-layer transformer
to implement the spatial and temporal transformer encoders Es, Et and decoders
Ds, Dt. Given the DINO features of the input image, we first concatenate the
bone position as Positional Encoding to obtain the bone-specific feature descrip-
tors νt,b with shape (BoneNum, FrameNum, FeatureDim) = (20 × 10 × 640).
Then we map the feature dimension to 256 with a simple Linear layer, and con-
catenate an additional BoneFeatureQuery token. We use the 4-layer transformer
Es to aggregate all the bone-specific feature descriptors into a per-frame pose
feature νt,∗, and subsequently Et to aggregate all frame-specific features into
the VAE distribution parameters, including the mean µ̂ and variance Σ̂. Using
the reparametrization trick, we then sample a latent code z from the Gaus-
sian distribution z ∼ N (µ̂, Σ̂), which is first decoded by the temporal decoder
Dt and the spatial decoder Ds into a final sequence of bone rotation angles
ξ̂∗,2:B ∈ R20×10×3.

3.2 Articulation Model Specifications

The configuration of bone topology and skinning weights was established follow-
ing Magicpony [6]. Here, we give a brief recap of the model.

Posed Shape. The blend skinning model for posing [3, 4, 6] was utilized to
articulate the skeleton into a specific pose. This model is parameterised by B−1
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Table 4: Architecture of the proposed spatio-temporal transformer VAE.

Operation Output Size

Positional Encoding 20 × 10 × 640
Linear(640, 256) 20 × 10 × 256
Concat BoneFeatQuery 21 × 10 × 256
TransformerLayer × 4 1 × 10 × 256
Reshape 10 × 1 × 256
Concat muQuery and sigmaQuery 12 × 1 × 256
Positional Encoding 12 × 1 × 256
TransformerLayer × 4 2 × 1 × 256

Reparameterizion 1 × 1 × 256

TransformerLayer × 4 10 × 1 × 256
Reshape 1 × 10 × 256
TransformerLayer × 4 20 × 10 × 256
Linear(256, 3) 20 × 10 × 3

bone rotations ξb ∈ SO(3), b = 2, . . . , B, and the viewpoint ξ1 ∈ SE(3). A
set of rest-pose joint locations Jb was initialized on the instance mesh using
straightforward heuristics. Each bone b, excluding the root, has a single parent
π(b), thereby forming a tree structure.

Each vertex Vi is linked to the bones via the skinning weights wib, determined
based on their relative proximity to each bone. The vertices are then posed using
the linear blend skinning equation:

Vi(ξ) =

(
B∑

b=1

wibGb(ξ)Gb(ξ
∗)−1

)
Vins,i,

G1 = g1, Gb = Gπ(b) ◦ gb, gb(ξ) =

[
Rξb Jb

0 1

]
,

(1)

where ξ∗ denotes the bone rotations at the rest pose.

Bone Topology For all quadrupedal animals examined in this paper, a chain
of 8 bones of equal lengths was estimated. These bones lie on two line segments
that extend from the centre (root) of the rest-pose mesh to the two most extreme
vertices along the z-axis (4 bones on each side), thereby forming a “spine”. Then
the root joint was slightly elevated, and 4 sets of bones were added to model
the legs. The foot joints were first identified as the lowest points of the mesh (in
the y-axis) in each of the four xz-quadrants. Subsequently, 4 line segments were
drawn from the foot joints to their nearest spine joints, and a chain of 3 bones
of equal lengths was defined on each of the segments, representing each leg.
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Skinning Weight The skinning weight wi,b, which associates each vertex Vins,i
with the bones, was defined as follows:

wi,b =
e−di,b/τs∑B
k=1 e

−di,k/τs
,

where di,b = min
r∈[0,1]

∥Vins,i − rJ̃b − (1− r)J̃π(b)∥22
(2)

In this context, di,b is the minimal distance from the vertex Vins,i to each bone b,
defined by the rest-pose joint locations J̃b and J̃π(b) in world coordinates. J̃π(b)

denotes the parent joint of J̃b. The temperature parameter τs is set to 0.5.

3.3 Text Prompts for 4D-fy Evaluation

We provide the 4D-fy [1] model with a list of text prompts, which are enriched
by ChatGPT [5] from a list of basic prompts describing horse motions. The
complete list is enumerated in the following:

– A horse is running.
– A horse is running.
– A majestic horse galloping swiftly across the verdant meadow.
– An energetic steed dashing with unbridled enthusiasm under the azure sky.
– A spirited horse racing with the wind, its mane flowing like waves.
– A horse is walking.
– A horse is walking.
– A serene horse ambling gently through a misty forest at dawn.
– An elegant steed strolling leisurely along a cobblestone path.
– A calm equine sauntering with grace across a blooming meadow.
– A horse is eating.
– A horse is eating.
– A serene horse gently nibbling on the lush green grass of a tranquil meadow.
– An elegant equine gracefully bending to graze on the dew-kissed clover.
– A peaceful steed leisurely munching on hay in the golden light of dawn.
– A horse is jumping.
– A horse is jumping.
– A majestic horse soaring effortlessly over a rustic wooden fence, its muscles

rippling with power.
– An agile steed leaping gracefully, silhouetted against the vibrant hues of the

setting sun.
– A spirited equine vaulting energetically over an obstacle, mane flowing like

a river in the wind.
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4 Limitations and Future Directions

While the model demonstrates promising results, there are several areas where
further improvements can be made.

A significant limitation is that the articulated motions are learned on top
of a fixed bone topology, which is pre-defined using strong heuristics, such as
the number of legs. This approach may not effectively generalize across diverse
animal species. A potential avenue for future research could involve the joint
discovery of the articulation structure in conjunction with video training.

Additionally, the current model does not distinguish between different legs
due to the nature of the DINO features. This can result in a “curious legs”
problem, where the model confuses left and right legs of an animal seen from
the side. This can be observed in the reconstruction results and subsequently in
the generated motion sequences, and is also a common issue even with the most
powerful video generation models [2]. Accurately capturing the leg ordering and
precise motion is an intriguing challenge for future research in motion generation.

5 Societal Impact

The task of generating 3D motion from unlabeled videos represents a fundamen-
tal challenge in the fields of computer vision and computer graphics, in order
to extend our current models to the long tail distribution of all kinds of objects
in the real world. As an initial exploration in this area, our aim is to stimulate
increasing interest and research in this direction. The continued advancement in
this field holds great potential of significantly improving the diversity and qual-
ity of 3D and 4D models of real-world objects, thereby supporting numerous
following applications in virtual reality, robotics and scientific discovery.
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Fig. 3: Additional Motion Generation Results on Horses. Conditioned on an
input image, which can be either a real photo or a painting of a horse, our model
can generate realistic 4D animations of the instance. See the supplementary video for
better visualizations.
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Fig. 4: Additional Motion Generation Results for Other Categories. Our
model can also be trained on other categories besides horses, and generates realis-
tic motion sequences.
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