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Abstract. Gate quantum computers generate significant interest due to
their potential to solve certain difficult problems such as prime factor-
ization in polynomial time. Computer vision researchers have long been
attracted to the power of quantum computers. Robust fitting, which
is fundamentally important to many computer vision pipelines, has re-
cently been shown to be amenable to gate quantum computing. The pre-
vious proposed solution was to compute Boolean influence as a measure
of outlyingness using the Bernstein-Vazirani quantum circuit. However,
the method assumed a quantum implementation of an ℓ∞ feasibility test,
which has not been demonstrated. In this paper, we take a big stride to-
wards quantum robust fitting: we propose a quantum circuit to solve the
ℓ∞ feasibility test in the 1D case, which allows to demonstrate for the
first time quantum robust fitting on a real gate quantum computer, the
IonQ Aria. We also show how 1D Boolean influences can be accumulated
to compute Boolean influences for higher-dimensional non-linear models,
which we experimentally validate on real benchmark datasets.
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1 Introduction

Many computer vision pipelines require estimating a geometric model from noisy
and outlier-contaminated data D = {pi}Ni=1. Consensus maximization [24] is a
popular framework for robust fitting in computer vision, where one attempts to
find the model x that agrees with as many of the points as possible, i.e.,

maximize
x∈M

N∑

i=1

Ψϵ(ri(x)). (1)

Domain M ⊆ Rd defines the allowable parameters x of the model, ri : M 7→ R≥0

is the residual of model x w.r.t. the i-th “point” pi, and

Ψϵ(r) =

{
1 if r ≤ ϵ,

0 otherwise,
(2)

is an indicator function that checks if the size of a residual is less than the
user-supplied inlier threshold ϵ. Each x has a corresponding consensus set

I(x) = {i ∈ {1, . . . , N} | ri(x) ≤ ϵ}, (3)
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i.e., the set of inliers of x, and (1) is equivalent to finding the x∗ with the largest
consensus set I(x∗). The equivalent outlier removal interpretation of (1) is

minimize
x∈M,z∈{0,1}N

∥z∥1

subject to ri(x) ≤ ϵ if zi = 0, i = 1, . . . , N,
(4)

where z = [z1, z2, . . . , zN ] is a binary vector selecting a subset of D as outliers,
and the goal is to remove the least number of outliers to find a consensus set.

Arguably the most popular class of methods for (1) are the random sam-
pling techniques (i.e., RANSAC [24] and its variants), which do not provide any
guarantees. Indeed, complexity results indicate that consensus maximization is
generally intractable and inapproximable [18], and one must resort to exhaus-
tive search to find x∗ (see [66] for a recent survey) or convex relaxation [59]
to attempt to find a bounded approximation. Consistent with the theory [18],
iterative optimization schemes [15,32] also do not provide optimality guarantees.

More broadly, the difficulty of consensus maximization reflects the general
hardness of robust fitting under different formulations and settings [7, 55]. This
has motivated researchers to explore alternative approaches (including machine
learning [14,46,54,57]) and computing paradigms to solve the problem.

1.1 Quantum solutions for robust fitting

An active direction has been the development of quantum solutions for robust
fitting [19, 21, 23]. Such methods exploit quantum computers to solve robust
fitting or appropriate subproblems within a classical optimization framework.

Chin et al . [19] proposed to use the Bernstein-Vazirani (BV) quantum circuit
to compute Boolean influence, which has proven to be a bona fide measure
of outlyingness [52, 53, 64]. The BV circuit allows influence computation to be
parallelized across data points, thereby yielding a provable speedup. However,
the solution rests upon the assumption that an ℓ∞ feasibility test has a quantum
implementation. While in theory any classically efficient routine has an efficient
quantum realization [41, Sec. 3.25], a quantum implementation of the ℓ∞ test
was not provided in [19], thereby precluding real quantum demonstrations.

Doan et al . [21] exploited the ability of quantum annealers (QA) to conduct
energy minimization to build a hybrid quantum-classical robust fitting algo-
rithm. The key is to rewrite (1) as a hypergraph vertex cover (HVC) problem,
which is amenable to quantum annealing. To avoid the exponential growth in
the hyperedges, Doan et al . iteratively sample the hyperedges (on a classical
machine) and solve the resulting HVC instances (on a D-Wave QA) to yield
intermediate solutions with error bounds. Farina et al . [23] proposed quantum
multi-model fitting, where quantum annealing is used to solve disjoint set cover
to select the optimal combination of hypotheses that fit the input data.

1.2 Gate quantum computers vs adiabatic quantum computers

Gate quantum computers (GQC) and adiabatic quantum computers (AQC), aka
QA, are the two major paradigms to realize quantum computers. Briefly, GQC
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operates by sequential application of quantum gates to manipulate quantum
states encoded in a set of qubits to execute quantum algorithms. On the other
hand, AQC follows the adiabatic theorem to gradually evolve a system from
an easily prepared initial state to the ground state of a problem Hamiltonian,
thereby finding the solution to optimization problems.

GQC is more general than AQC in the sense that the former can implement
arbitrary algorithms, potentially with significant speed-ups over the classical
counterparts. In fact, some of the most prominent quantum algorithms, e.g .,
Shor’s algorithm for prime factorization [41, Chap. 5] and Grover’s algorithm
for unstructured search [41, Chap. 6], are based on GQC. On the other hand,
AQC solves optimization problems in the form of quadratic unconstrained bi-
nary optimization (QUBO), hence, the targeted problem needs to be mapped to
QUBO form, often by introducing additional variables and hyparameters. The
speed-up achievable by AQC is also more difficult to be ascertained [56].

Since it is still unclear which quantum technology will reach maturity (e.g .,
realizing a million-qubit system that is robust against noise), it is vital for com-
puter vision researchers to explore both pathways. Indeed, both GQC [19] and
AQC [21, 23] have been investigated for robust fitting. However, demonstration
of [19] on a GQC is still lacking due to the fundamental gap alluded to above.

1.3 Contributions

This paper bridges the critical gap in [19] by presenting a novel quantum sub-
circuit to conduct the ℓ∞ feasibility test in the BV circuit. Although our solution
is limited to 1D problems, it is sufficient to achieve important demonstration of
quantum robust fitting on a real GQC, specifically the IonQ Aria [2].

Further, we show how 1D Boolean influence computation can be embedded in
a random sampling framework and accumulated to compute higher-dimensional
Boolean influence. This enabled us to demonstrate the validity of the computed
influences on real benchmark datasets for two-view geometry estimation.

1.4 Shortcomings and outlook

Current gate quantum computers are in the noisy intermediate scale quantum
(NISQ) era [9], meaning that the quantum processing units (QPU) contain small
number of qubits (tens to low hundreds) and are not sufficiently fault tolerant.
This limits the size of input problems and quality of outputs, hence, quantum
robust fitting solutions cannot yet outperform established classical methods.

The value of our work lies in exploring an alternative technique that
– is theoretically interesting and can inspire novel classical methods, e.g ., [53,

64] (note that quantum computing is a subject area at ECCV 2024).
– could become practical in the medium term, given significant investments

into building quantum computers, e.g ., IBM’s Quantum Roadmap aims to
deliver a fully error-corrected system with 200 qubits by 2029 [1].
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2 Related work

2.1 Quantum computing in computer vision

Quantum computing has been investigated for diverse applications and prob-
lems in computer vision (CV). Larasati et al . [31] provide a comprehensive sur-
vey on integrating quantum computing techniques within CV, with a particular
emphasis on AQC-assisted algorithms. Their survey highlights key applications
in robust fitting [21], transformation estimation [26, 37], multiple object track-
ing (MOT) [63], defect detection in semiconductors [60], and permutation syn-
chronization [12]. Additional contributions to this field include advancements in
motion segmentation [4], recognition [38, 44], image classification [13, 17, 39, 40],
object detection [33], multi-model fitting [23], matching problems [5,6,10,12,62],
and mesh alignment [6]. All works mentioned above focus on employing AQC
by translating problems into an AQC-admissible form, predominantly QUBO.

Furthermore, there is growing interest in exploring GQC for CV tasks. Re-
search in this area, such as robust fitting [19] and point set alignment [42], has
laid down a theoretical groundwork, suggesting that quantum-classical hybrid
solutions may offer viable paths forward. However, the realization of these con-
cepts in practical quantum implementations has not yet been achieved, with
most explorations remaining theoretical or confined to simulations.

2.2 Quantum computing in machine learning

The application of quantum computing to assist learning-based approaches for
CV tasks has also received significant attention. This approach represents a
shift towards integrating the computational capabilities of quantum computing
with conventional learning-based methods in CV. Recent examples of such en-
deavors are as follows: Rosenhahn and Hirche [47] tackled anomaly detection by
proposing to optimise an ordered set of quantum gates to compute a normalizing
flow using quantum architecture search (QAS) [68]. This work was inspired by a
previous study [34] that formulated a proximity measure to quantify how anoma-
lous a quantum state is. Luo et al . [36] implemented a 10-qubit quantum circuit
for binary classification employing stochastic gradient descent within Quantum
Machine Learning (QML) and Quantum-Assisted Cluster Kernels (QuACK).
Furthermore, Silver et al . [50] introduced MosaiQ, an enhanced generative ad-
versarial network (GAN) framework, building upon [28], specifically tailored for
the generation of high-quality quantum images. The paper details the quan-
tum circuit ansatz for MosaiQ’s generators, which is feasible for execution on
contemporary NISQ computers. Training of MosaiQ occurs on a quantum sim-
ulator, with inference conducted on both simulator and real QC. [65] proposed
an end-to-end quantum-inspired spectral-spatial pyramid network (QSSPN) for
hyperspectral image feature extraction and classification.

These initiatives underscore the promising synergy between quantum com-
puting and learning-based strategies, setting the stage for potential advance-
ments in critical optimization challenges inherent to CV.
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3 Boolean influence for robust fitting

We first review the concept of Boolean influence for robust fitting [52, 53, 64].
Recall the binary vector z ∈ {0, 1}N that represents selection of a subset of D,
i.e., zi = 1 implies that pi is in subset z. The minimax value of z is

g(z) := min
x∈M

max
i=1,...,N

ziri(x) = min
x∈M

∥∥∥∥∥∥∥



z1r1(x)

...
zNrN (x)




∥∥∥∥∥∥∥
∞

, (5)

i.e., g(z) is the minimum over M of the maximum residual of points in subset
z. We define the ℓ∞ feasibility test on z as

f(z) :=

{
0 if g(z) ≤ ϵ,

1 otherwise.
(6)

We say that z is feasible if f(z) = 0 and infeasible otherwise. Intuitively, f(z) = 0
means that there is an x to which all the points in z have residuals ≤ ϵ, which
in the context of robust fitting implies that z is a consensus set. Conversely,
f(z) = 1 implies that z contains outliers.

Including new points to a subset cannot make the minimax value of the
resultant subset smaller, i.e.,

g(z1) ≤ g(z1 ∨ z2) (7)

where ∨ is bit-wise OR. Therefore, f is monotonic, i.e.,

f(z1) ≤ f(z1 ∨ z2). (8)

Employing concepts from monotone Boolean function analysis [43], the Boolean
influence (henceforth, just “influence”) of the i-th point under f is

αi = Pr [f(z) ̸= f(z⊗ ei)] =
1

2N

∑

z∈{0,1}N

I [f(z) ̸= f(z⊗ ei)] , (9)

where ei is the binary vector of all zeros except at the i-th element, ⊗ is bit-wise
XOR (i.e., z ⊗ ei flips the i-th element in z), and I(·) returns 1 if the input
condition is true and 0 otherwise. Intuitively, αi is the probability that pi will
change the feasibility of an arbitrary z, if pi is inserted or removed from z.

Tennakoon et al . [53] and Zhang et al . [64] proved that under certain con-
ditions the influences of the inliers in D are strictly smaller than that of the
outliers, which supports using influence as a measure of outlyingness.

Example 1 (Robust linear regression). Given N pairs of independent and re-
sponse measurements {(ai, bi)}Ni=1 where ai ∈ Rd and bi ∈ R, we wish to estimate
the linear relationship aTx ≈ b that best fits the data, which is contaminated
with outliers. Define the residual of the i-th point pi = (ai, bi) as

ri(x) = |aTi x− bi|, (10)
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True model

(a) Outlier-prone data {(ai, bi)}N
i=1 for lin-

ear regression with dimensionality d = 1.
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(b) Influences versus residuals to the true model.

Fig. 1: Influences versus true residuals for robust linear regression. Note that points
with lower influence tend to have lower true residuals.

which implies that the minimax problem (5) reduces to linear programming [61].
Fig. 1 plots the normalized influences for an outlier-contaminated data for linear
regression versus the residuals ri(x

◦) of the data to the true model x◦. Clearly
points with lower influences tend to have lower true residuals.

Example 2 (Fundamental matrix estimation). We aim to find the fund. matrix
F, a homogeneous 3×3 matrix of rank 2, that defines the epipolar equation

(ũ′)TFũ = 0 (11)

between two views, where ⟨u,u′⟩ is a point correspondence with u =
[
u v

]T ,
u′ =

[
u′ v′

]T , and ũ =
[
uT 1

]T . Based on [27, (11.2)], we linearize (11) to

[u′u, u′v, u′, v′u, v′v, v′, u, v, 1] f = 0, (12)

where f ∈ R9 is vectorized F. Following [27, Sec. 4.1.2], we dehomogenize (12)
by fixing the first element of f to 1, and moving u′u to the RHS to yield

[u′v, u′, v′u, v′v, v′, u, v, 1]x = −u′u =⇒ ax = b, (13)

where x ∈ R8 contains the rest of f . Given a set of outlier-prone correspondences
{⟨ui,u

′
i⟩}Ni=1, we take pi = (ai, bi) following (13), and adopt (10) as the residual.

In short, we have converted fundamental matrix estimation into linear regres-
sion. Fig. 2 plots the normalized influences for an outlier-contaminated set of
correspondences versus the residuals ri(x

◦) of the correspondences to the true
model x◦, which was derived from the true fundamental matrix F◦. Evidently
points with lower influences have lower true residuals.

Model estimation Given the influences {αi}Ni=1, they can be thresholded to
yield an inlier set, on which least squares can be applied to estimate M [19]. More
sophisticated heuristics guided by the influences have also been proposed [53,64].

The viability of influence as an outlying measure on other non-linear estima-
tion problems (e.g ., homography estimation, 3D triangulation) has also been es-
tablished [19,53,64]. However, the bottleneck lies in computing the influence (9).
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(a) SIFT correspondences [35] on an image pair
from KITTI dataset [11].

0 100 200 300 400 500 600
Point indices (sorted according to normalised influence)

0

1000

2000

3000

4000

5000

R
es

id
ua

l r
(x

)=
|a

x-
b|

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 in
flu

en
ce

 v
al

ueResidual to true model
Normalised influence

(b) The initial 470 data points, with near-zero
residuals, have significantly less influence than the
later points with larger residuals.

Fig. 2: Influences versus true residuals for a correspondence set for fundamental matrix
estimation. Note that points with lower influence tend to have lower true residuals.

4 Quantum algorithm for influence computation

Note that (9) sums over all 2N combinations of z. In practice, a finite sample set
Z = {zj}Mj=1 ⊂ {0, 1}N of size M is procured to approximate the influence

α̂i =
1

M

M∑

j=1

I [f(zj) ̸= f(zj ⊗ ei)] . (14)

Alg. 1 summarizes the method for influence approximation. Note that Figs. 1
and 2 plot approximate influences for M = 1000. It can be shown [19] that α̂i

approaches αi following the probabilistic bound

Pr(|α̂i − αi| < δ) > 1− 2e−2Mδ2 , (15)

where δ is the desired deviation. For example, if M = 1000, Pr(|α̂i − αi| <
0.05) > 0.99, i.e., not many samples are required to achieve a good approxima-
tion. However, Alg. 1 can be costly if N is large, e.g ., N > 1000 points.

4.1 Quantum algorithm

Chin et al . [19] proposed a quantum algorithm to speed up (approximate) influ-
ence calculation; Alg. 2 summarizes the method. The algorithm employs the BV
circuit [8] (shown in Fig. 3), which we briefly describe below; see [19] for details.Robust Fitting on a Gate Quantum Computer 9

|z⟩ = |0⟩

|y⟩ = |1⟩

H⊗N

Uf

H⊗N

Φout

H H

Fig. 3: BV quantum circuit with generic Uf for influence computation.

4.2 Quantum circuit for ℓ∞ feasibility test

Kahl and Hartley [28] showed that the ℓ∞ feasibility test (6) is efficient for
quasiconvex residuals (which include the linear case in Examples 1 and 2). Chin
et al . [18] relied on the fact that any classical computation has a comparably
efficient quantum implementation [40, Chap. 3.25] to argue for the existence of
Uf , which is responsible for conducting the ℓ∞ feasibility test on the quantum
machine; however, no concrete solution was provided for Uf , which raises doubts
of the feasibility of Alg. 2 on a real gate quantum computer.

In this section, we address the critical gap by proposing a quantum circuit
for Uf . Although our solution is aimed at the simple 1D “point fitting” problem,
– it is a non-trivial and novel contribution that enables quantum robust fitting

to be demonstrated for the first time on a real gate quantum computer.
– the computed influences for point fitting can be accumulated to achieve

influence computation for more complex estimation tasks (Sec. 5).

Robust point fitting As alluded to above, our proposed quantum circuit is
aimed at robust point fitting, which is a 1D special case of robust linear regression
(Example 1) with d = 1 and ai = 1,∀i. The residual reduces to

ri(x) = |x− bi|, (19)

and we aim to find the point x ∈ R that is representative (within ϵ) of the inlier
population in the data D = {bi}Ni=1. The ℓ∞ feasibility test (6) reduces to

f(z) =

{
0 if max({bi | i s.t. zi = 1})−min({bi | i s.t. zi = 1}) ≤ 2ϵ,

1 otherwise.
(20)

Preprocessing We first sort D decreasingly such that bi ≥ bj ∀ i < j. Also, we
assume bi ≥ 0 ∀ i, by offsetting the values as necessary such that bN = 0.

Circuit design The proposed Uf is shown in Fig. 4, with the implementation of
subcircuit D shown in Fig. 5. Our design introduces ancillary qubits |a⟩ = |a1a2⟩
and |v⟩ = |v1v2⟩, which are all initialized to |0⟩. The major circuit blocks are:
– D is the main circuit that computes f(z), while D−1 performs “uncomputa-

tion” to restore the ancillary qubits as required for Uf in the BV circuit.
– A selects the largest (sorted) number in the subset indicated by |z⟩. For exam-

ple, for input D = {7, 5, 3, 2} and |z⟩ = |1011⟩, applying A yields |a1⟩ = |1000⟩,
implying the size of |a1⟩ being the number of data points N . Block A−1 re-
verses the computation such that |z⟩ and |a1⟩ are restored. Note that following
the sequence in Fig. 4, |z⟩ is in uniform superposition (16) when input to A.

Fig. 3: BV quantum circuit with generic Uf for influence computation.

The adopted BV circuit requires N+1 qubits: the top-N qubits |z⟩ represent
subset selection and the bottom qubit |y⟩ is for auxiliary purposes. The major
steps of the BV circuit in the context of Alg. 2 are:
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Algorithm 1 Classical method for influence approximation.
Require: N input data points D, inlier threshold ϵ, number of iterations M .
1: for j = 1, . . . ,M do
2: zj ← Randomly sample a subset of {1, . . . , N}.
3: for i = 1, . . . , N do
4: sj,i ← I [f(zj) ̸= f(zj ⊗ ei)].
5: end for
6: end for
7: for i = 1, . . . , N do
8: α̂i ← 1

M

∑M
j=1 sj,i.

9: end for
10: return {α̂i}Ni=1.

Algorithm 2 Quantum method for influence approximation.
Require: N input data points D, inlier threshold ϵ, number of iterations M .
1: for j = 1, . . . ,M do
2: [sj,1, sj,2, . . . , sj,N ]← Run BV circuit with D and ϵ and measure top-N qubits.
3: end for
4: for i = 1, . . . , N do
5: α̂i ← 1

M

∑M
j=1 sj,i.

6: end for
7: return {α̂i}Ni=1.

Initialization Set |z⟩ = |0⟩ and |y⟩ = |1⟩, then pass them through Hadamard
gates to generate uniform superposition for the top-N qubits

|z⟩ = 1√
2N

∑

t∈{0,1}N

|t⟩ , (16)

while the auxiliary qubit is prepared in a state that will facilitate interference.
Oracle function The quantum oracle, represented by gate Uf , implements the

feasibility test (6) corresponding to the target problem (more in Sec. 4.2).
Interference After the oracle function, another set of Hadamard gates perform

constructive and destructive interference, resulting in the output state

Φout =
1

2N

∑

s∈{0,1}N

∑

t∈{0,1}N

(−1)f(t)+s·t |s⟩ |1⟩ . (17)

Measurement Measure the top-N qubits of Φout to yield binary string s.

As outlined in [19, Theorem 1], each element si in the measured binary string
s = [s1, s2, . . . , sN ] ∈ {0, 1}N is a sample from the Bernoulli distribution

Pr(si = 1) = αi. (18)

By running the BV circuit M times, Alg. 2 effectively acquires outcomes of
the test I [f(zj) ̸= f(zj ⊗ ei)] for M samples {zj}Mj=1. Moreover, the sampling is
parallelized across the N points by the QPU, thus, Alg. 2 can have a significant
computational gain over Alg. 1 if N is large.
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4.2 Quantum circuit for ℓ∞ feasibility test

Kahl and Hartley [29] showed that the ℓ∞ feasibility test (6) is efficient for
quasiconvex residuals (which include the linear case in Examples 1 and 2). Chin
et al . [19] relied on the fact that any classical computation has a comparably
efficient quantum implementation [41, Chap. 3.25] to argue for the existence of
Uf , which is responsible for conducting the ℓ∞ feasibility test on the quantum
machine; however, no concrete solution was provided for Uf , which raises doubts
of the feasibility of Alg. 2 on a real gate quantum computer.

In this section, we address the critical gap by proposing a quantum circuit
for Uf . Although our solution is aimed at the simple 1D “point fitting” problem,
– it is a non-trivial and novel contribution that enables quantum robust fitting

to be demonstrated for the first time on a real gate quantum computer.
– the computed influences for point fitting can be accumulated to achieve

influence computation for more complex estimation tasks (Sec. 5).

Robust point fitting As alluded to above, our proposed quantum circuit is
aimed at robust point fitting, which is a 1D special case of robust linear regression
(Example 1) with d = 1 and ai = 1,∀i. The residual reduces to

ri(x) = |x− bi|, (19)

and we aim to find the point x ∈ R that is representative (within ϵ) of the inlier
population in the data D = {bi}Ni=1. The ℓ∞ feasibility test (6) reduces to

f(z) =

{
0 if max({bi | i s.t. zi = 1})−min({bi | i s.t. zi = 1}) ≤ 2ϵ,

1 otherwise.
(20)

Preprocessing We first sort D decreasingly such that bi ≥ bj ∀ i < j. Also, we
assume bi ≥ 0 ∀ i, by offsetting the values as necessary such that bN = 0.

Circuit design The proposed Uf is shown in Fig. 4, with the implementation of
subcircuit D shown in Fig. 5. Our design introduces ancillary qubits |a⟩ = |a1a2⟩
and |v⟩ = |v1v2⟩, which are all initialized to |0⟩. The major circuit blocks are:
– D is the main circuit that computes f(z), while D−1 performs “uncomputa-

tion” to restore the ancillary qubits as required for Uf in the BV circuit.
– A selects the largest (sorted) number in the subset indicated by |z⟩. For exam-

ple, for input D = {7, 5, 3, 2} and |z⟩ = |1011⟩, applying A yields |a1⟩ = |1000⟩,
implying the size of |a1⟩ being the number of data points N . Block A−1 re-
verses the computation such that |z⟩ and |a1⟩ are restored. Note that following
the sequence in Fig. 4, |z⟩ is in uniform superposition (16) when input to A.

– B selects the smallest (sorted) number in the subset indicated by |z⟩, e.g ., for
input D = {7, 5, 3, 2} and |z⟩ = |1011⟩, applying B yields |a2⟩ = |0001⟩.

– V1 and V2 encode the numerical values of the input data D. The number of
qubits in |v1⟩ and |v2⟩ equals the bit precision C of the data. An example
data entry to V1 and V2 is demonstrated in Fig. 6.
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Uf

N

2N

2C

1

|z⟩ = |0⟩
|a⟩ = |0⟩
|v⟩ = |0⟩
|y⟩ = |1⟩

H⊗N

D D−1

H⊗N

Φout

H H

Fig. 4: Proposed quantum gate Uf for point fitting embedded in the BV circuit. The Uf

gate introduces additional auxiliary qubits |a⟩ and |v⟩. The composition of subcircuit
D is illustrated in Fig. 5.

C

N

N

N

C 1

|v1⟩ = |0⟩
V1

S1

|a1⟩ = |0⟩
A A−1

|z⟩
B|a2⟩ = |0⟩

V2|v2⟩ = |0⟩ S2 f(z)

Fig. 5: Composition of subcircuit D from Fig. 4, which includes a largest number
selector A, a smallest number selector B, subcircuits V1 and V2 to encode the data
values {bi}Ni=1, a quantum Fourier transform (QFT) subtractor S1 [21, 47], and finally
a 2ϵ comparator S2. f(z) is indicated by the last bit of |v2⟩. Details of A, B, S1, and
S2 are provided in the supp. material, while an example of V1 and V2 is given in Fig. 6.

– B selects the smallest (sorted) number in the subset indicated by |z⟩, e.g ., for
input D = {7, 5, 3, 2} and |z⟩ = |1011⟩, applying B yields |a2⟩ = |0001⟩.

– V1 and V2 encode the numerical values of the input data D. The number of
qubits in |v1⟩ and |v2⟩ equals the bit precision C of the data. An example
data entry to V1 and V2 is demonstrated in Fig. 6.

– S1 calculates the absolute difference between the values encoded in |v1⟩ and
|v2⟩ and selected by |a1⟩ and |a2⟩. The output is encoded in |v2⟩. The sub-
tractor [21,47] is based on Quantum Fourier transform (QFT) [19].

– S2 takes in |v2⟩ and calculates its absolute difference with an inbuilt value of
2ϵ, which effectively conducts the feasibility test f(z) (20).

For brevity, we provide the detailed design of the circuits in the supp. material.

Qubit count Denoting N as the number of points and C as the bit precision of
the data, the circuit in Fig. 4 consumes 3N+2C+1 qubits. Further optimization
is possible to reduce the qubit count—see supplementary material.

5 Influence-based robust fitting of fundamental matrix

Here, we show how influences computed for robust point fitting, which our quan-
tum circuit is specialized for (Sec. 4.2), can be accumulated to obtain influences

Fig. 4: Proposed quantum gate Uf for point fitting embedded in the BV circuit. The
Uf gate introduces auxiliary qubits |a⟩ and |v⟩. The subcircuit D is illustrated in Fig. 5.
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Fig. 4: Proposed quantum gate Uf for point fitting embedded in the BV circuit. The Uf

gate introduces additional auxiliary qubits |a⟩ and |v⟩. The composition of subcircuit
D is illustrated in Fig. 5.
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selector A, a smallest number selector B, subcircuits V1 and V2 to encode the data
values {bi}Ni=1, a quantum Fourier transform (QFT) subtractor S1 [21, 47], and finally
a 2ϵ comparator S2. f(z) is indicated by the last bit of |v2⟩. Details of A, B, S1, and
S2 are provided in the supp. material, while an example of V1 and V2 is given in Fig. 6.
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Fig. 5: Composition of subcircuit D from Fig. 4, which includes largest number selector
A, smallest number selector B, subcircuits V1 and V2 to encode the data values {bi}Ni=1,
a quantum Fourier transform (QFT) subtractor S1 [22,48], and finally a 2ϵ comparator
S2. f(z) is indicated by the last bit of |v2⟩. Details of A, B, S1, and S2 are in the
supp. material, while an example of V1 and V2 is given in Fig. 6.

– S1 calculates the absolute difference between the values encoded in |v1⟩ and
|v2⟩ and selected by |a1⟩ and |a2⟩. The output is encoded in |v2⟩. The sub-
tractor [22,48] is based on Quantum Fourier transform (QFT) [20].

– S2 takes in |v2⟩ and calculates its absolute difference with an inbuilt value of
2ϵ, which effectively conducts the feasibility test f(z) (20).

For brevity, we provide the detailed design of the circuits in the supp. material.

Qubit count Denoting N as the number of points and C as the bit precision of
the data, the circuit in Fig. 4 consumes 3N+2C+1 qubits. Further optimization
is possible to reduce the qubit count—see supplementary material.

5 Influence-based robust fitting of fundamental matrix

Here, we show how influences computed for robust point fitting, which our quan-
tum circuit is specialized for (Sec. 4.2), can be accumulated to obtain influences
for more complex robust fitting tasks, specifically fundamental matrix estima-
tion. Alg. 3 summarizes the proposed method. Note that the main goal of Alg. 3
is enabling validation of the computed and accumulated influences (Sec. 6.2).

The main idea is conducting RANSAC-style hypothesis sampling (Steps 2–3),
evaluate the residual of the input correspondences on each hypothesis (Step 4),
then use the residuals as input data for point fitting influence computation
(Step 5). The point fitting influences are then accumulated via log averaging
(Step 8) to obtain the influences for robust fundamental matrix fitting.
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- Calculate 1D influence on the vector using the same fixed threshold in308 308

pixels. This can be done with a quantum algorithm, or alternatively classically309 309

as in algorithm 3. The size of quantum hardware limits the number of available310 310

points in the quantum algorithm. We will use the classical algorithm for the311 311

large scale experiments.312 312

Ensamble the 1D influences over the iteration with log average.313 313

Normalize the log-influences to 0� 1.314 314

Loop over a range of thresholds from 0 to 1 on the log-influences.315 315

- For each threshold fit a fundamental matrix on the points with log-influence316 316

below the threshold.317 317

- Calculate the number of inliers for the current model318 318

Finally, select the model with the highest number of inliers and refine the319 319

model with the inlier points.320 320

6 Relation between 1-D influence and d-D influence321 321

Lower bound to d�D influence322 322

Table 4: Recall at SGD <= 0.05 as in []. In the first three columns we report ex-
periments run on exactly the same keypoints and for the same number of iterations,
making the robust regression directly comparable. For quick reference we also report
the corresponding numbers from [].

reported from Bian+19
OURS RANSAC USAC-openCV

TUM 60.9 60.9 54.0
KITTI 87.0 87.0 83.8
T&T 87.2 77.6 88.1
CPC 56.5 42.0 52.5

RANSAC USAC CF-RSC
57.4 56.5 69.30
91.7 82.7 92.30
70.0 78.8 90.70
29.2 49.7 60.90

Fig. 6: An example of V1 that encodes the data D = {7, 5, 3, 2} for point fitting. The
number of qubits employed for |v1⟩ reflects the precision used for the data. The exact
same design applies to V2, save for changing |a1⟩ to |a2⟩ and |v1⟩ to |v2⟩.

Algorithm 3 Influence accumulation for fundamental matrix estimation.
Require: Point correspondences U = {⟨ui,u

′
i⟩}Ni=1, inlier threshold ϵ, number of hy-

potheses T , number of iterations M .
0: D = {(ai, bi)}Ni=1 ← Linearize the measurements U (see Example 2).
1: for t = 1, . . . , T do
2: Kt ← Sample a minimal subset of 8 correspondences from U .
3: Ft ← Estimate fundamental matrix from Kt using 8-point method [27].
4: {ri}Ni=1 ← Evaluate linearized residual of D on Ft (see Example 2).
5: {α̂(t)

i }Ni=1 ← Run Alg. 1 or 2 for M iterations with threshold ϵ to compute
influences for point fitting problem with residuals {ri}Ni=1 as data.

6: end for
7: for i = 1, . . . , N do
8: α̂i ← 1

T

∑T
t=1 log

(
α̂
(t)
i

)
.

9: end for
10: return {α̂i}Ni=1.

Due to the limitations of current quantum hardware (Sec. 1.4), the number
of points N that are feasible for the quantum method (Alg. 2) is restricted (see
Sec. 6.1). Thus, to verify Alg. 3, we will mainly use the classical method (Alg. 1).

Model estimation We depart from previous influence-based estimation meth-
ods [19, 53, 64]. We first normalize the influences {α̂i}Ni=1 to [0, 1]. For each γh
from a uniform sample of thresholds [γ1, γ2, . . . , γH ] ⊂ [0, 1], we solve

x∗
h = argmin

x∈M

N∑

i=1

I(α̂i ≤ γh)ri(x)
2, (21)

i.e., least squares fitting on points with influence ≤ γh. The model x∗
h with the

highest consensus I(x∗
h) is returned as the final robust estimate.

6 Experiments

6.1 Correctness and feasibility of quantum algorithm

Correctness of quantum circuit To validate the proposed quantum algo-
rithm (Sec. 4.2), we used the State Vector Simulator (SV1) on Amazon Braket [3],
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which contained 34 qubits. Via the Qiskit framework [45], we implemented the
proposed quantum circuit (Fig. 4) with input data D = {7, 5, 3, 2} at C = 3 bit
precision and ϵ = 1, which consumed 20 qubits (see Sec. 4.2). Fig. 7 plots the
computed influences as a function of iteration count M in Alg. 2. It is evident
that the computed influences approached the true values {0.50, 0.25, 0.25, 0.50}
with increasing M . The results indicate the correctness of our circuit and Alg. 2.
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Fig. 7: Approximate influence as a function of iteration count M in Alg. 2, for data
D = {7, 5, 3, 2} and ϵ = 1 and implemented on Amazon Braket SV1 quantum simulator.

Feasibility on quantum hardware To demonstrate the feasibility of our
proposed quantum algorithm (Sec. 4.2) on a real gate quantum computer, we
tested it on IonQ Aria, which is IonQ’s 5th generation trapped-ion quantum
computer with 25 physical qubits. The proposed quantum circuit (Fig. 4) with
several D and ϵ (see Tab. 1) were executed on Aria and SV1 for comparison.
Due to limited access to the Aria, only M = 50 iterations were executed (with
reported runtimes of seconds), as compared to M = 1000 on SV1.

Tab. 1 shows that the approximate influences from SV1 aligned closely with
the true values. On Aria, the approximate influences were close to the true
values when the circuit size was small; however, as the circuit size increased, the
discrepancy with the true values also increased. This could be due to:
– Insufficient number of iterations M for Alg. 2 on the Aria.
– Lack of error correction on the quantum hardware, which was difficult to

implement anyway due to low QPU capacity. Note that the sizes of the
larger circuits tested were close to the maximum number of qubits (25).

Nevertheless, the good results from the smaller circuits establish the feasibility
of Alg. 2 and the proposed quantum circuit (Fig. 4) on real quantum hardware.

6.2 Influence-based robust fitting of fundamental matrix

We designed an experiment to validate the usefulness of the accumulated influ-
ences for a complex robust fitting task. Provided an efficient way to compute
influences (e.g. with quantum computing), we showed that competitive CV al-
gorithms can be built. We evaluated the method described in Sec. 5 on the
image pairs collected by [11] from the TUM [51], KITTI [25], T&T [30] and
CPC [58] datasets. Each collection has 1000 image pairs with views of the same
scene and a ground truth fundamental matrix between the views. We used stan-
dard established techniques for keypoint extraction (SIFT [35]) and matching
proposals [35], returning typically hundreds, up to a few thousands correspon-
dences. The fundamental matrix estimation problem was linearized following
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Table 1: Results of Alg. 2 on a real gate quantum computer (IonQ Aria) for M = 50
runs and a quantum simulator (Amazon Braket SV1) for M = 1000. Legend: N is the
number of points, C is the bit precision, D is input data, nQ is the number of qubits
required to implement the quantum circuit (Fig. 4), 2ϵ is twice the inlier threshold,
{αi}Ni=1 are the true influences, {α̂Q

i }Ni=1 are the approx. influence from executing Alg. 2
on IonQ Aria, {α̂S

i }Ni=1 are the approx. influence from executing Alg. 2 on SV1.

N C D nQ 2ϵ {αi}N
i=1 {α̂Q

i }N
i=1 {α̂S

i }N
i=1

2 1 {0, 1} 9 0 0.50, 0.50 0.50, 0.56 0.51, 0.49
2 1 {0, 1} 9 1 0, 0 0, 0 0, 0
2 2 {0, 2} 11 1 0.50, 0.50 0.50, 0.58 0.50, 0.49
2 3 {2, 4} 13 1 0.50, 0.50 0.46, 0.56 0.51, 0.50
2 3 {2, 4} 13 2 0, 0 0, 0 0, 0
3 3 {2, 4, 7} 16 3 0.50, 0.25, 0.50 0.49, 0.23, 0.53 0.50, 0.26, 0.52
4 3 {2, 3, 5, 7} 19 2 0.50, 0.25, 0.25, 0.50 0.48, 0.39, 0.41, 0.53 0.50, 0.25, 0.25, 0.49

Example 2. We constructed ground truth inliers/outliers labels. For each corre-
spondence we calculated the epipolar lines and thresholded the sum of the two
distances between pixels and the lines at 6 pixels to create the labels.

First, the influences for the correspondences were obtained by Alg. 3 together
with Alg. 1 for influence computation. As shown by [19], influences can be used
to distinguish inliers from outliers. A Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC) score was calculated for each image pair. The
averages of the score over the datasets are shown in Tab. 2. We report the
classification ROC AUC score of a RANSAC estimator and of the influences
estimated as in [19]. Interestingly, the new method scored favorably compared
to both RANSAC residuals and the original method from [19].

We then focused on testing the capabilities of using influences for funda-
mental matrix estimation. To calculate the model we used the method summa-
rized by (21) in Sec. 5. For the evaluation of the fundamental matrices we use
the Symmetric Geometric Distance (SGD) [67] in pixels between virtual corre-
spondences built with the estimated matrix and the ground truth matrix. We
followed [11] and normalise SGD between [0, 1] by the length of the image di-
agonal f = 1/

√
(w+h2) obtaining Normalised SGD (NSGD). The NSGD is a

method to measure the distance between the ground truth fundamental matrix
and the estimated fundamental matrix. Values close to 0 are optimal. When
the estimated fundamental matrix has a NSGD lower that 0.05 it is considered
accurate. We evaluated the models with the recall of correctly estimated models
(recall = #correct

#total ). The performances are reported in Tab. 3. On the left half of
the table we also reported RANSAC and USAC-openCV estimators run on the
same set, with the same number of iterations and the same inlier/outlier thresh-
old used with our method for fair comparison. On the right half of the table we
collected the results from [11] for easy comparison. Our approach showed that
an efficient way of calculating influences can be beneficial for robust fitting.

Hyperparameters In the above fundamental matrix experiments, the hyper-
parameters for our method (Sec. 5) were set as follows: The threshold of the
linearized problem was set to ϵ = 0.6; M was set to 1000; T was set to 1000;
and H = 50 was the number of influence thresholds tested.
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Table 2: Average ROC AUC classification scores of inliers/outliers by RANSAC, in-
fluence estimated using Alg. 3, and influence estimated using [19] on the linearized
problem. The expectation of a random classifier is 0.5 while a perfect classifier returns
1; hence, higher ROC AUC indicate better performance.

RANSAC Influence (Alg. 3) Influence [19]
TUM 0.71 0.83 0.76
KITTI 0.86 0.94 0.86
T&T 0.72 0.82 0.82
CPC 0.75 0.87 0.85

Table 3: Percentage recall at SGD ≤ 0.05 (following [11]). In the first three columns
we report results obtained on exactly the same correspondences and number of iter-
ations, making the outcomes directly comparable. For quick reference we also report
the corresponding numbers from [11].

Obtained from [11]
Our method (Sec. 5) RANSAC USAC-openCV

TUM 62.8 60.9 54.0
KITTI 85.4 87.0 83.8
T&T 85.1 77.6 88.1
CPC 50.3 42.0 52.5

RANSAC USAC CF-RSC
57.4 56.5 69.3
91.7 82.7 92.3
70.0 78.8 90.7
29.2 49.7 60.9

6.3 Comparisons against AQC-based quantum robust fitting

Note that the AQC-based robust fitting methods of [21, 23] employed very dif-
ferent problem formulations to ours (see Sec. 1.1). A comparison with our GQC-
based method would thus not be a meaningful comparison of quantum robust
fitting. Moreover, the amenable problem sizes and solution quality of AQC are
also limited [21,23], thus, conclusions drawn would not be scalable.

7 Conclusions and discussion

We demonstrated for the first time quantum robust fitting on a GQC using
a novel quantum circuit for ℓ∞ feasibility test in point fitting. We also showed
how influence, a measure of outlyingness, can be accumulated to obtain influence
for more complex estimation tasks. Results on a quantum simulator (Amazon
Braket SV1) confirmed the algorithm’s correctness, while tests on a GQC (IonQ
Aria) proved its feasibility on real quantum hardware. A fundamental matrix
estimation benchmark indicated the promise of our method on a practical task.

Note that Alg. 3 is a hybrid quantum-classical algorithm, similar to [21,23].
While our method does not provide exponential speed-up to robust fitting, hy-
brid methods are nevertheless crucial to facilitate adoption of quantum com-
puters in the near term [16]. More broadly, developing quantum solutions for
problems with existing classical solutions is a useful endeavor, since it can lead
to new insights and techniques [49]. In this spirit, our work represents an early
but significant attempt at using GQC for a realistic computer vision problem,
aiming to inspire more effective quantum methods for vision.
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