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Abstract. Vehicle-to-everything (V2X) technology has become an area
of interest in research due to the availability of roadside infrastruc-
ture perception datasets. However, these datasets primarily focus on
urban intersections and lack data on highway scenarios. Additionally,
the perception tasks in the datasets are mainly MONO 3D due to lim-
ited synchronized data across multiple sensors. To bridge this gap, we
propose Highway-V2X (H-V2X), the first large-scale highway Bird’s-
Eye-View (BEV) perception dataset captured by sensors in the real
world. The dataset covers over 100 kilometers of highway, with a di-
verse range of road and weather conditions. H-V2X consists of over
1.9 million fine-grained categorized samples in BEV space, captured
by multiple synchronized cameras, with vector map provided. We per-
formed joint 2D-3D calibrations to ensure correct projection and hu-
man labor was involved to ensure data quality. Furthermore, we propose
three highly relevant tasks to the highway scenario: BEV detection, BEV
tracking, and trajectory prediction. We conducted benchmarks for each
task, and innovative methods incorporating vector map information were
proposed. We hope that H-V2X and benchmark methods will facilitate
highway BEV perception research direction. The dataset is available at
https://pan.quark.cn/s/86d19da10d18
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Fig. 1: We introduce H-V2X, the first large scale highway dataset captured from real-
world senario and sensors. H-V2X provides synchroized sensor data, vector map, pro-
jection parameters and 3D ground truth, enabling end-to-end highway BEV perception.

1 Introduction
The highway is pivotal in transportation, but persistent safety concerns remain
unresolved. While the development of intelligent vehicles presents a potential
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and practical solution to address human-driver-related issues such as fatigue,
distraction, and unsafe driving practices, the adoption of vehicle intelligence is
still in its nascent stages. It is noteworthy that the majority of vehicles on the
highway lack advanced driver assistance systems.

Conversely, there is substantial promise in the emerging research focus on
roadside infrastructure, particularly within vehicle-to-everything (V2X) com-
munication. V2X has the potential to significantly enhance driving safety by
leveraging sensors installed along the roadside to perceive the surrounding envi-
ronment of the ego-car and subsequently communicate with it through network
connections such as 5G or Road-Side-Unit (RSU). There have been several works
that focus on city roadside perception by constructing roadside infrastructure
datasets (sec2.1), and successive works that focus on 3D perception given the
data (sec2.2). However, when considering highway roadside perception, the ex-
isting datasets are not directly applicable for training neural networks due to
differences in scenarios, sensors and tasks.

To address the disparities and advance the study of highway roadside per-
ception, we are introducing Highway-V2X (H-V2X), a large-scale 3D perception
dataset presented in Bird’s Eye View (BEV) space. This dataset was captured
in real world highway scenarios, with sensors strategically mounted on masts.
Encompassing over 100 kilometers of highway, the dataset leverages cameras and
radars, complemented by a local vector map converted from High-Definition Map
(HDMap). In comparison to previous V2X datasets, H-V2X offers the following
distinct characteristics:

1. Emphasis on Highway Scenarios: The dataset is tailored specifically for
highway scenarios, showcasing a data distribution that significantly differs from
urban datasets. As depicted in the accompanying figure, large vehicles, in par-
ticular, feature prominently within this dataset (sec3.3).

2. Ground Truth Construction in BEV Space: Our dataset facilitates end-
to-end perception across multiple sensors by establishing ground truths in BEV
space. Furthermore, the ground truth data is sequentially organized, enabling
sequential learning.

3. Sensor Utilization: H-V2X employs radars and cameras, including fisheye
cameras to address blind spots beneath the mast, as illustrated in the figure1.
Notably, lidars are not included due to impractical installation on highway mast.
Consequently, constructing 3D ground truth presents a significant challenge, a
facet we will delve into extensively in subsequent sections.

4. Unified ID Tracking: The dataset emphasizes unified ID tracking across
multiple sensors within the actual trajectories of vehicles, rendering multi-object
tracking (MOT) an even more formidable task. In essence, vehicles are tracked
throughout their entire lifespan.

To the best of our knowledge, H-V2X stands as the first large-scale dataset
situated in a real-world highway scenario, incorporating BEV space attributes,
sequential data, and multimodal sensing. We aim for this dataset to make a
substantial contribution to the advancement of highway perception research.
Leveraging the H-V2X dataset, we have also introduced three tasks accompanied
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by ground truths and metrics to facilitate research in highway perception, along
with novel bencmark methods.

To summarise, our contributions are outlined as follows:
1. We release the H-V2X dataset, the first large-scale highway roadside infras-

tructure perception dataset collected using real-world data. In addition, ground
truths are constructed in BEV space across multiple sensors, making end-to-end
BEV learning possible.

2. Based on H-V2X, we introduce three tasks across multiple sensors, i.e.,
BEV detection, BEV tracking, and trajectory prediction. We comprehensively
provide time and space aligned original sensor data, along with ground truths
constructed by algorithms and human labor.

3. We present benchmark methods for each task, where novel neural nets
are proposed incorporating HDMap information, designed to address perception
across multiple sensors in BEV space.

2 Related Works
2.1 Roadside Infrastructure Datasets
In this work, we focus on datasets that belong to the roadside rather than
the vehicle side due to the significant variations in sensor perspectives and as-
sociated subtasks. For datasets relevant to autonomous vehicles from the ve-
hicle side, we recommend referring to the autonomous driving datasets sur-
vey in [22, 39]. To enable autonomous driving vehicles to perceive long-range
and blind-spot areas roadside perception (detailed in next section) and V2X
datasets [6, 11, 14, 15, 18, 27, 35, 36, 38] have emerged as a new research direc-
tion. Among these works, roadside sensor data are provided in either simulated
or real form, with scenarios focused on either urban or highway. A compre-
hensive comparison of these datasets can be found in table 1. Regarding sim-
ulated datasets, OPV2V [27] introduced a vehicle-to-vehicle simulated percep-
tion dataset featuring an average of 3 vehicles in the CARLA [7] simulator.
Similarly, V2X-Sim [18] utilized CARLA and SUMO [16] to create a vehicle-to-
RSU collaborative perception dataset. Additionally, Roadside-Opt [14] provided
a roadside LiDARs dataset that focuses on sensor placement optimization, also
using CARLA. These simulated datasets predominantly center on urban scenes,
particularly intersections, with relatively limited representation of highway sce-
narios. On the other hand, roadside datasets captured by real sensors such as
those proposed in [11, 35, 36, 38] use cameras or LiDARs in infrastructure-only
or infrastructure-vehicle cooperative scenarios in urban areas. These datasets
primarily support Mono3D detection tasks [11, 35, 36], as well as tracking and
prediction tasks [38]. For highway scenarios, HighD [15] released a camera-based
aerial perspective (top-down view) highway dataset using drones. A9-Dataset [6]
released a 3km-long roadside Mono3D detection dataset using cameras and Li-
DARs. DAIR-V2X-V [36] released a highway Mono3D dataset but from the ve-
hicle side. However, there is still a lack of a large-scale highway roadside dataset
collected from real-world sensors, where vehicles pass across multiple roadside
sensors, thus forming a BEV perception task. We believe that the H-V2X dataset
can bridge this gap.
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Table 1: Roadside Perception Dataset Comparison. C:Camera, L:LiDAR, R:Radar
Dataset Year Senario Sim

Real
Num

Samples
Num

Classes
With
Map

Provided
Sensors

Sequential
Trajectories

Supported
Tasks

Range |
Coverage

WIBAM [11] 2021 Urban Real 33092 1 X C X Mono3D 1 intersection
Rope3d [35] 2022 Urban Real 50009 12 X C X Mono3D 200m
DAIR-V2X-C [36] 2022 Urban Real 12424 10 X C&L X Mono3D 20km
DAIR-V2X-I [36] 2022 Urban Real 7058 10 X C&L X Mono3D 20km

V2X-Seq [38] 2023 Urban Real 11275 9 VectorMap C&L !
Tracking

3D & Pred 28 intersections

A9-I [46] 2023 Urban Real 4800 10 X C&L ! Mono3D 1 intersection
INT2 [29] 2023 Urban Real 106.8M 1 VectorMap C&L ! Trajectory Prediction 16 intersections

HighD [15] 2018 Highway
Drone Real 1.48M 2 X C X 2DBbox 420m

DAIR-V2X-V [36] 2022 Urban
Highway Real 15627 10 X C&L X Mono3D 20km

A9-Dataset [6] 2022 Highway
Ramp Real 1098 9 X C&L ! Mono3D 3km

OPV2V [27] 2022 Urban
Rural Sim 11464 1 X C&L X BEV 70 Scenes

V2X-Sim [18] 2022 Urban Sim 57200 1 X C&L X BEV & 3D
Tracking 100Scenes

Roadside-Opt [14] 2023 Urban Sim 37641 1 X L X BEV 10 Scenes

H-V2X(ours) 2024 Highway Real 1.94
Million 4 VectorMap C&R !

BEV Det
MOT Tracking

Trajectory Prediction
> 100km

2.2 Roadside Perception Methods

Roadside perception refers to the use of roadside sensors to provide collaborative
perception information for autonomous driving vehicles. M3D-RPN [2], Kine-
matic3D [3], MonoDLE [21], MonoFlex [40] and Imvoxelnet [23] were reimple-
mented for roadside camera-based monocular 3D detection on dataset Rope3D [35]
and DAIR-V2X [36] as baseline methods. PointPillars [17], MVX-Net [24], Sec-
ond [28], PIXOR [30] and VoxelNet [43] were reimplemented for LiDAR-based
monocular 3D detection baseline methods in DAIR-V2X-C/I [36] and OPV2V [27]
dataset. Additionally, TNT [42] and HiVT [44] are utilized as trajectory predic-
tion baseline methods in V2X-Seq [38]. Beyond these baseline methods, which
were adopted from recent works on autonomous detection tasks, InfraDet3D [45]
proposed a multi-modal 3D detector that fuses LiDAR point clouds in an early
fusion manner and incorporates camera detections in a late fusion manner. Tran-
sIFFTransIFF [5] and Quest [8] proposed instance-level feature fusion frame-
works based on transformers by fusing infrastructure and vehicle side inputs.
FFNet [37] proposed a flow-based feature fusion network that transmits feature
flow instead of static features. BEVHeight [34] and BEVHeight++ [32] tackled
roadside monocular 3D detection by predicting categorical height distribution
per pixel to regress the height of vehicles to the ground. MonoGAE [33] proposed
a ground-aware embedding by integrating implicit roadside ground information
with a pixel-level ground plane equation map encoder. Furthermore, there is a
line of work that addresses roadside perception from the perspective of multi-
agent cooperative perception by treating roadside input as one of the agents, as
seen in Where2comm [12], SCOPE [31], CORE [26], etc. For a more compre-
hensive understanding of cooperative perception, we recommend referring to the
V2X survey paper [20]. It is important to note that these roadside perception
methods are limited in their ability to perform an across-sensors BEV perception
task, as the most commonly used datasets (such as DAIR-V2X, Rope3D, etc.)
do not provide synchronized sensor data across multiple sensors. Moreover, these
methods currently lack the capability to handle fisheye cameras and incorporate
HDMap information, which is essential for highway perception scenarios.
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3 H-V2X Dataset
3.1 Setup
Basic Information The roadside infrastructure dataset presented in this paper
is derived from real-world highways, with sensors strategically mounted on masts
situated in the midst of the road. This network of masts spans over 100 kilome-
ters, ensuring near-complete coverage of the highway with minimal blind spots
(except for occlusions caused by bridges, signs, etc.). The dataset encompasses
diverse highway scenarios, encompassing long straight roads, sharp curves, el-
evated bridges, ramps, and more, presenting a comprehensive portrayal of all
road conditions typically encountered in highway settings. Each mast has multi-

0m 500m 1km

optical cables

⋯ ⋯ ⋯

⋯ ⋯ ⋯

100km50m 550m450m

sensor set MEC sensing range

Fig. 2: Sensor Deployment Illustration. Long-range cameras, short-range cameras, fish-
eye cameras are mounted on the mast, covering over 1km, eight lanes of the road.
Synchronized sensor data are collected, and shared observation area are ensured across
sensors. Radars are also mounted on each side of the mast, and are omitted in the
figure for simplification.

ple sensors, including two long-range (>800m) radars, two long-range cameras,
two short-range cameras, and a fisheye camera. A mobile edge computer (MEC)is
installed on each mast for data collection. All hardware is synchronized using
the NTP service deployed in the local cloud machine, and the time difference
between sensors within the same mast is less than 50ms. A topology of the setup
can be referred to as Fig. 2, with sensor specifications in table 2.

Table 2: Sensors Specifications and Configurations

Sensor Focus Frequency Resolution Format FOV BandWidth

Short-range Camera 12mm 10hz 1920x1080 JPEG 49.78 4Mbps

Long-range Camera 70mm 10hz 1920x1080 JPEG 9.1 4Mbps

Fisheye Camera 1.27mm 10hz 1280x1280 JPEG 180 4Mbps

Coordinates and Calibration There are three coordinate systems in the
H-V2X dataset: image coordinate, camera coordinate, and world coordinate.
The primary purpose of the H-V2X dataset is to project objects from the im-
age coordinate system to the world coordinate system, which is a local vector
map converted from High-Definition Map (HDMap). We propose two calibration
methods: a human calibration tool and an automated calibration algorithm.
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– Calibration Tool: Prior to installation on the masts, the intrinsics of the
cameras undergo calibration using a chessboard calibration algorithm [41].
The calibration tool incorporates the intrinsics, vector map, and the camera
video streams. Subsequently, a human operator can fine-tune the extrinsic
parameters (x, y, z, yaw, pitch, roll) to ensure that the projection of the
vector map aligns seamlessly with the visual lanes. A visual illustration of
the calibration tool is provided in Fig .3. This process ensures that all cam-
eras are calibrated uniformly to the same vector map, thereby guaranteeing
cohesive 2D to 3D projection.

– Calibration Algorithm: To address the concern of sensor drifting, we
present an automatic calibration algorithm. This algorithm leverages a seg-
mentation model to extract visual lanes and optimizes the 3D matching
score between vector map lanes and visual lanes using a bundle adjustment
algorithm. The calibration algorithm runs on a daily basis to maintain the
timely accuracy of the calibration. Furthermore, the algorithm’s effectiveness
is rigorously authenticated by human operators.

Fig. 3: Calibration Tool Examples. Images from left to right are the calibration in-
terfaces for short-range, long-range, and fisheye cameras, respectively. Yellow dots are
the projection of the vector map to the image plane. Non-English characters are not
relevant to the core contents of the paper and can be ignored. Sensitive information is
masked out during calibration and GT generation for safety concerns.

3.2 Data Acquisition & GT Generation
Collection Once the sensors and vector map are accurately calibrated, we pro-
ceed to decode the camera streams and capture synchronized frames from the
five cameras (2 long-range cameras, 2 short-range cameras, and 1 fisheye camera)
at a rate of 10 Hz. These frames, along with the current calibration parameters,
are stored using ros bag. To ensure diversity, meticulous human efforts were in-
vested in collecting over 1.94 million frames in total, encompassing the following
aspects:

– Scenes. The dataset comprehensively covers nearly all highway scenes, in-
cluding long straight roads, curved roads, interchanges, ramps, and more.

– Weather. The collected data encapsulates a wide spectrum of weather and
time conditions, ranging from daytime and nighttime to varied atmospheric
phenomena such as rainy, foggy, dusty, dawn, cloudy, etc.

– Traffic. Traffic conditions spans normal traffic flow, congested traffic flow,
and instances of sparse traffic.
Any invalid frames arising from network fluctuations are meticulously re-

moved (all synchronized five frames are deleted if any one of them is deemed
invalid) to uphold the high quality of the data.
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GT Generation In the context of roadside infrastructure 3D perception, the
ground truth is typically annotated on the LiDAR point cloud, as in [35, 36].
However, in highway scenarios, the mounting of LiDARs on masts is impracti-
cal due to high cost, maintenance, durability, sensing range issues. As a viable
alternative, we propose a novel BEV ground truth generation pipeline tailored
for the camera-only highway scenario, as illustrated in Fig. 4.

Camera

Raw Frames

2D Detection

&Tracking

2D to 3D

Projection

Converted

HDMap

Automated

Calibration

BEV Space

Object Matching

Trajectory

Post Processing

Generated

Ground Truth

Fig. 4: Ground Truth Generation Pipeline.

– 2D Detection and Tracking. We chose the bounding box as the ob-
ject representation and train a cloud foundation model using 122,445 an-
notated data. We incorporate semi-supervised learning to utilize more data,
resulting in 370,000 frames in total, yielding a mean average precision of
0.95@IoU=0.5, which provides solid results for subsequent modules. After
obtaining the single frame object detection bounding box, a 2D multiple
object tracking algorithm is added to smooth the bounding box size and
provide a tracking ID for each object in the image plane.

– 2D to 3D Projection. Bboxes in the image plane are subsequently pro-
jected to the vector map coordinate system. Outliers resulting from false
detections are filtered during projection by leveraging road boundary infor-
mation from the vector map.

– Object Matching. For objects that travel across sensors, a minimum Eu-
clidean distance Hungarian matching strategy is introduced to merge the
same object observed by different cameras.

– Post Processing. An Extended Kalman Filter motion model for each object
in BEV space to further smooth object trajectories. The tracking IDs for each
object in BEV space are also generated in the post-processing module.
Once the proposed GT generation pipeline is processed, human operators

must further validate the data quality. They need to remove the samples that
contain ghost trajectories (trajectories in the BEV space that do not match
any object in the image frame) and trajectory breaks (trajectories that break
abnormally or the same trajectory but tracking ID changes). Then, the remaining
samples are labeled with four classes: sedan, van, bus, truck. These class labels
are human-labeled during the 2D detection dataset construction phase, detected
via 2D detectors, and passed through the pipeline. Velocity and heading angle
are provided by radar observations. Finally, 17.56 million samples are generated.

3.3 Statistics Analysis
In total, we provide over 1.9 million samples and 17.6 million objects, with
detailed statistical plots depicted in Fig 5. Figure (a) illustrates the object dis-
tribution based on the distance from the mast. Figure (b) showcases the category
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distribution, highlighting sedans and trucks as dominant categories. Figure (c)
displays the velocity distribution, indicating that most vehicles travel at reason-
ably high speeds. Figure (d) presents the average velocity per category. Figure
(e) exhibits the track length of vehicles, where tracks longer than 400 meters
constitute 78.4% of the dataset. Lastly, Figure (f) illustrates the average track
length for each category.

In essence, these statistics reveal the distinctive data distribution characteris-
tics of highway scenarios in H-V2X. The dataset differs significantly from urban
scene data, underscoring its value in highway perception research.

a. b. c.

d. e. f.

Fig. 5: H-V2X Dataset Statistics Analysis.

4 Tasks

4.1 Task 1: BEV Detection (H-V2X-Det)

Task Description In a manner akin to the task definition in autonomous driv-
ing BEV perception [13], BEV detection in the H-V2X dataset aims to pinpoint
objects in BEV space by extracting positions, angles, and velocities from images.
However, this task exhibits distinctive characteristics as outlined below:

• Extended detection range: The coverage typically spans approximately
±500 meters around the local principal point, significantly surpassing the detec-
tion range in traditional autonomous driving tasks (e.g., ±60m in [13], ±75m
in [19]). Consequently, this task introduces challenges related to long-range de-
tection in BEV settings, thereby influencing the design and integration of grid
maps within the BEV algorithm.

• Diverse camera types: In highway scenarios, where comprehensive sensor
coverage and an expanded field of view are imperative, various camera types are
deployed, including long-focus, short-focus, and especially fisheye cameras.

• Integration of HDMap: The High-Definition Map (HDMap) serves as
a critical input for the task, with lanes and boundaries depicted as line dots
accompanied by appropriate labels, further enhancing the contextual information
available for analysis.
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Formulation Given multiple sensor inputs at each timestamp t, BEV detection
tries to find a fitting neural net F which calculates the 3D information of objects
in all image views, forming a ten-tuple:

(cls, conf, x, y, z, w, l, h, yaw, color) = F ((I0, I1, I2, I3, I4),M), (1)
where:
• Ii represents each image of the five cameras in JPEG BGR format. Res-

olutions of long-range and short-range camera images are 1920x1080x3 and
1080x1080x3 for fisheye cameras.

• M represents the HDMap, which provides static road information by lines
of 3D points.

• cls, conf represent class label, confidence respectively.
• x, y, z, w, l, h represent 3D location in BEV space.
• yaw represents the heading angle of the object, defined by moving direction.
• color represents the object’s color if the object belongs to the vehicle class.

Evaluation & Metrics We choose AP and FPS as BEV detection metrics.
Average Precision (AP). We choose 40 recall positions to eval detection

performance, i.e., AP|R40 :

AP |R40 =
1

|R|
∑
r∈R

max
r̃:r̃≥r

ρ(r̃) (2)

where ρ(r̃) is the precision at a certain recall theshold r ∈ {1/40, 2/40, 3/40, ..., 1}.
Frame Per Second(FPS). We use the FPS metric to measure the real-

time performance of the neural net, i.e.,FPS = 1
t(s) , where t(s) is the cost time

required to detect a single frame input given by specific GFLOPS.

4.2 Task 2: OneID MOT (H-V2X-Trk)
Task Description The MOT task is centered around establishing and main-
taining a unique ID for each relevant traffic participant. There are two primary
paradigms in MOT based on whether detection is performed separately:

• Tracking-by-detection: This method follows a two-stage process. Ini-
tially, a detection algorithm locates objects in each frame. Subsequently, a track-
ing algorithm utilizes the detection results from consecutive frames to associate
new objects with historical trajectories, determining optimal matches and as-
signing correct IDs to newly detected objects.

• Joint detection and tracking: In this integrated approach, detection
and tracking occur simultaneously through an end-to-end algorithm, often a
specialized deep neural network. This network not only learns detection features
but also captures embedding or re-identification (reid) features to differentiate
between individual objects. Consequently, the network can simultaneously de-
termine object positions and IDs during each inference step on successive image
pairs.
Formulation The input consists of sequential images, while the output en-
compasses comprehensive 3D object details, including position and attributes,
with a unique ID assigned to each object. The trajectory of each object can be
extracted and represented as S = {o1, o2, o3, ..., oT }, where T denotes the time-
frame. Subsequent applications can benefit from velocity estimation, orientation
optimization, and post-processing techniques based on historical trajectories.
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Evaluation & Metrics In line with the recent trend [4,25,38], we adopt widely
accepted evaluation metrics MOTA (Multiple Object Tracking Accuracy) and
MOTP (Multiple Object Tracking Precision) to evaluate the performance of
tracking methods. The definitions are as follows:

MOTA = 1−
∑

t(FNt + FPt + IDSt)∑
t GTt

, (3)
where:
• FNt represents the number of false negatives at the time (t),
• FPt represents the number of false positives at the time (t),
• IDSt represents the number of identity switches (mismatches in object

associations) at the time (t),
• GTt represents the number of ground truth objects at a time (t).

MOTP =

∑
i,j dij∑
i Ci

, (4)
where:
• dij represents the Euclidean distance between the center of the predicted

bounding box and the center of the corresponding ground truth bounding box
for object i at frame j,

• Ci represents the number of correct associations for object i.
In addition, we employ IDS (ID Switch) as a standalone metric to assess the

tracking algorithm’s proficiency in preserving target identity consistency. The
IDS metric is calculated by dividing the total number of ID switches by the
overall count of ground-truth objects.

4.3 Task 3: Trajectory Prediction (H-V2X-Prediction)
Task Description The trajectory prediction task aims to predict the contin-
uous trajectories of objects over a future period based on the observed history
trajectories.

Formulation Given the history trajectory of one object, the trajectory predic-
tion task tries to find the optimal future trajectory of the object by modeling a
sequential forecasting net F :

pt+1, pt+2, pt+3, ..., pt+T = F (p1, p2, p3, ..., pt,M) (5)
where:
• pt denotes the state of the object at timestamp t, T represents the number

of timestamps to predict, M denotes HDMap, same as task 1.
• The state of the object is defined by the output of task 2, i.e., 3D informa-

tion with tracking ID.

Evaluation & Metrics We choose Average Displacement Error (ADE) and
Final Displacement Error (FDE) as trajectory prediction metrics.

ADE. Measuring the average error between the prediction position and the
actual position. Defined as:

ADE =
∑

1/n
√
(xpi

− xgi)
2 + (ypi

− ygi)
2 (6)

FDE. Measuring the final error between the prediction final position and the
actual final position. Defined as:
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FDE =
√
(xpf

− xgf )
2 + (ypf

− ygf )
2 (7)

where n the prediction sequence length, (xpi
, ypi

), (xgi , ygi) is the object pre-
diction position and actual position at time i. (xpf

, ypf
), (xgf , ygf ) is the object

prediction final position and actual final position.

5 Benchmarks

5.1 Track1: BEV Detection

Baselines We propose two baseline methods for BEV detection: late and early
fusion. Both use 8:1:1 train/validation/test split.
– Baseline1 Late Fusion. Late fusion follows the same pipeline as GT gen-

eration in section 3.2. However, due to limited computing resources on the
32TOPS NVIDIA Xavier, it uses a lightweight YOLOs [9] detection model
instead of a cloud-side foundation model.

– Baseline2 Early Fusion. We propose H-BEV (Highway BEV) model, a
BEV detection neural net incorporating fisheye camera and vector map.
The model is built on BEVDet [13], learns depth distribution and constructs
frustum point cloud, illustrated in Fig. 6. To create the projection coordi-
nates of each camera’s pixel points in the BEV perspective, we used 3D
lane information for interpolation. We generated the frustum point cloud for
each camera through a table lookup and added a attribute branch to predict
vehicle attribute information.

Fig. 6: H-BEV Model Architecture.
Analysis

– Late Fusion vs Early Fusion. Early fusion outperforms Late Fusion in
terms of detection performance, but Late Fusion requires less time. Late
Fusion is more sensitive to calibration parameters and performs poorly in
detecting truncated and occluded objects, whereas early fusion is more ro-
bust.

– HDMap information is important. H-BEV streamlines the projection
process for fisheye and pinhole cameras by incorporating HDMap data. Un-
like BevDet [13], H-BEV eliminates the need to learn a multitude of discrete
depth values for each image pixel. Instead, it derives a single depth value



12 L. Chang et al.

from HDMap information, resulting in a drastic reduction in the image fea-
ture map size by 500 times. This optimization significantly boosts the speed
and efficiency of the early fusion model.

Table 3: Evaluation results for the baseline methods. The H-BEV model is converted
to TensorRT engine. The resolution of all image inputs is resized to 720 * 1280.

Method Backbone mAP3D|R40 ↑ mAPbev|R40 ↑ FPS↑

Late Fusion - 31.75 33.24 10

Early Fusion (H-BEV) ResNet-18 35.49 38.40 6

5.2 Track2: One-ID MOT
Baseline In this section, we present a tracking-by-detection MOT algorithm as
the baseline approach. We utilize BEV detection results from multiple cameras
to trace the trajectory of each object within the perception region, illustrated
in Fig. 7. We adapt a variant of the SORT algorithm [1] to establish associa-
tions between objects across successive frames. This leads to the assignment of
consistent IDs to individual objects, resulting in continuous object trajectories.

Data 
Association

t-1 t t+1 t-1 t t+1

Kalman Filter

updatepredict

Output

Track Birth/Death Manager

new/lost
unmatched

BEV Detection

Fig. 7: One-ID MOT Framework: a baseline tracking-by-detection procedure

Each detected traffic object at time t−1 is denoted as oit−1, where i represents
the object index. The set of objects in frame t − 1 is represented as It−1, with
oit−1 ∈ It−1. At each timestamp t, the primary objective of the tracking process
is to link the objects from the previous frame (It−1) and the current frame (It),
assigning accurate IDs to new detections. To achieve this, we compute similarities
between objects in It−1 and It based on their feature descriptors, facilitating the
establishment of continuous object trajectories through optimal matches.

For the baseline implementation, we adopt the 3D position as the object
descriptor, measuring object similarities using Euclidean distances between 3D
points. Object matching between frames is accomplished using the Hungarian
algorithm. Given the fast movement of most highway objects, an effective mo-
tion estimation technique is essential to compensate for positional changes be-
tween consecutive frames. Here, we employ the Kalman filter algorithm, utilizing
the local coordinates (x, y, z) of 3D points as measurements and incorporating
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first-order differences (velocity components (vx, vy, vz)) into the state transition
matrix.

Analysis The evaluation results of the baseline MOT method can be found
in Table 4. In highway environments, conducting multi-object tracking on 3D
points presents various challenges such as high-speed motion, occlusions, missing
or false detections, positional ambiguity among nearby objects, and more. Com-
mon features in highway scenes like overpasses and oversized vehicles often lead
to scenarios where smaller cars remain completely occluded for extended peri-
ods. Addressing these complexities requires the integration of effective predic-
tion strategies and motion constraints. Additionally, when multiple vehicles are
in close proximity and moving concurrently, relying solely on simple Euclidean
distance matching between points can result in confusion and inaccuracies.

Table 4: Evaluation results for One-ID MOT algorithm.

Metrics MOTA↑ MOTP↑ IDS↓

Baseline 0.85 0.95 0.05

5.3 Track3: Trajectory Prediction

Baselines We first build trajectory prediction models based on SocialGAN [10]
and further propose an HD-GAN network by incorporating HDMap.

– Basline1 Vanilla SocialGAN: During training, we augment trajectory
data by adding random noise to observed positions (0.5 prob. for [-2m, 2m])
and applying Gaussian noise to observed directions ([-0.785 rad, 0.785 rad]).
We train the model for 500000 iterations, leaving other settings unchanged.

– Baseline2 HD-GAN: We propose HD-GAN, a network that uses global
map information to extract the global positional feature of an object. The
HDMap Layer takes in lane information and calculates the object’s global
position via interpolation, normalizing it to [0,1] in the HDMap Normal-
ization Layer. The HDMap Encoder Layer encodes the object’s global map
positional features, which are then combined with the local positional fea-
tures of the observed trajectory. The generator and discriminator network
remain unchanged, and the training strategy is the same as baseline 1.

GENERATOR DISCRIMINATOR

LSTM

LSTM

LSTM

HDMap 3D lanes

HDMap Normalization Layer

HDMap Encoder Layer

C

Pooling M
odule

LSTM

LSTM

LSTM

Real / Fake

C Concatenation

Fig. 8: HD-GAN Model Architecture.
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Analysis

– Global Map Information is useful. In comparison to the re-implemented
vanilla SocialGAN, HD-GAN demonstrates superior performance with lower
ADE and FDE metrics. These results indicate that as the prediction horizon
extends, the utilization of global map information becomes increasingly valu-
able. Additionally, as illustrated in Fig. 9 (a) vs (b), the vanilla SocialGAN
struggles to generate predictions aligned with the road map under identical
observations. These findings underscore the efficacy of incorporating global
map data in HD-GAN for enhancing trajectory prediction accuracy.

– Benefits of Data Augmentation. As depicted in Fig. 9 (c) vs (d), the
absence of data augmentation leads to increased prediction errors when the
observed trajectory exhibits jitter. Conversely, models employing our data
augmentation techniques showcase enhanced resilience to observed trajec-
tory variations, as evidenced by their improved anti-interference capabilities
compared to models without such augmentation methods.

Table 5: Evaluation results for different baselines on val dataset. The metrics respec-
tively means the predicted trajectory lengths is 1s-5s.

Method ADE↓ FDE↓

Vanilla SocialGAN [10] 0.432 / 0.894 / 1.430 / 2.018 / 2.683 0.830 / 1.849 / 3.031 / 4.382 / 5.833

HD-GAN 0.427 / 0.843 / 1.291 / 1.847 / 2.457 0.827 / 1.696 / 2.657 / 3.879 / 5.188

road road

（a）Without global map information

road road

（b） With global map information

road

（c）Without data augumention

Observed trajectory jitter

road

（d）With data augumention

Observed trajectory jitter

Fig. 9: Trajectory prediction results with and without global map information (a, b),
with and without data augmentation (c, d). The blue points are the observed trajectory
inputs and the red points are the prediction trajectory outputs.

6 Conclusion

This paper introduces the H-V2X dataset, the first large-scale highway dataset
captured by real-world sensors. H-V2X offers synchronized data from multiple
sensors with ground truth annotations, accompanied by a vector map, enabling
end-to-end highway BEV perception. The tasks of BEV detection, One-ID MOT,
and trajectory prediction are outlined, alongside benchmark methodologies for
each task. Novel approaches to highway BEV detection and trajectory prediction,
integrating the vector map, are proposed and evaluated through both quanti-
tative and qualitative experiments to validate their efficacy. In our upcoming
work, we aim to release a highway traffic event task focusing on rare occurrences
such as illegal parking, emergency stops, accidents, and more, which will be
systematically collected and annotated.
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