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A Logarithmic Photoreceptor

Model. As mentioned in Sec. 3.1, we model the radiance-dependent band-
limiting behavior of the logarithmic photoreceptor with the following unity-gain
2nd-order Non-Linear Time-Invariant (NLTI) Low-Pass Filter (LPF) with input
up = logL, state xp = [ ∂ log Lp/∂t logLp ]

⊤ and output yp = logLp:

ẋp(t) = Ap (up(t)) xp(t) +Bp (up(t)) up(t)

yp(t) = Cp xp(t)
, (14)

where Ap(u) =

[
−2ζ(u)ωn(u) −ω2

n(u)
1 0

]
, Bp(u) =

[
ω2
n(u)
0

]
, Cp =

[
0 1

]
.

The derivation of this model follows closely that of the small signal model for
the original adaptive variant of the logarithmic photoreceptor circuit [1, 2], but
we account for the absence of an adaptive element in the circuit.

The radiance-dependent damping ratio ζ and natural angular frequency ωn

are, respectively, given by:

ζ(u) =
τout + τin(u) + (Aamp + 1) τmil(u)

2
√
τout (τin(u) + τmil(u)) (Aloop + 1)

, (15)

ωn(u) =

√
Aloop + 1

τout (τin(u) + τmil(u))
, (16)

where Aamp and Aloop are the amplifier and total loop gains of the photoreceptor
circuit, respectively, and τout is the time constant associated to the output node
of the photoreceptor circuit and inversely proportional to the photoreceptor bias
current Ipr (Fig. 3). Furthermore, τin and τmil are, respectively, the radiance-
dependent time constants associated to the input node and Miller capacitance
of the photoreceptor circuit, given by:
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τin(u) =
CinVT

κ expu
=

CinVT

κL
, (17)

τmil(u) =
CmilVT

κ expu
=

CmilVT

κL
, (18)

where Cin and Cmil are the (lumped) parasitic capacitance on the photodiode
and Miller capacitance in the photoreceptor circuit, respectively, VT is the ther-
mal voltage, and κ is the signal photocurrent Ip to incident radiance signal Lsig

ratio governed by the photodiode.

Behavior under Extreme Low Light. As τout ≪ τin + τmil under extreme
low light, the model described above reduces to a unity-gain 1st-order NLTI LPF
with input up̂ = logL, state xp̂ = output yp̂ = logLp:

ẋp̂(t) = Ap̂ (up̂(t)) xp̂(t) +Bp̂ (up̂(t)) up̂(t)

yp̂(t) = Cp̂ xp̂(t)
, (19)

where Ap̂(u) = −ωc,p̂(u), Bp̂(u) = ωc,p̂(u) and Cp̂ = 1.
The cutoff angular frequency of this non-linear filter:

ωc,p̂(u) =
Aloop + 1

τin(u) + (Aamp + 1) τmil(u)
(20)

is directly proportional to the effective radiance L = Lsig + Ldark . Nonethe-
less, it remains very much smaller than the radiance-independent cutoff angular
frequencies of the source follower buffer ωc,sf and differencing amplifier ωc,diff .
Therefore, this rather simple 1st-order model forms the dominant pole approx-
imation of the full 4th-order pixel bandwidth model under extreme low-light,
which is relatively accurate. Furthermore, when L(t) ≈ Ldark , we can further
approximate this model with its linearized variant, which has a constant cutoff
angular frequency of ωc,p̂(logLdark ) = ωc,dom,min (cf . Eq. (11)).

Fundamental Limitations. The logarithmic photoreceptor 2nd-order NLTI
LPF is characterized by Aamp , Aloop , τout , CinVT/κ = τinL and CmilVT/κ = τmilL.
When the unknown logarithmic photoreceptor model parameters are jointly op-
timized, the predicted effective radiance L̂ from the reconstructed NeRF is only
accurate up a scale, since τin and τmil are invariant to the common scale of
L, CinVT/κ and CmilVT/κ. This further necessitates a translated-gamma correction
(Sec. 3.4) of L̂ post-reconstruction.

B Event Simulator

As alluded in Secs. 3.2 and 4, our event simulator extends the improved ESIM [8]
event simulator introduced in Robust e-NeRF with the proposed pixel bandwidth
model, particularly the discrete-time model given by Eq. (8). We appropriately
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Fig. 6: Our simulated events transformed to the scene plane.

initialize the state of the 4th-order NLTI LPF with the steady-state x̄[k0] =

[ 0 u[k0] u[k0] u[k0] ]
⊤ on the initial input effective log-radiance u[k0] = logL[k0].

Fig. 6 depicts our simulated events on a simple planar scene of shapes under
various scene illuminance Esc . It can be observed that as the scene illumina-
tion improves, the events become more localized around the edges in the scene.
Moreover, the spreading or blurring of negative events in red is more severe than
that of positive events in blue. This happens because negative events involve a
transition from a high to low effective log-radiance logL, where the latter is as-
sociated to a low pixel bandwidth. All these observations validate the accuracy
of our event simulator, as they conform to the expected behavior of an event
sensor pixel.

C Implementation Details

Deblur e-NeRF. The implementation of our method is based on Robust e-
NeRF [5]. In particular, we adopt the same NeRF model architecture, parame-
terization of positive-to-negative contrast threshold ratio C+1/C−1 and refractory
period for joint optimization, NerfAcc [4]/Instant-NGP [7] parameters, training
schedule, learning rates and constant-rate camera pose interpolation.

Nonetheless, since our method can theoretically reconstruct a NeRF with
gamma-accurate predicted effective radiance L̂, particularly under unknown
contrast thresholds, we also parameterize the mean contrast threshold C̄ =
1
2 (C−1 + C+1), which defines the scale of the contrast thresholds, via SoftPlus
to ensure that it is always positive during its joint optimization. Such a parame-
terization of the contrast thresholds is optimal in the sense that the normalized
predictions, which are ∆ log L̂blur/C̄ for ℓdiff and δ log L̂blur/C̄ for ℓtv , and normalized
targets, which are pCp/C̄ for ℓdiff and 0 for ℓtv , are invariant to C+1/C−1 and C̄,
respectively.

Furthermore, we parameterize the pixel bandwidth model parameters as
A−1

amp , A−1
loop , τout , CmilVT/κ = τmilL, τsf = ω−1

c,sf and τdiff = ω−1
c,diff , which gener-

ally has values smaller than 1, via SoftPlus as well for joint optimization. Note
that we do not parameterize CinVT/κ = τinL, but keep it fixed at an arbitrary
positive value, as the predicted effective radiance is only accurate up to a scale
when pixel bandwidth model parameters are jointly optimized (Appendix A).
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This helps to clamp down on this gauge freedom during joint optimization, and
yields a minimal parameterization of τin and τmil up to an arbitrary scale. Care
must be taken to ensure that the predefined CinVT/κ is larger than the minimum
effective radiance ϵ = 0.001 the NeRF model can output.

We adopt a sample size k − k0 + 1 of 30 for importance sampling of inputs
u = logL in all experiments. Moreover, we sample the optimal input sample
timestamps Ti from the transformed exponential distribution given by Eq. (11),
but truncated in practice to a finite support of (tk0 , tk] such that its cumula-
tive probability is exactly 0.95. The sampling is done using a variant of inverse
transform sampling, where instead of uniformly sampling the interval (0, 1] (and
then applying the inverse cumulative distribution function), we directly take
k−k0+1 = 30 evenly-spaced samples in the same interval. This helps to prevent
significant under/over-representation of inputs u around certain time regions in
the computation of the output y[k], due to randomness. Apart from that, since
we assume u is stationary prior the start of the event sequence, we assign input
samples with timestamps prior the start to have the same value as the initial
input.

Furthermore, we sample each subinterval (tstart , tend ] between the interval
(tref , tcurr ] for use in ℓtv , by first sampling the length of the subinterval tend −
tstart from a triangular distribution with a support of [0, tcurr − tref ) and a
mode of 0, then sampling tstart from a uniform distribution with a support
of [0, (tcurr − tref )− (tend − tstart)). Joint optimization of the pixel bandwidth
model parameters is done with the same learning rate of 0.01 as the NeRF model
parameters. Moreover, we train our method with loss weights of λdiff = 1 and
λtv = 0.1, as well as a batch size (defined according to Robust e-NeRF) of
217 = 131 072, by default.

However, we observed that our loss values for the threshold-normalized dif-
ference loss ℓdiff , under the hard setting (v = 4×, Esc = 10lux ) in the collective
effect synthetic experiment, is ∼ 100× smaller than that of other settings, but
the loss values for threshold-normalized total variation loss ℓtv (Eq. (12)) re-
mains in the same order. This will cause the total training loss L (Eq. (2), but
with λtv ℓtv (e) instead of λgradℓgrad(e)) to be inappropriately dominated by the
regularization loss ℓtv , instead of the primary reconstruction loss ℓdiff , if the
default loss weights are used.

Thus, we adopt λtv = 0.001, which is 100× smaller than the default, under
the hard setting to rebalance both losses. Apart from that, we also adopt λtv =
0.01, which is 10× smaller than the default, under the Esc = 10lux setting
in the synthetic experiment studying the effect of scene illuminance, due to
similar observations. As we employ the Adam [3] optimizer, which is invariant
to diagonal rescaling of gradients hence loss, this is equivalent to a loss weight
λdiff of 100× or 10× larger than that of the default, while maintaining λtv at
the default.

Baselines. We employ the official implementation of Robust e-NeRF in our
experiments. However, we adopt λgrad = 0.00001 and λgrad = 0.0001, which are
100× and 10× smaller than the default at λgrad = 0.001, under the hard (v =
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4×, Esc = 10lux ) and Esc = 10lux settings in synthetic experiment, respectively,
due to similar observations made in our method. Moreover, we implement E2VID
+ NeRF according to how it is done for the experiments in Robust e-NeRF.

Translated-Gamma Correction. To account for the time-varying sensor
gain (i.e. ISO) and exposure time of the captured reference images, particularly
during evaluation, we additionally scale each correction with the known gain-
exposure product of the corresponding reference image.

The optimal correction parameters a, b and c are optimized using the Levenberg-
Marquardt algorithm with a Trust Region strategy to determine the optimal
damping factor at each iteration. We adopt the implementation provided by
PyPose [9], as well as its default hyperparameters. Furthermore, we appropri-
ately initialize the optimization with c = 0 and the solution of a and b given
by gamma correction (Eq. (5)). The optimization is performed until the sum of
squared correction errors has converged, up to a maximum of 20 iterations.

D Interpretation of Real Quantitative Results

Note that care must be taken when interpreting the quantitative results of the
real experiments presented in Tab. 2 and Tab. 10, since they are not truly indica-
tive of the absolute performance of all methods, but likely only indicative of their
relative performance. This is due to the fact that the target novel views, given
by a separate standard camera, suffer from motion blur, rolling shutter artifacts,
and saturation, as a result of a significantly smaller dynamic range compared to
an event camera. Furthermore, the target novel views are not raw images that
does not depend on the unknown Camera Response Function (CRF), and are
grayscale images converted from RGB images provided by the camera, which
might not reflect the spectral sensitivity of the monochrome event camera.

E Additional Experiment Results

E.1 Per-Scene Breakdown

Tab. 6 and Figs. 7 and 8 show the quantitative and qualitative results of all
methods, respectively, for all synthetic scene sequences simulated with the hard
setting (v = 4×, Esc = 10lux ). The results clearly demonstrate our superior
performance in reconstructing a blur-minimal NeRF from motion-blurred events.

E.2 Ablation on Pixel Bandwidth Model

To further ascertain the role of the proposed pixel bandwidth model, we evaluate
our method with and without the pixel bandwidth model incorporated, under
the same settings as the synthetic experiment in studying the collective effect,
without joint optimization of pixel bandwidth model parameters. The quanti-
tative results given in Tab. 7 undoubtedly verifies the importance of the pixel
bandwidth model in accounting for event motion blur.
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Table 6: Per-synthetic scene breakdown under the hard setting. †Trained with 1/8×
the batch size of baselines.

Synthetic Scene
Metric Method Chair Drums Ficus Hotdog Lego Materials Mic Mean

E2VID + NeRF 16.67 15.00 16.25 17.53 14.75 11.65 15.72 15.37
Robust e-NeRF 21.64 17.41 21.80 15.05 18.28 15.68 19.11 18.42PSNR ↑
Deblur e-NeRF† 27.39 22.14 29.10 23.69 27.69 24.49 28.53 26.15

E2VID + NeRF 0.835 0.776 0.840 0.842 0.719 0.726 0.854 0.799
Robust e-NeRF 0.836 0.758 0.864 0.849 0.754 0.772 0.862 0.814SSIM ↑
Deblur e-NeRF† 0.902 0.839 0.944 0.904 0.896 0.890 0.951 0.904

E2VID + NeRF 0.374 0.498 0.310 0.391 0.509 0.589 0.380 0.436
Robust e-NeRF 0.216 0.336 0.146 0.287 0.279 0.295 0.228 0.255LPIPS ↓
Deblur e-NeRF† 0.107 0.231 0.120 0.168 0.105 0.116 0.093 0.134
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Fig. 7: Synthesized novel views on chair, drums and ficus under the hard setting

E.3 Effect of Reduced Batch Size

To assess the true impact of training with a reduced batch size, we also bench-
mark our method with a batch size of 1/8× and 1× that of our baselines, under
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Fig. 8: Synthesized novel views on hotdog, lego, materials and mic under the hard
setting

the same settings as the experiment in Appendix E.2, but only on the lego
scene. The quantitative results reported in Tab. 8 provide a glimpse into the
true strength of our method, as significant improvements can be observed as the
batch size increases to that of the baselines.

E.4 Ablation on Input Sample Size

We perform a cost-benefit analysis on the input sample size k − k0 + 1 of our
method on the lego scene under the hard setting (v = 4×, Esc = 10lux ). The
quantitative results presented in Tab. 9 suggests that our default input sample
size of 30 strikes the best balance between cost and performance. Note that
the computational and memory cost of our method is proportional to the input
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Table 7: Ablation on pixel bandwidth model

v = 0.125×, Esc = 100 000lux v = 1×, Esc = 1 000lux v = 4×, Esc = 10lux
Pixel Bandwidth

Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

× 28.75 0.948 0.048 26.98 0.934 0.061 18.31 0.822 0.245
✓ 29.00 0.950 0.043 28.41 0.947 0.049 26.15 0.904 0.134

Table 8: Effect of reduced batch size on the lego scene

v = 0.125×, Esc = 100 000lux v = 1×, Esc = 1 000lux v = 4×, Esc = 10lux

Batch Size, ×
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

1/8 29.44 0.940 0.045 28.42 0.938 0.048 27.69 0.896 0.105
1 31.27 0.953 0.030 30.43 0.950 0.038 30.72 0.948 0.037

Table 9: Ablation of input sample size on lego under the hard setting

Input Sample Size PSNR ↑ SSIM ↑ LPIPS ↓

1 18.46 0.765 0.273
5 22.64 0.807 0.21
15 26.41 0.875 0.125
30 27.69 0.896 0.105
50 28.18 0.902 0.097
75 28.21 0.903 0.096

sample size, as alluded in Sec. 5, and an input sample size of 1 is equivalent to
having the pixel bandwidth model removed.

E.5 Results on 07_ziggy_and_fuzz_hdr

Apart from 08_peanuts_running and 11_all_characters, we also benchmark
all methods on the 07_ziggy_and_fuzz_hdr sequence from the EDS dataset,
which involves a HDR scene with occasional high-speed camera motion. The
quantitative and qualitative results given in Tab. 10 and Fig. 9 once again demon-
strates our superior performance, as the objects on the table are clearly more
well-defined and the table surface, wall and curtains are much smoother, while
preserving details and color accuracy of the scene.

E.6 Comparison with Image Blur-Aware Baselines

While motion blur in standard and event cameras are vastly different, and thus
incomparable, we provide additional quantitative results of 2 other image blur-
aware baselines: E2VID + MPRNet [10] (a seminal image deblurring method) +
NeRF and E2VID + Deblur-NeRF [6] (a seminal NeRF with image blur model),
for selected synthetic experiments (i.e. upper bound performance and collective
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Fig. 9: Synthesized novel views on the 07_ziggy_and_fuzz_hdr scene

Table 10: Quantitative results on the 07_ziggy_and_fuzz_hdr scene

Method PSNR ↑ SSIM ↑ LPIPS ↓

E2VID + NeRF 14.96 0.691 0.556
Robust e-NeRF 18.02 0.631 0.464
Deblur e-NeRF 18.47 0.648 0.440

Table 11: Comparison with image blur-aware baselines built upon E2VID.

Simulation Settings
/ Real Scene

E2VID + NeRF E2VID + MPRNet + NeRF E2VID + Deblur-NeRF

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

No event motion blur 19.49 0.847 0.268 19.44 0.851 0.267 19.84 0.839 0.291
v = 0.125×, Esc = 100 000lux 19.19 0.844 0.281 19.18 0.849 0.260 19.15 0.841 0.288
v = 1×, Esc = 1 000lux 18.85 0.839 0.278 18.86 0.843 0.269 18.73 0.818 0.317
v = 4×, Esc = 10lux 15.37 0.799 0.436 15.44 0.794 0.439 15.42 0.783 0.472

07_ziggy_and_fuzz_hdr 14.96 0.691 0.556 14.96 0.691 0.552 14.85 0.680 0.504
08_peanuts_running 14.85 0.690 0.595 14.81 0.690 0.604 14.91 0.682 0.517
11_all_characters 13.12 0.695 0.627 13.10 0.695 0.624 12.95 0.689 0.576

effect) and the real experiment, to make our experiments more complete. From
the results reported in Tab. 11, it is evident that the incorporation of an image
blur or deblur model is unable to account for event motion blur, as the perfor-
mance is virtually the same with or without it. This reinforces the importance
for our physically-accurate pixel bandwidth model to account for event motion
blur under arbitrary speed and lighting conditions.
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