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Abstract. Domain Adaptation (DA) facilitates knowledge transfer from a source
domain to a related target domain. This paper investigates a practical DA paradigm,
namely Source data-Free Active Domain Adaptation (SFADA), where source data
becomes inaccessible during adaptation, and a minimum amount of annotation
budget is available in the target domain. Without referencing the source data,
new challenges emerge in identifying the most informative target samples for
labeling, establishing cross-domain alignment during adaptation, and ensuring
continuous performance improvements through the iterative query-and-adaptation
process. In response, we present learn from the learnt (LFTL), a novel paradigm
for SFADA to leverage the learnt knowledge from the source pretrained model and
actively iterated models without extra overhead. We propose Contrastive Active
Sampling to learn from the hypotheses of the preceding model, thereby querying
target samples that are both informative to the current model and persistently
challenging throughout active learning. During adaptation, we learn from features
of actively selected anchors obtained from previous intermediate models, so
that the Visual Persistence-guided Adaptation can facilitate feature distribution
alignment and active sample exploitation. Extensive experiments on three widely-
used benchmarks show that our LFTL achieves state-of-the-art performance,
superior computational efficiency and continuous improvements as the annotation
budget increases. Our code is available at https://github.com/lyumengyao/lftl.

Keywords: Transfer learning · Domain adaptation · Active learning

1 Introduction

Deep neural networks have thrived in computer vision but struggle when real-world
data deviates from the ideal independent and identical distribution of training data,
causing performance drops in well-trained models. This is where domain adaptation
(DA) comes into play, which enables knowledge transfer from a source domain to
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Fig. 1: (L) Source data-Free Active Domain Adaptation (SFADA) paradigm. Note that the ratio
of labeled/unlabeled targets is much lower (≤ 1% or ≤ 5% in our experiments) than in the
illustration. (R) Performance comparison among DA SOTAs of different settings on Office-31.

a target domain of different data distribution. Most DA studies assume concurrent
access to data from both domains to leverage the inter-domain relationship. Nonetheless,
the reliance on labeled source data during adaptation could impede its widespread
usage in real-world scenarios, considering stringent data protection regulations and
resource deficiency in storage and computation. Therefore, source-free unsupervised DA
(SFUDA) [16, 17, 25, 28, 38, 57, 63, 66] advocates for encapsulating knowledge within a
source-trained model. They typically employ parameter sharing and hypothesis-driven
learning for model adaptation. Yet, the absence of direct supervision from any domain
can intensify the ill-posed nature of unsupervised DA [48], leading to the performance
bottlenecks despite considerable efforts made.

In fact, the presence of the target sample pool during adaptation implies that minimal
annotation effort is possible, yielding substantial performance gains. Hence we study
a more practical DA setting, dubbed source-free active DA (SFADA). As shown in
Fig 1 (L), the adaptation process is freed from source data, and meantime a minimum
amount of annotation budget is available for iteratively querying labels in the target
domain. Limited yet definitive supervisory signals intrinsically alleviate the ill-posedness
phenomenon, and additionally, SFADA offers an appealing trade-off between labeling
costs and adaptation performance regarding accuracy and efficiency.

Taking both target annotation availability and source data inaccessibility into con-
sideration, SFADA presents new challenges. During query selection, general active
learning criteria [3, 9, 19, 45, 46, 62] tend to fail under the domain shift phenomenon
as observed in both previous Active DA (ADA) studies [8, 37, 39, 50, 51, 58] and our
experiments 4.2. On top of that, ADA typically employs source data as a reference
to identify distinctive target samples, which violates our source-free setting and thus
is not compatible here either. Therefore, SFADA necessitates a new active learning
strategy to pinpoint the most innovative and informative target samples utilizing solely a
source-trained model. Another challenge comes at the transfer stage. Without the source
data, manifold alignment, typically employed via minimizing distribution divergence to
boost performance, is impeded. Yet the labeling costs have increased the expectations
for performance enhancement. This prompts us to ask how to exploit the newly acquired
knowledge while consolidating the learnt domain-invariant information during adap-
tation? And following these, how to guarantee continuous performance improvement
during the iterative query-and-adaptation process?
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To fill in this gap, this paper formulates a novel SFADA paradigm to learn from the
learnt (LFTL), as illustrated in Fig. 2. We employ the hypothesis and visual represen-
tations of target samples obtained from the learnt source model and actively iterated
models to ascertain what to supplement and where to adapt in the target domain. We
first conduct active learning from the learnt model. Although it is impossible to directly
identify target samples the most divergent from the source, the hypothesis of learnt model
can be utilized as an indication of how well the target domain knowledge is understood.
Furthermore, as the model progressively adapts towards the target domain, the hypothesis
of the current model becomes increasingly important to query newer labels. This has
not been addressed by the one-round query of MHPL [55]. Inspired from contrastive
decoding [6, 11, 23, 27, 61], we propose Contrastive Active Sampling (CAS) to leverage
the hypothesis of the model from the previous active round. It emphasizes samples that
are both informative to the current model and persistently challenging throughout the
iterative process, while deprioritizing samples that are redundant or deliver knowledge
already acquired during active selection. Upon the contrastively decoded hypothesis, we
take the difference between the best-versus-second best (BvSB) guesses [19], integrate a
class-balancing factor, so that temporally-stagnant, sample-uncertain and class-minor
targets can be effectively queried. Secondly, we perform transfer learning from the learnt
visual representations. Since the alignment of cross-domain distributions cannot be di-
rectly achieved, we establish Visual Persistence-guided Adaptation (VPA) to maintain
feature representations of active target samples throughout the whole process, where
the understanding initially derived from the source domain and subsequently obtained
from previous active rounds are effectively conserved via momentum updates. Then
our learning objective encourages unlabeled samples to be centralized around these
memory-preserving representatives, approximating a source-similar distribution while
exploiting target-specific knowledge obtained from queried labels.

Gaining insights from the intermediate results already computed during iteration
makes our method simple in architecture, effective in active learning and knowledge
transfer, superior in terms of both accuracy and efficiency, and flexible in the trade-off
between annotation plus time budget and adaptation accuracy. Take the performance
on the VisDA-C [36] benchmark for example, the entire query-and-adaptation process
obtains 87.4% with merely 1% labeling budget and 780 training iterations (0.3h). In
contrast, SHOT++ operating under the SFUDA setting requires 21.6K iterations (5.8h) to
achieve 87.3%. Even when factoring in the estimated annotation time (1.83h), our method
is significantly more time-saving. Compared with LADA [51], the ADA state-of-the-art
(SOTA), we achieve comparable performance without accessing the source data, while
benefiting from a 25% deduction in active sampling time and an approximately 17-fold
increase in adaptation speed. Furthermore, it exceeds prior SFADA work MHPL [55] by
a clear margin of 1.5%. Our main contributions are:

– a novel SFADA paradigm to learn from the learnt source model and actively iterated
models, which frees it from specialized architecture and sophisticated learning
schemes with superior accuracy and efficiency;

– a CAS strategy to learn from previous model hypothesis, thereby prioritizing targets
that are confusing for the current model, less transferable in class membership and
consistently challenging in previous active rounds;
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– a VPA design to learn from previous feature representations, so that intrinsic distri-
bution alignment and active sample exploitation can be achieved;

– SOTA adaptation accuracy, superior computational efficiency, and continual im-
provements extensively validated on varied-scaled benchmarks.

2 Related Work

Domain Adaptation (DA) is a specialized case of transfer learning that enables knowl-
edge generalization from a source domain to a related target domain. Varying in the
assumption of the label-set relationship between source and target domains, namely se-
mantic shift, DA settings can be mainly divided into close-set DA, open-set DA [33, 44],
partial DA [4, 26] and universal DA [43, 64]. According to the assumption of target data
accessibility, DA settings fall into unsupervised DA (UDA) [10,59], semi-supervised DA
(SSDA) [13, 42], weakly-supervised DA (WSDA) [52], zero-shot DA [35, 56], one-shot
DA [30], few-shot DA [12, 32, 60] as well as active DA (ADA) [8, 37, 39, 50, 51, 58].

Among the subfields, the one most related to our setting is ADA, where the goal is
to query the most informative target samples for annotation to best benefit classification
on the target domain. Saha et al. [41] either infer pseudo labels on target samples or
query them for oracle annotation, which is based on inter-domain similarity between
source and target domains. Su et al. [50] train a domain discriminative model for domain
alignment and target uncertainty estimation. While most of them utilize or are orthogonal
to off-the-shelf active learning mechanisms, Fu et al. [8] argue that constructing a
committee [31], i.e., ensemble to measure target sample uncertainty based on consensus
between multiple predictions is more robust under domain shift. CLUE [37] is a k-
means clustering-weighted uncertainty-based active learning strategy, and it optimizes
with cross-domain minmax entropy [42]. Xie et al. [58] apply the margin loss to the
source domain training to exploit hard source samples and a less domain-biased decision
boundary, and they further supplement margin sampling with expected error reduction
consistent with the training objective. LADA [51] bases its sampling criterion on the
predictive purity of a local structure, and exploits both data sources during adaptation.
Despite previous efforts, ADA methods typically necessitate the simultaneous presence
of data from both the source and target domains to exploit the relationship between
domains. However, when this assumption fails in practical scenarios, we must tackle the
challenges associated with the unavailability of source data.

On the other hand, SFUDA posits a transfer setting where neither the source data
nor the target annotations are available. Kundu et al. [22] adopt a two-stage paradigm
for universal DA, where the procurement stage trains a source model in consideration
of future semantic shifts and domain gaps, so that the deployment stage is capable of
operating without source data. Liang et al. [28] harness information maximization [15,
48] to align different domains, and utilize self-supervision and curriculum learning
techniques via pseudo label clustering. Xia et al. [57] introduce adversarial training
to distinguish between source-similar and -dissimilar target samples for cross-domain
alignment, facilitated with self-supervision and clustering to improve performance. Based
on prediction confidence, DaC [66] also divides the target samples based on source
similarity, employing a global structure for source-like targets while implementing a
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Fig. 2: The proposed LFTL framework for SFADA. Contrastive Active Sampling emphasizes
freshly acquired knowledge in the posterior distribution so that novel samples are more likely to
be queried for annotations. Then during adaptation the persistence vault retains previous domain-
invariant knowledge to facilitate alignment in the target domain via Lvpa and Lent. As the iterative
process continues, it yields more informative targets and an improved target model.

local structure for the distinctive samples. Without definitive supervision signal from
either domain, SFUDA makes the alignment more challenging and exacerbates the ill-
posedness of UDA. Consequently, it frequently demands intricate design and increased
computations to attain desirable outcomes.

Given the accessibility of target samples, this paper focuses on the more practical
SFADA paradigm, leveraging minimal resources for better performance. Prior work
MHPL [55] integrates three active learning strategies to sample targets that are uncertain,
diverse and different from the source domain, and then utilizes a neighbor focal loss
to emphasize them in adaptation. However, the dependency on the source dissimilar-
ity metric confines it to a one-round sampling method, failing to guarantee sustained
performance improvement in real-world applications. SALAD [21] samples target with
a binary weighted function between an entropy score and the expected model change.
However the adaptation procedure incorporates an additional Guided Attention Transfer
Network, leading to undesirable computational overhead and, as evidenced by the results,
inefficient annotation utilization. In contrast, our LFTL offers a straightforward, broadly
applicable, and growth-oriented solution that can make the best from previous knowledge
and a limited budget to guarantee accuracy, efficiency, and a flexible trade-off between
annotation resources and performance.

3 Learn from the Learnt

In this section, we present LFTL for SFADA. As illustrated in Fig. 2, it alternates between
Contrastive Active Sampling (CAS) and Visual Persistence-guided Adaptation (VPA).
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3.1 Overview

Given a labeled source domain S with restricted access and an unlabeled target domain
T , our goal is to derive a model that can minimize the risk on the target domain through
knowledge transfer with a small annotation budget. At the source end, image and
label pairs S = {(xs, ys)} from the source domain are first utilized to train a model
Ms : xs 7→ ys, which consists of a feature extractor f(·)s and a classifier g(·)s, i.e.,
Ms(xs) = gs(fs(xs)). After severing communication with the source domain data,
we adaptMs, where the prior knowledge is maintained, to the target domain with the
assistance of a budget of B labeled instances. The initial target dataset has a total of n(0)

tu

unlabeled samples T (0)
u = {xi

tu}
i=n

(0)
tu

i=1 and a shared label space YT .
At the beginning of the R-round query-and-adaptation alternation (r = 0), the target

modelM(r)
t , without any architectural adaptation, is initialized fromMs asM(0)

t . We
actively query labels for b = B/R most informative target instances with the criterion
of CAS (Sec. 3.2), which initializes the labeled subset of the target pool, denoted as

T (1)
l = {xj

tl}
j=n

(1)
tl

j=1 , and thus T (1)
u = T (0)

u \ T (1)
l . Then the parameters of the target

model can be optimized using the newly acquired target data splits, and updated to
M(1)

t via the proposed VPA strategy (Sec. 3.3). Likewise, in subsequent rounds (r ≥ 1),
target data splits T (r)

l ← T (r−1)
l ∪ {xj

tl}n(r)
tl

and T (r)
u = T (r−1)

u \ T (r)
l , as well as the

task modelM(r)
t are updated, continuously querying novel knowledge and optimizing

towards the target domain through the synergistic interaction of sampling and adaptation.

3.2 Contrastive Active Sampling

In each active learning round, the aim is to find the most informative instances from the
target domain, especially those diverging from the source, to benefit the adaptation of the
model. Without directly referencing the source data, previous source-free approaches [7,
25, 28, 57] often rely on the hypothesis transfer to distinguish between source-like
and source-dissimilar samples. However, when applied to the SFADA scenario, such
solution [55] is constrained to a single round of active sampling and model updating,
which restricts the potential applications of this setting.

Considering the iterative nature of the task context, we tackle this challenge from the
active perspective. Just as the source knowledge is encapsulated within the initial model
Ms, the target knowledge learned in previous rounds is manifested in the hypotheses
of the preceding modelM(r−1)

t . Compared to the hypotheses of the preceding model,
samples that obtain higher prediction confidence from the newly updated model reflect
the fresh insight just acquired. The larger the gap in predictive confidence, the better the
current model has grasped the sample, and thus the less informative for the subsequent
phase of sample selection. As illustrated in Fig 2, we first contrastively highlight the less
informative samples as follows:

p̃(r)(·|xi
tu) =

{
logp(r) if r = 0,

logp(r) + α(logp(r) − logp(r−1)) if r > 0,
(1)
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weighted by α, where p is derived from the softmax of the model logits δ(g(f(xi
tu))).

We omit the superscript of round (r) for simplicity in the following text.
Based on p̃, various active learning criteria can be employed. Without loss of gener-

ality, here we focus on the most confused classes. Specifically, we take the difference
between the best-versus-second best (BvSB) guesses as the uncertainty indicator, de-
fined as ucm(xi

tu) = p̃(yia|xi
tu) − p̃(yib|xi

tu), where yia = argmaxy∈Y p̃(y|xi
tu), and

yib = argmaxy∈Y\yi
a
p̃(y|xi

tu). Then the unlabeled target sample pool is ranked by:

r(xi
tu) =

ntu∑
k=1

I(ucm(xk
tu) < ucm(xi

tu)), (2)

where I is the indicator function. A smaller ucm score indicates that the assessed target
sample xi

tu furnishes novel insights that diverge from the source domain and, in contrast
to prior iterations, has not been grasped. Conversely, when the current stronger model,
aided by a marginal increment of active labels, assigns more probability preference to one
class for an unlabeled sample, CAS emphasizes it via a larger ucm score, lowering the
priority of those familiar candidates. As the query-and-adaptation alternation proceeds,
CAS continuously harvests fresh information for transfer by leveraging readily available
intermediate results, without additional extra computational burden or memory usage.

The contrastively decoded margin evaluates each sample on an individual basis.
However, the batch-mode active learning could be susceptible to outliers, since the
queried samples are not selected based on the underlying natural density distribution [1,
47]. Particularly in DA tasks, different classes show different sensitivity to the domain
shift. Some of them are more robust to certain shifts, i.e., their learnt features present
more domain-invariant patterns, whereas others are likely to suffer a steep performance
drop [18]. These motivate us to incorporate a broader, semantic view of the target domain
into our active criterion, where classes with higher transferability is estimated via the
class memberships of reliable model hypotheses:

uct(c|Tu) =
∑ntu

i=1 I(y
i
a = c) · I(r(xi

tu) > (ntu − κ))

maxc[
∑ntu

i=1 I(y
i
a = c) · I(r(xi

tu) > (ntu − κ))]
. (3)

Eq. 3 measures the frequency of unlabeled samples being inferred as class c among κ
highest contrastive margins, wherein κ controls the range of statistics. Thus the classes
with higher uct scores can be downweighted in favor of less transferable classes.

In this way, we drive a hybrid active sampling criterion that favors target samples
with local uncertainty, global intransferability and temporal stagnancy:

ui = ui
cm + λuct(y

i
a), (4)

where λ controls the importance of class-level cross-domain transferability.

3.3 Visual Persistence-guided Adaptation

During each iterative round, the top-b most informative samples are queried for labels
towards the adaption to the target domain. They offer reliable signals but also pose a
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challenge of making the best use of them. We first warm up the adaptation process via
empirical risk minimization on the small amount of target instances with active labels:

Lce = −Extl∼Tl
q(xtl)

T log[p(·|xtl)], (5)

where q(xtl) is the ground truth 1-hot vector for the labeled instance xtl.
To further minimize the risk on the target domain, we are motivated to bridge the

distance between actively queried data and unlabeled data. Instead of seeking cluster
centroids in the target pool, we directly take active samples as representative anchors,
and encourage unlabeled data to form concentrated clusters around the nearest anchor
on the visual embedding space via soft similarity minimization:

Lac = −Extu∼Tu dT
tu log(dtu),where dtu = δ[D(fe(xtu), f(Tl))]. (6)

In Eq. 6, the feature extractor of the adapted model outputs the visual representation of
xtu as ft(xtu). f(Tl) is a ntl × d matrix where each row represents a d−dimensional
feature of a labeled anchor xi

tl. D denotes a distance metric. For simplicity and without
loss of generality, we adopt cosine similarity to measure the relationship between
different instances, and a normalization function is applied to transform the distances to
[0, 1]. In decreasing the entropy of distances, each unlabeled sample is encouraged to get
close to its nearest labeled anchors and meantime keep other clusters at a considerable
distance. Consequently, as shown in Fig. 2, features are aggregated in a class-wise
manner, which makes it easier for classifier decision boundaries to be established.

However, in the context of the SFADA framework, as the labeled target subset Tl and
the modelMt iterate for R rounds, the incremental domain-specific information obtained
from the actively queried samples may intensify the cross-domain incompatibility [5,
49, 53]. Furthermore, there is a potential risk of domain-invariant knowledge being
forgotten during the process. Without accessing the source domain data, previous source-
free methods achieve domain alignment via freezed hypotheses [25, 28, 57] or buffered
embeddings [7] from the source classifier. In our multi-round iterative process, we
introduce a visual persistence vault to guide the adaptation. It preserves judgements on
the active anchors, which have been derived from source and intermediate models, via
exponential moving average:

f̃(xtl)← γf(xtl) + (1− γ)f̃(xtl), (7)

where f(xtl) is derived from the adapted feature extractor ft, and γ is the momentum
parameter controlling the weighting decrease of previous observations, which is empiri-
cally fixed as 0.9. In replacing the most recent feature representation of active anchors
f(Tl) in Eq. 6 with the temporally ensembled f̃(Tl), we obtain the visual persistence-
guided adaption loss Lvpa. The learnt domain-invariant knowledge maintained by the
persistence vault effectively supports the alignment in the target domain, and meantime
the target-specific information is well exploited.

Additionally, the entropy minimization loss [16,28,55] is introduced to approach the
ideal adaptation performance and foster discriminative features in the learnt manifold:

Lent = −Extu∼Tu
p(·|xtu)

T log[p(·|xtu)]. (8)
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Table 1: Results on the large-scale VisDA-C dataset (ResNet101) in terms of classification
accuracy (%). SF represents source inavailability, and AS shows percentage of active annotations
(%). Best results are highlighted in bold, and the best in each section are underlined.

Method SF AS plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

SFDA [20] ✓ - 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
A2Net [57] ✓ - 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
SHOT [28] ✓ - 95.8 88.2 87.2 73.7 95.2 96.4 87.9 84.5 92.5 89.3 85.7 49.1 85.5
SHOT++ [28] ✓ - 97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3
CPGA [38] ✓ - 94.8 83.6 79.7 65.1 92.5 94.7 90.1 82.4 88.8 88.0 88.9 60.1 84.1
DaC [66] ✓ - 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
SF(DA)2 [17] ✓ - 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1

AADA [50] % 1 83.5 64.0 67.2 80.5 87.8 61.4 88.5 79.1 87.9 78.5 84.7 32.6 74.6
TQS [8] % 1 87.3 77.5 77.1 67.0 90.5 58.4 81.1 82.0 91.1 73.9 68.7 57.6 76.0
CLUE [37] % 1 77.0 57.8 73.4 76.5 76.9 68.7 87.0 75.5 85.1 66.5 76.1 47.3 72.3
SDM-AG [58] % 1 84.0 72.3 77.8 82.0 92.2 81.5 83.1 71.4 85.2 74.2 80.2 35.1 76.6
LADA [51] % 1 97.8 82.3 92.0 86.8 98.0 94.9 94.7 88.8 95.6 95.0 93.9 57.0 89.7

AADA [50] % 5 92.3 78.5 87.4 87.4 91.8 90.8 91.2 86.2 92.6 90.3 90.1 61.5 86.7
TQS [8] % 5 89.6 85.8 82.9 78.5 96.8 82.8 90.2 81.6 93.9 85.2 87.0 69.6 85.3
CLUE [37] % 5 92.8 81.7 83.0 84.0 93.4 89.1 91.4 89.1 94.2 88.0 85.3 62.0 86.2
SDM-AG [58] % 5 93.3 85.1 83.7 86.7 94.2 90.2 92.8 85.5 90.2 81.1 80.8 56.2 85.0
LADA [51] % 5 98.6 87.4 92.9 91.3 98.6 97.0 96.0 91.8 97.4 97.2 95.2 61.6 92.1

LFTL ✓ 1 95.9 84.6 84.6 77.1 95.4 93.6 91.4 87.1 93.2 90.4 87.8 67.6 87.4

MHPL [55] ✓ 5 - - - - - - - - - - - - 91.3
LFTL ✓ 5 98.0 92.5 88.7 89.1 98.0 97.2 94.3 93.5 98.0 96.5 92.6 75.6 92.8

Overall, the combination of supervised cross-entropy, visual persistence guidance
and entropy minimization losses yields:

L = Lce + β1Lvpa + β2Lent. (9)

We emphasize that no explicit supervision (e.g., pseudo labels) is enforced for unlabeled
samples during the optimization, so that the error accumulation problem is greatly
alleviated in the source data-free and target label-scarce setting.

4 Experiments

4.1 Setup

Datasets. We conduct experiments on three widely-used DA benchmarks: a) VisDA-
C [36] aims to solve the simulation-to-reality shift, in which the source domain contains
152K synthetic images with varying angles and lightning conditions, and the target
domain is composed of 55K images cropped from the Microsoft COCO dataset [29],
each with the same 12 categories. b) Office-Home [54] is a medium-sized dataset
consisting of 4 domains: Artistic (Ar), Clip Art (Cl), Product (Pr) and Real-World (Rw)
images, each with the same 65 classes. c) Office-31 [40] is small-sized, which consists
of 31 classes in 3 different domains: Amazon (A), DSLR (D) and webcam (W).
Active Setting. Taking the dataset scales into consideration, we budget 1% and 5%
of VisDA-C for annotation. For the medium- and small-scaled office datasets, 5% and



10 M. Lyu et al.

Table 2: Results on the Office-Home dataset (ResNet50) in terms of classification accuracy (%).
SF represents source inavailability, and AS shows percentage of active annotations (%). Best
results are highlighted in bold, and the best in each section are underlined.

Method SF AS Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SFDA [20] ✓ - 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
A2Net [57] ✓ - 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SHOT [28] ✓ - 57.7 79.1 81.5 67.6 77.9 77.8 68.1 55.8 82.0 72.8 59.7 84.4 72.0
SHOT++ [28] ✓ - 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
CPGA [38] ✓ - 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
DaC [66] ✓ - 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8

AADA [50] % 5 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
TQS [8] % 5 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5
CLUE [37] % 5 50.7 76.1 78.1 62.6 75.2 71.0 64.0 52.3 79.7 72.7 56.9 83.8 68.6
SDM-AG [58] % 5 61.2 82.2 82.7 66.1 77.9 76.1 66.1 58.4 81.0 76.0 62.5 87.0 73.1
LADA [51] % 5 71.2 87.4 84.6 72.1 87.0 83.6 71.5 71.6 85.3 79.3 75.5 90.4 80.0

AADA [50] % 10 65.8 84.5 82.2 64.1 80.6 76.1 67.6 62.6 80.1 73.7 66.1 88.6 74.3
TQS [8] % 10 68.0 87.7 85.7 67.0 83.0 78.7 69.3 64.5 83.9 77.8 68.9 90.6 77.1
CLUE [37] % 10 62.1 79.1 80.3 64.1 77.1 76.7 65.4 63.9 84.2 74.2 68.6 84.7 73.4
SDM-AG [58] % 10 68.5 87.6 86.4 69.5 84.8 81.2 71.0 66.2 84.8 79.3 69.9 90.8 78.3
LADA [51] % 10 77.2 91.9 88.1 76.9 91.1 86.8 76.6 78.1 88.3 82.0 79.0 93.8 84.2

MHPL [55] ✓ 5 69.0 85.7 86.4 72.6 87.4 84.2 73.3 67.4 86.4 80.1 69.6 89.8 79.3
LFTL ✓ 5 66.9 86.6 85.5 73.1 86.3 84.5 72.2 65.7 85.9 79.2 69.0 90.2 78.8

LFTL ✓ 10 76.6 92.2 89.7 78.9 93.0 89.2 78.6 77.1 90.0 83.4 77.8 94.6 85.1

10% data is actively sampled. In each round, 0.1% annotation increment is made. In all
experiments, the average performance of 3 repeated trials is reported.
Implementation. Following SHOT [28], A2Net [57], CPGA [38] and MHPL [55], our
main results are reported on ResNet101 [14] for VisDA-C and ResNet50 for Office, on
top of which is a bottleneck layer that compresses the 2048 high dimensional features into
256 units, followed by a task-dependent FC layer. In the source domain, we randomly
split source data into 90% training and 10% validation to obtain a well-trained model.
Considering that the number of active selections is quite small, we harness Mixup [65]
regularization to exploit the potential of data during target adaptation. Component
verification and more training details can be found in supplementary.

4.2 Comparison with SOTAs

We consider the following competitors: SFUDA methods including SFDA [20], A2Net [57],
SHOT [28], SHOT++ [28], CPGA [38], DaC [66] and SF(DA)2 [17], ADA methods
including AADA [50], TQS [8], CLUE [37], SDM-AG [58] and LADA [51], and
SFADA prior work MHPL [55] For fair inter- and intra-setting comparison, consistent
experimental conditions provided by SHOT are utilized for ADA methods based on
the official codes of TQS [8], CLUE [37] and SDM-AG [58], CLUE [51] as well as
the re-implementation of AADA [50] provided by CLUE [37]. Results not reported by
MHPL and not reproducible due to unavailability of source code are indicated by a dash.

We summarize the adaption accuracies on VisDA-C, Office-Home and Office-31 in
Tab. 1, 2 and 3, respectively. On the large-scale dataset VisDA-C, given merely 1% label
annotations, LFTL is already capable of outperforming most of ADA methods. When
the budget increased to 5%, it exceeded the SFADA SOTA by 1.5% and also outdid the
source-accessible ADA SOTA under the same conditions by 0.7%. On the medium-sized
Office-Home dataset, LFTL elevates the adaptation performance to a level of 78.8% with
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Table 3: Results on the Office-31 dataset (ResNet50)
in terms of classification accuracy (%). SF represents
source inavailability, and AS shows percentage of
active annotations (%). Best results are highlighted
in bold, and the best in each section are underlined.
Method SF AS A→D A→W D→A D→W W→A W→D Avg

SFDA [20] ✓ - 92.2 91.1 71.0 98.2 71.2 99.5 87.2
A2Net [57] ✓ - 94.5 94.0 76.7 99.2 76.1 100.0 90.1
SHOT [28] ✓ - 93.9 90.1 75.3 98.7 75.0 99.9 88.8
SHOT++ [28] ✓ - 94.3 90.4 76.2 98.7 75.8 99.9 89.2
CPGA [38] ✓ - 94.4 94.1 76.0 98.4 76.6 99.8 89.9
SF(DA)2 [17] ✓ - 95.8 92.1 75.7 99.0 76.8 99.8 89.9

AADA [50] % 5 89.2 87.3 78.2 99.5 78.7 100.0 88.8
TQS [8] % 5 92.8 92.2 80.6 100.0 80.4 100.0 91.1
CLUE [37] % 5 90.7 94.3 78.7 99.1 76.1 99.8 89.8
SDM-AG [58] % 5 93.5 94.8 81.9 100.0 81.9 100.0 92.0
LADA [51] % 5 96.3 97.7 83.1 99.6 85.0 99.7 93.6

AADA [50] % 10 93.5 93.1 83.2 99.7 84.2 100.0 92.3
TQS [8] % 10 96.4 96.4 86.4 100.0 87.1 100.0 94.4
CLUE [37] % 10 96.2 94.7 84.4 99.4 81.0 100.0 92.6
SDM-AG [58] % 10 95.9 96.4 86.1 100.0 86.5 100.0 94.2
LADA [51] % 10 97.8 99.1 87.3 99.9 87.6 99.7 95.2

MHPL [55] ✓ 5 97.8 96.7 82.5 99.3 82.6 100.0 93.2
LFTL ✓ 5 98.0 98.5 82.6 99.9 82.2 100.0 93.5

LFTL ✓ 10 98.9 99.4 87.8 100.0 86.3 100.0 95.4

Fig. 3: Comparison on the overall time
consumption (training, active sampling
and annotation time) and adaptation ac-
curacy with SFUDA (SHOT) and ADA
(AADA, TQS, CLUE, SDM-AG, LADA)
methods on the VisDA-C dataset.

5% annotation costs, which is comparable with SFUDA methods. We note a continuous
enhancement in performance as the budget is raised to 10%, culminating in the highest
85.1% accuracy. Similar trend can also be observed in the small-sized Office-31 dataset.
When 5% target samples are labeled, our results surpass MHPL in average performance
and in four out of five subtasks, while being on par with the source-accessible LADA.

The results show that, given a minimum amount of annotations, noticeable improve-
ments can be achieved over SFUDA with increased flexibility. Meantime, despite the
inavailability of the source domain, learning from what the model already learnt can
offset the absence of the source data via our proposed CAS strategy and VPA approach.

4.3 Efficiency Analysis

We compare with open-source SFUDA and ADA methods in terms of actual time
consumption, including model training, active sampling and human annotation, as
presented in Fig. 3. We take the adaptation on the VisDA-C dataset for example, and
provide 1% budget, i.e., 550 images of the target domain for active learning-based
methods. Note that here we report the consumption of the whole sample-and-adaptation
process, instead of the per-round time. All experiments were conducted on 1 NVIDIA
GeForce RTX 3090 GPU, with 80 CPU cores and 256 GB memory.

Considering the training time for adaptation, SFUDA SOTAs often require so-
phisticated schemes (clustering, two-stage training, etc.) to adapt to a completely un-
labeled domain, which necessitate more computational resource. For example, SHOT
and SHOT++ takes 3.7h and 5.8h to converge respectively, and CPGA uses more than
five days to attain the reported performance, which we omit in Fig. 3 to prevent it from
dominating the figure. On the other hand, when equipped with both source and target
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Table 4: Comparison on complexity and ac-
tual query time with ADA methods. Nota-
tions are explained in text.
Query Method Complexity Time (s/cycle)

AADA [50] O(NC +N logN) 79.16
TQS [8] O(NCM +N logN) 127.51
CLUE [37] O(tNBD) 196.92
SDM-AG [58] O(NCD +N logN) 127.44
LADA [51] O(ND +N logN) 97.6

LFTL O(NC +N logN) 73.96

Table 5: Results of LADA minus source
loss (SF-LADA) and our LFTL plus a source
cross-entropy loss (S-LFTL).

Method SF 1% VisDA-C 5% Office-Home 5% Office-31

LADA % 89.7 80.0 93.6
S-LFTL % 87.6 80.1 94.1

SF-LADA ✓ 82.6 72.4 89.0
LFTL ✓ 87.4 78.8 93.5
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Fig. 4: Results of SFADA (MHPL and LFTL) and
ADA (others) methods on VisDA-C (ResNet50) as
the annotation budget continuously grows.

data, ADA methods are expected to directly align different domains, as well as identify-
ing novel samples, which adds to the training burden. For example, AADA, CLUE and
TQS consume more than 6h mainly because of the adversarial training. TQS additionally
trains five classifiers to construct a voting committee for active learning, culminating
in an overall duration of 8.5h. LADA employs local neighbor search for more reliable
training guidance, which takes 5.9h. SDM-AG improves on the optimization complexity
yet still requires 5.1h. In contrast, drawing upon queried informative data, our LFTL
leverages the iterative nature of active learning instead of additional computations. The
proposed VPA retrospects on the knowledge gained from the source and intermediate
models of previous rounds, which is temporarily ensembled in the VP vault for readily
use. As the comparison shows, it significantly outperforms competitors with only 0.3h
for adaptation while yieding superior accuracy.

As for the active sampling efficiency, we summarize the theoretical complexity and
actual training duration for active methods in Tab. 4, where C and N to denote the number
of classes and unlabeled instances respectively. AADA and our LFTL operate with
O(NC +N logN) complexity, which are the most efficient approaches. The clustering-
based CLUE works at O(tNBD), in which D denotes the embedding dimension (512),
B is the budget, and t is the number of clustering iterations (300). The ranking-based
TQS and SDM-AG uses O(NCM +N logN) and O(NCD +N logN) respectively,
in which M represents the number of members in the classifier committee (5 is adopted).
The local neighbor search in LADA leads to a complexity of O(ND +N logN). The
feature dimension D of SDM-AG and LADA is 256. Contrary to previous active criteria
designed for sampling in the target domain, CAS contrasts the hypotheses generated by
models from successive rounds to identify target samples that deviate from the source
domain and persistently challenging for the recognition task. The comparison shows that
the proposed CAS is effective, scalable and efficient.
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Regarding the human annotation time, given that image-level labels take 1 second
per class [2, 34], 1% target domain subset of VisDA-C would cost 550 × 12 ≈ 1.83h.
As Fig. 3 shows, compared to non-active methods, although factoring in the annotation
time introduces additional burden for ADA methods, we still retain the top place.

Collectively, the comparative analysis of accuracy and efficiency reveals that our
LFTL framework, through the synergy of CAS and VPA strategies, can be freed from
source-accessibility, specialized architectures or complex optimization techniques while
still delivering SOTA performance.

4.4 Promises of Continual Performance Growing

In addition to the experiments presented in main results under varying budget constraints,
in this section, we explore the trade-off between the cost and adaptation performance
with increased budget and larger strides. The budget is increased to 2%, 5%, 10% and
20% successively, with the corresponding results summarized in Figure 4. We observe
that the proposed LFTL framework performs notably better than competitors in terms of
both accuracy and robustness. The performance superiority is consistent across different
budget scenarios, from tight to generous, indicating its effectiveness in leveraging limited
data resources. On the contrary, other methods either gradually deviate from the source
domain throughout the process, failing to acquire domain-variant novel knowledge, or
demonstrating suboptimal performance in sustaining domain-alignment, or they solely
support one-round active sampling as in MHPL. We emphasize that the promise of
continual performance growth holds practical value in real-world applications, as it
facilitates the effective feedback loop between data reflow and model iteration.

4.5 Discussion of Source Availability

Considering the performance margin of SFADA over ADA, we take LADA, the ADA
SOTA, as an example for comparison to explore the role of source data in adaptation. We
first ablate the source domain loss from LADA, denoted as SF-LADA to compare with
LFTL. Given that the source data becomes unavailable, each epoch now iterates over the
labeled target dataset instead of the labeled source dataset, the same as our LFTL. The
averaged results in Tab. 5 show that, without specifically designed hypothesis transfer
strategy, removing the source data from ADA methods will cause task models to forget
the previously learnt knowledge in the source domain during adaptation. And the newly
acquired information from the target domain is too limited to counteract it, resulting in
noticeable accuracy gaps. This further validates the necessity of learning from the learnt
under the source-free condition.

Then we add a simple cross-entropy loss for the source data to LFTL, namely S-
LFTL, while keeping the number of iterations unchanged. As shown in Tab. 5, S-LFTL
improves over LFTL, demonstrating that direct source supervision could still provide
more useful information than hypothesis transfer and memory recollection. The source
data proves especially effective for smaller Office datasets, where the improvements are
noticeable while the additional amount of additional time is affordable. For the large
dataset, although the performance of S-LFTL does not match that of LADA within just
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Table 6: Comparison between the proposed CAS and active learning baselines in terms of
classification accuracy (%). Experiments are performed on the large-scale VisDA-C dataset
(ResNet101) with 1% budget in total for 10 cycles. The best results are highlighted in bold.

Method 1 2 3 4 5 6 7 8 9 10

Random 67.0 70.6 73.7 76.6 78.7 79.9 81.1 81.8 82.2 82.7
Ent-max 62.2 67.9 73.7 77.6 79.9 80.5 80.2 80.2 80.0 80.5
Ent-min 60.4 66.4 64.5 64.2 63.8 64.0 64.1 63.5 64.6 63.9
Kcenter-greedy 67.5 71.3 74.5 77.4 78.9 80.6 81.4 82.3 82.7 83.5
Kmeans 60.5 67.3 72.9 75.7 77.5 78.7 79.7 80.4 80.9 81.2
Least-confidence 63.2 69.9 74.5 78.5 80.2 80.9 80.7 81.1 81.2 81.9
Bayesian 66.5 70.4 73.9 76.7 78.7 80.2 81.4 82.1 82.8 83.4
BvSB 65.7 72.2 77.0 79.8 81.4 82.5 83.4 84.0 84.6 85.1

LFTL 67.6 74.9 79.1 81.5 83.6 84.3 85.6 86.2 86.9 87.4

6% of its adaptation time, extending the training iterations to access all available data
would guarantee further performance improvements.

4.6 Comparison with Active Learning Baselines
To validate the proposed active query strategy, we compare LFTL with active learning
baselines. We choose Random, uncertainty-based EntMax [46], Least Confidence [24],
BvSB [24], Bayesian [9], distribution-based K-means [62] and K-center greedy [45].
Experiments are performed on the large-scale VisDA-C dataset with 1% annotation
budget in total for 10 rounds. The results for each round are listed in Tab. 6. It manifests
that the proposed sampling strategy consistently outperforms its substitutes. As the itera-
tion proceeds, information queried by other active learning methods become redundant,
failing to fulfill the requirements of the DA task. In comparison, the CAS and class-level
transferability estimation we propose efficiently prioritize samples with local uncer-
tainty, global intransferability and temporal stagnancy along the sample-and-adaptation
progress, bringing continuous growth to the DA task.

5 Conclusion

In this paper, we investigate the challenging source-free active domain adaptation
(SFADA) setting, where source data becomes inaccessible during adaptation, and a
minimum amount of annotation budget is available for the target domain. We present
a shared framework for both active sampling and domain adaptation to learn from the
hypotheses and feature representations of the learnt source model and actively iterated
models. The proposed CAS criterion effectively prioritizes samples that are both infor-
mative to the current model and persistently challenging throughout the iterative process,
and their visual understandings of actively queried samples are temporally preserved and
exploited via the VPA strategy during adaptation.

Extensive experiments on three DA benchmarks have shown that, in comparison with
ADA and SFUDA settings, SFADA provides a worthy trade-off between annotation costs
and model performance in both accuracy and efficiency. In comparison with previous
SFADA competitors, our LFTL framework also presents superior performance and
exhibits more flexibility than the one-round method.
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