
Motion Mamba Supplementary

1 Implementation Details

Motion Mamba operates within the latent spaces, leveraging the capabilities of
the Motion Variational AutoEncoder (VAE) V = {E ,D}, as proposed in the
seminal work by Chen et al. [6]. For the configuration of the Motion Mamba de-
noiser ϵθ, we have opted for an architecture comprising 11 layers (N = 11), with
the latent dimensionality set to z ∈ R2,d. The Hierarchical Temporal Mamab
(HTM) modules are arranged in a scan pattern of {S2Nn−1, . . . , S1}, while the
Bidirectional Spatial (BSH) modules incorporate a block-level bidirectional scan
policy. Additionally, we utilize a pretrained CLIP-VIT-L-14 model in a frozen
state to derive text embeddings τwθ (w1:N ) ∈ R1×d.

All models under the Motion Mamba framework are meticulously trained
using the AdamW Optimizer, with the learning rate steadfastly maintained at
10−4. We have standardized our global batch size at 512, which is judiciously dis-
tributed across 4 GPUs to facilitate data-parallel training. The training regime
is extended over 2,000 epochs to ensure convergence to an optimal set of param-
eters. For the diffusion sampling process, we maintain the number of steps at
1,000 and 50 during the training and inference phases, respectively. The entire
training procedure is executed on a single-node GPU server, outfitted with 4
NVIDIA A100 GPUs, spanning approximately 4 hours. Inference speed evalu-
ations of our Motion Mamba models are conducted on a single NVIDIA V100
GPU for fair comparison, while module development and additional inference
tasks are performed on a single NVIDIA GeForce RTX 3090/4090 GPU.
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(a) Text-Motion Correspondence User Study
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Fig. 1: User Study in two aspects including text-motion correspondence and quality, we
compare Motion Mamba(MM) with previous methods including MDM [49] , T2M [17]
, MLD [6] and ground truth.
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2 User Study

In this work, we undertake a comprehensive evaluation of Motion Mamba’s per-
formance, encompassing both qualitative analyses across various datasets and a
user study to assess its real-world applicability. A diverse collection of 20 motion
sequence sets, prompted randomly and extracted from the HumanML3D [17] test
set, were generated utilizing three distinct methodologies—MDM [49], T2M [17],
MLD [6]—alongside Motion Mamba and a baseline of ground truth motions.
Subsequently, 50 participants were randomly selected to evaluate the motion
sequences generated by these methods.

The user study was administered through a Google Forms interface, as de-
picted in Fig. 4, ensuring that motion sequences were presented anonymously
without revealing their generative model origins. Our analysis focused on two
critical dimensions: the fidelity of text-to-motion correspondence and the overall
quality of the generated motions.

Empirical results, illustrated in Fig. 1a and Fig. 1b, unequivocally demon-
strate Motion Mamba’s superior performance relative to the benchmark methods
in terms of both text-motion alignment and motion quality. Specifically, Motion
Mamba achieved significant margins over MDM [49], T2M [17], and MLD [6] by
79%, 74%, and 62% in text-motion correspondence, respectively, as highlighted
in Fig. 1a. When juxtaposed with ground truth data—meticulously captured
with state-of-the-art, noise-free devices—Motion Mamba’s generated sequences
exhibited a remarkably close adherence to the intended text descriptions, under-
scoring its proficiency in aligning textual prompts with motion sequences.

Further reinforcing these findings, Motion Mamba’s generated motions were
also found to surpass the aforementioned methods by substantial margins of
70%, 67%, and 59%, respectively, in terms of quality, as reported in Fig. 1b .
This underscores Motion Mamba’s ability to not only closely match the text-
motion correspondence of high-fidelity ground truth data but also to produce
high-quality motion sequences that resonate well with real user experiences.

3 Visualization

Our study delves into the visualization of motion generation by capturing intri-
cate motion sequences, utilizing prompts and their variations derived from Hu-
manML3D [17]. We meticulously compare our proposed Motion Mamba method-
ology with established state-of-the-art techniques, namely MotionDiffuse [54],
MDM [49], and MLD [6]. Presenting three distinct motion sequences, we metic-
ulously analyze and visualize each, offering a comprehensive assessment of our
approach’s efficacy.
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Fig. 2: We compared the proposed Motion Mamba with well-established state-of-the-
art methods such as MotionDiffuse [54], MDM [49], and MLD [6]. We presented three
distinct motion prompts and visualized them in the form of motion sequence. The
results demonstrated our superior performance compared to existing methods.
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a person bends forward at the waist 
while both hands are tucked inside 
their armpits and elbows move up 

and down.

a man walks forward then turns right. a person does a squat and raises both 
arms over its head. someone is playing the violin.

a man is pretending to be a chicken. 
constantly pecking at the ground and 

waving his arms like a chicken.

a person walks forward on an angle 
to the left.

person walks up and squats slightly 
to pose a position.

a person squats and raises both arms 
and then stand backup.

a man stumbles to his right. the 
motion seems surprised so he was 

probably pushed.

a person standing loses balance 
falling to the right and recovers 

standing.

a man runs to the right then runs to 
the left then back to the middle.

a man performs a squat while lifting 
his arms to shoulder height and hands 

above his head.

a man waves his right hand. a man pats his left hand with his right 
hand.

a man walks up and down from either 
stairs, rocks, or some unlevel terrain 

requiring a step.
a man kicks with his left leg.

Fig. 3: We have included extra examples to showcase the proposed Motion Mamba
model. These examples feature randomly selected prompts sourced from HumanML3D
[17], providing additional visualizations of the model’s capabilities.
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Fig. 4: This figure presents the User Interface (UI) deployed for our User Study,
wherein participants are presented with two videos, labeled as Video A and Video
B, respectively. These videos are selected randomly from a pool consisting of outputs
generated by three distinct methods, in addition to the Ground Truth (GT) for com-
parison. Participants are posed with two types of evaluative questions to gauge the
effectiveness of the generated motions. The first question, "Which of the two motions
is more realistic?", aims to assess the overall quality and realism of the motion capture.
The second question, "Which of the two motions corresponds more accurately to the
text prompt?", is designed to evaluate the congruence between the generated motion
and the provided text prompt. This dual-question approach facilitates a comprehensive
assessment of both the quality of the motion generation and its fidelity to the specified
text prompts.
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