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Abstract. X-ray is widely applied for transmission imaging due to its
stronger penetration than natural light. When rendering novel view X-
ray projections, existing methods mainly based on NeRF suffer from
long training time and slow inference speed. In this paper, we propose
a 3D Gaussian splatting-based method, namely X-Gaussian, for X-ray
novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud
model inspired by the isotropic nature of X-ray imaging. Our model ex-
cludes the influence of view direction when learning to predict the radia-
tion intensity of 3D points. Based on this model, we develop a Differen-
tiable Radiative Rasterization (DRR) with CUDA implementation. Sec-
ondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUT)
strategy that directly uses the parameters of the X-ray scanner to com-
pute the camera information and then uniformly samples point positions
within a cuboid enclosing the scanned object. Experiments show that
our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while
enjoying less than 15% training time and over 73x inference speed. The
application on CT reconstruction also reveals the practical values of our
method. Code is at https://github.com/caiyuanhao1998/X-Gaussian
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1 Introduction

X-ray novel view synthesis (NVS) aims to create X-ray projections of an object
from new viewpoints that are not originally captured, using only existing pro-
jections scanned from different view directions. As we know, X-ray has stronger
penetrating power to capture internal structures of imaged objects and is there-
fore widely applied in medical imaging [12}/13}/15/[18]/19,43]. Nonetheless, X-ray is
harmful to human body due to its powerful ionizing radiation, especially when
the dose of X-ray increases. Improving NVS techniques can help reduce the
exposure to X-rays and provide comprehensive viewpoints of imaged parts for
doctors and downstream tasks such as sparse-view CT reconstruction. Hence,
X-ray NVS is very important and valuable. We study this task in the circular
cone beam X-ray scanning scenario [7,8.[10L35}39,/44L|56}59].
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Fig. 1: Point cloud visualization of the original 3DGS (top) and our X-Gaussian
(bottom). We visualize the positions and opacities of the Gaussian point clouds at
different training iterations. We also visualize the volume of foot as a reference. Note
that the volume is not the ground truth of point clouds. Our X-Gaussian can better
represent the detailed structures than 3DGS, showing faster and better convergence.

Existing methods are mainly based on neural radiance fields (NeRF) [37].
They usually employ a multi-layer perceptron (MLP) to learn the mapping from
the point position to the radiodensity and then create projections by volume
rendering along rays. This ray tracing scheme is time-consuming because it needs
to sample many 3D points and then compute them for every single ray, slowing
down the training and inference processes. Even the recent most efficient NeRF-
based method still requires over an hour for training and yields suboptimal
results at a slow inference speed of 2 fps. This increases the waiting time of
patients and doctors, leading to low diagnostic efficiency.

Recently, 3D Gaussian splatting (3DGS) has demonstrated promising
reconstruction quality while enjoying much faster inference speed than NeRF-
based algorithms in RGB domain, which motivates us to follow this technical
route. However, due to the fundamental differences between X-ray and natural
light imaging, directly applying the original 3DGS to X-ray NVS may encounter
two issues. Firstly, the spherical harmonics (SH) in RGB 3DGS is not suitable
for modeling the X-ray radiation intensity of 3D points. Specifically, natural
light imaging relies on the reflection off the surface. The color of a 3D point
is anisotropic and view-dependent. Based on this nature, the original Gaussian
point cloud model uses SH to fit the illumination distribution. In contrast, X-rays
penetrate the object and attenuate, thereby forming an image. Given specific X-
rays, the radiation intensity of a 3D point depends on its radiodensity and is
independent to the view direction, which means the point radiation intensity is
isotropic. Secondly, the original point cloud initilization algorithm, structure-
from-motion (SfM) [46], is also not suitable for X-ray imaging. Compared to
RGB images, X-ray images are grayscale and their contrast is lower. Additionally,
different layers of an object may overlap on the same position of the projection
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due to the transmission imaging nature of X-rays. These two problems degrade
the accuracy of feature detection and matching in SfM. Meanwhile, running SfM
is time-consuming, which prolongs the training process of Gaussian point clouds.

To address the above issues, we propose a novel 3DGS-based method, X-
Gaussian, for X-ray NVS. Our X-Gaussian composes two key techniques. Firstly,
we redesign a radiative Gaussian point cloud model inspired by the isotropic
property of X-ray imaging. We present a Radiation Intensity Response Function
(RIRF) to replace the SH function of the original 3DGS. Different from SH, our
RIRF excludes the influence of view direction. To this end, it adopts the inner
product between a learnable vector representing the inherent point features and
a set of basis weights to fit the radiation intensity of a 3D point. Based on this
point cloud model, we further develop a Differentiable Radiative Rasterization
(DRR) with a CUDA implementation to render novel projections. Secondly,
we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy for
camera calibration parameters and Gaussian point clouds. Our ACUI first ex-
ploits the parameters of the X-ray scanner to compute the intrinsic and extrinsic
matrices. Then we set up a cuboid that can completely enclose the scanned ob-
ject. Within this cuboid, we uniformly sample 3D points at intervals to initialize
the center positions of the Gaussian point clouds. Free from running the SfM
algorithm, our ACUI significantly reduces the training time. Equipped with the
two proposed techniques, our X-Gaussian outperforms SOTA methods by 6.5
dB while enjoying 73 x inference speed and 7x training speed.

The main contributions of this work can be summarized as follows:

— We propose a novel 3D Gaussian splatting-based framework, X-Gaussian,
for X-ray novel view synthesis. To our knowledge, this is the first attempt
to explore the potential of Gaussian splatting in X-ray neural rendering.

— We design a radiative Gaussian point cloud model with a differentiable ra-
diative rasterization based on the isotropic nature of X-ray imaging.

— We present an angle-pose cuboid uniform initialization strategy for Gaussian
point clouds and camera calibration in circular cone beam X-ray scanning.

— Our X-Gaussian significantly outperforms SOTA NeRF-based methods with
much faster speed. Experiments also show that our method can improve the
performance of sparse-view CT reconstruction, showing its practical values.

2 Related Work

2.1 Neural Radiance Field

NeRF [37] learns an implicit neural scene representation of color and volume
density, given the position of a 3D point and view direction. It has achieved
great success in NVS and inspired an explosion of follow-up papers to improve
its quality [3H5L22,148] and speed [9}/11,[21}/30L|38}/41}/54]. For example, Instant-
NGP |38| adopts hash tables as the encoder to allow small MLP for fast training
and inference. Some later works extend the application domain of NeRF from
natural light to X-rays |14}/58,|60]. For instance, NAF [60] follows the settings
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Fig. 2: Pipeline of our method. (a) Angle-pose Cuboid Uniform Initialization (ACUI)
strategy uses the parameters of X-ray scanner to compute intrinsic and extrinsic matri-
ces, and samples center points for 3D Gaussians. (b) Our radiative Gaussian point cloud
model learns to predict the radiation intensity of 3D points. (c¢) Based on our Gaussian
model, we develop a GPU-friendly Differentiable Radiative Rasterization (DRR).

of Instant-NGP to learn the implicit mapping from 3D position to attenuation.
Yet, the ray tracing and volume rendering schemes are time-consuming, which
limits the training and inference speed of NeRF-based X-ray NVS algorithms.

2.2 Gaussian Splatting

3DGS represents scenes using millions of 3D Gaussian point clouds. This
approach is fundamentally different from NeRF-based algorithms by employing
an explicit representation coupled with highly parallelized rasterization work-
flows. These features enable more efficient computation and rendering processes.
Hence, 3DGS has achieved great success in several fields, including 3D Genera-
tion , Dynamic Scene Modeling , SLAM

, Inverse Rendering , etc. However, most applications of 3DGS
are focused on natural scenes with RGB colors. The potential of 3DGS in X-ray

imaging still remains under-explored. Our goal is to fill this research gap.

3 Method

The pipeline of our X-Gaussian is shown in Fig. 2] Firstly, we design an Angle-
pose Cuboid Uniform Initialization (ACUI) to compute the intrinsic and extrinsic
matrices from the parameters of X-ray scanner, as illustrated in Fig. 2| (a). Then
ACUI uniformly samples 3D points within a cuboid that can completely enclose
the scanned object to initialize the center positions of our radiative Gaussian
point clouds in Fig. [2] (b). Given a view direction, the 3D point clouds undergo
our Differentiable Radiative Rasterization (DRR) to derive the rendered image,
as depicted in Fig. 2] (c). In this section, we will introduce our radiative Gaussian
point cloud model and DRR processing first and then the ACUI strategy.
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(a) Original RGB Gaussian Point Cloud (b) Our Radiative Gaussian Point Cloud

Fig. 3: Comparison between the Gaussian point cloud models of the original 3DGS and
our X-Gaussian. (a) The original RGB Gaussian point cloud model uses spherical har-
monics (SH) to simulate the anisotropic natural light distribution and view-dependent
color. (b) Our radiative Gaussian point cloud model employs the weighted sum of point
features to fit the isotropic X-ray penetration and view-independent radiation intensity.

3.1 Radiative Gaussian Point Cloud Model

An object can be represented by a set of basic Gaussian point clouds G as
g:{Gl(/.lq,E“Oq) | 1= 1,27,Np}, (1)

where G; refers to the i-th Gaussian point cloud. Its center position, covariance,
and opacity are defined as pu; € R3, ; € R3*3, and o; € R. X; is represented
by a rotation matrix R; € R? and a scaling matrix S, € R? as &, = RiSiSiTRiT.
i, 25, a;, R;, and S; are learnable parameters. Besides these basic attributes,
each Gaussian point cloud also employs additional learnable parameters to fit
different imaging scenarios, e.g., natural light imaging and X-ray imaging.

We first review the original RGB Gaussian point cloud model [25] in natural
light imaging. As shown in Fig. |3| (a), the color of a 3D point is represented by
spherical harmonics (SH). The point color is anisotropic and changes with the
view direction. Each Gaussian point cloud learns to predict the SH coefficients
k={k"0<I<L,-1<m<l}e€ R(LH)QX?’, where each k" € R is a set of 3
coefficients corresponding to the RGB components. L is the degree of SH. Then
the point color ¢ € R? at the view direction d = (6, ¢) is derived by

L l
cdk) =) > k"Y"0.9) (2)

=0 m=—1

where Y™ : §? — R is the SH function that maps points on the sphere to real
numbers. Please refer to the supplementary for its detailed formulation.
Although 3DGS |25 achieves fast inference speed and good performance in
natural light imaging, the RGB Gaussian point cloud model is not suitable for
X-ray scenarios due to the fundamental differences between natural light imaging
and X-ray imaging. Natural light imaging relies on the reflection off the surface of
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object. The anisotropic color modeled by SH is view-dependent. e.g., in Fig.|3|(a),
the point color is blue from the left viewpoint and green from the right viewpoint.
In contrast, X-ray imaging is based on the attenuation when penetrating the
object. The degree of attenuation depends on the isotropic radiodensity property.
Thus, the radiation intensity of a 3D point is view-independent.

In light of the above analysis, we redesign our radiative Gaussian point cloud
model. Different from the original 3DGS that uses SH to fit the color information
for each point, our model introduces a Radiation Intensity Response Function
(RIRF) to predict the radiation intensity of the 3D point. As illustrated in Fig.
(b), each Gaussian point cloud learns a feature vector f € R/ to represent its
inherent radiative properties. Subsequently, the radiation intensity i € R of the
center point of a 3D Gaussian at any view direction is modeled by RIRF as

i(f) = RIRF(f) = Sigmoid(A ® f), (3)

where the Sigmoid function activates and normalizes the radiation intensity. A €
R™7 is a set of constant weights controlling the importance of each component
of f. Then the set of our radiative Gaussian point clouds G, is formulated as

g;z::{G'L(IJ'ZaEZaahfZ) | i:172:"'7Np}7 (4)

where f; € R¥s denotes the feature vector of the i-th Gaussian point cloud.
Please note that Eq. excludes the influence of the view direction d = (8, ¢),
which matches the isotropic nature of X-ray imaging. Meanwhile, Eq. is free
from the complex computation of SH function. Hence, the forward and backward
processes of our X-Gaussian are much faster than those of the original 3DGS.

3.2 Differentiable Radiative Rasterization

Based on our radiative Gaussian point cloud, we develop a Differentiable Radia-
tive Rasterization (DRR), as shown in Fig. [2] (¢). We first summarize the overall
DRR processing Fprr and then describe its details. DRR is represented as

I= FDRR(Mewt; Minta {Gl(l'l”u Ei7ai7fi) | 1= 1a 2) ey Np})a (5>

where I € R¥*W denotes the rendered image, M.,; € R*** represents the
extrinsic matrix, and M;,; € R**3 refers to the intrinsic matrix. Subsequently,
we introduce the details of Fprgr. To begin with, the possibility value of the i-th
Gaussian distribution at the 3D point position x € R? is formulated as

Plxlpts, B1) = exp(— 5 — 1) T8 (x - ). (©)

Then we project the 3D Gaussians to the 2D detector plane for subsequent ren-
dering. p; is firstly transferred from the world coordinate system to the camera
coordinate system and then projected to the image coordinate system as

u;

T t; ~ i ~ T t;
ti: |:1:| :Mext Ni:Mext |:,L{:|, u; = |:1:| :Mint ti:Mint |:1:|7 (7>
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where t; = (t4,t,,t.) € R? is the camera coordinate of p; and u; € R? is the
image coordinate of ;. u;, t;, and f; are the homogeneous coordinates of u;,
t;, and p;, respectively. Subsequently, we transfer the 3D covariance matrix 3;
to its counterpart E; € R3*3 in the camera coordinate system as

¥, =J,W,Z,W,J], (8)

where J; € R3*3 is the Jacobian of the affine approximation of the projective
transformation. W; € R3*3 is the viewing transformation. We derive them by

Tt Tz —sing cos¢ O
Ji=1] 0 ZLso —Lsfé | W, = 0 0o -1y, (9)
0 0 0 —cos¢ —sing 0

where Lgp represents the distance between the X-ray source and detector. ¢
refers to the azimuth angle of the source. Following [25,29//62], we obtain the 2D
covariance matrix E;/ € R?*2 by skipping the third row and column of E;. Then
the 2D projection is partitioned into non-overlapping tiles. The 3D Gaussians
(pi,X%;) are assigned to different tiles according to their 2D projections (ui,E;/),
as shown in the left image of Fig. [2[ (c). These 3D Gaussians are sorted by the
distances to the 2D detector. Then the intensity I(p) € R at pixel p is obtained
by blending N ordered points overlapping the pixel in the corresponding tile as

7j—1
Ip)=> 10, [[A-0n), o5 =0;P(xlp;, %), (10)
JEN k=1

where x; is the j-th intersection 3D point of the X-ray landing on pixel p and
the Gaussian point clouds in 3D space. i; is the radiation intensity of x;.

Optimization. Eventually, the training objective L is the weighted sum of £;
loss and SSIM loss between the rendered and ground-truth projection images as

L= (1 - ’y)ﬁl + 7£SSIM7 (11)

where « is a hyperparameter balancing the importances of the two loss terms.
By minimizing Eq. , we can optimize the attributes of 3D Gaussians, i.e.,
wi, X, a5, and f; in Eq. . N, is adjusted by the adaptive control [25]. The
optimization process is visualized in Fig. [I]and the video file in supplementary.
Compared to the RGB rasterization in 3DGS [25], our DRR avoids the com-
plex computations related to the view direction in the forward and backward
processes, thereby enjoying cheaper training costs and faster inference speed.

3.3 Angle-pose Cuboid Uniform Initialization

At the beginning of training, we need to initialize the parameters in Eq. for
rasterization. Specifically, 3;, a;, and f; are randomly initialized. In natural light
imaging, the original 3DGS [25] adopts the SfM [46] algorithm to compute the
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initial p;, Np, Mcye, and My,¢. SEM detects and matches features from multi-
view images. It is not suitable for X-ray imaging due to two reasons. Firstly, X-
ray images are grayscale and low-contrast. Secondly, different layers of an object
may overlap on the same positions of the projection. These two problems degrade
the accuracy of feature detection and matching in SfM. Besides, running the SfM
algorithm usually requires a long time, which prolongs the training process.

To address these issues, we customize an Angle-pose Cuboid Uniform Initial-
ization (ACUI) strategy for circular cone beam X-ray scanning scenario where a
scanner emits cone-shaped X-ray beams and captures projections at equal angu-
lar intervals. As shown in Fig.[2| (a), ACUI uses the parameters of X-ray scanner
to compute the extrinsic matrix M.,; and intrinsic matrix M;,,; as

—sing cosp 0 O Lep 0 W/2 0

0 0 -1 0
Mezt - 7COS¢) 7Sin¢ 0 LSO ) Mint - 8 LSD 171/2 8 9 (12>
0 0 0 1

where Lgo represents the distance between the X-ray source and the scanned
object. The elevation angle of the X-ray source is set to zero and remains un-
changed. The next step of ACUI is to initialize the center positions of 3D Gaus-
sians. Although the precise shape of the scanned object is not given at the
beginning, the scanning space can be approximated. We set up a cuboid with
size S1 X Sy x S3 (mm) that can completely enclose the object. The center of
this cuboid is also the center of the object and the origin of the world coordinate
system. We divide this cuboid by a grid with size M7 x M x M3 (voxel). Then
we uniformly sample points within the grid at interval d € R as

nlSld ’IlgSQd n353d %:I +17 i = 1’273}7 (13)

M;
P:{( M, ' M, ' Ms ) -Gl -t=m <[5

where n; € Z. Then we use the size and elements of P to initialize N, and ;.
Avoiding running SfM, ACUI allows X-Gaussian to enjoy a faster training speed.

4 Experiments

4.1 Experimental Settings

Dataset. Following NAF [60], we adopt the public datasets of human organ
CTs, i.e., LIDC-IDRI [2| and the open scientific visualization dataset [27], to
evaluate our method. The test scenes include chest, foot, head, abdomen, and
pancreas. We adopt the open-source tomographic toolbox TIGRE [6] to capture
100 projections with 3% noise in the range of 0 ~ 180°. In the NVS task, 50
projections are used for training and the other 50 projections are used for testing.
The CT volumes are used for testing in the sparse-view CT reconstruction task.
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Table 1: Quantitative results on the novel view synthesis task. The average inference
speed and training time of all scenes evaluated on an RTX 8000 GPU are reported. In
the cell of the results of each scene, PSNR (upper) and SSIM (lower) are listed.

Method Infer Speed  Train Time Chest Foot Head Abdomen  Pancreas  Average
| i 28.948 39.482 34.832 27.641 20.031 30.187

InTomo [58] 0.62 fps 125 min
0.9915 0.9979 0.9977 0.9646 0.8537 0.9611
i 36.157 41.053 29.760 24.620 19.853 30.289

NeRF [37] 0.14 fps 313 min
0.9988 0.9989 0.9991 0.9559 0.8560 0.9617
| X 23.609 37.728 34.429 27.382 29.235 30.477

TensoRF |9 0.77 fps 178 min
0.9402 0.9929 0.9879 0.8730 0.8031 0.9194
40.765 38.236 27.738 26.741 37.526 34.201

NeAT [42] 1.78 fps 69 min
0.9990 0.9963 0.9295 0.8563 0.9017 0.9366
42.366 38.353 30.174 37.590 36.228 36.942

NAF |60] 2.01 fps 63 min
0.9993 0.9913 0.9531 0.9855 0.8844 0.9627

43.887 42.153 41.579 45.762 43.640 43.404
0.9998 0.9997 0.9997 0.9999 0.9976 0.9993

X-Gaussian 148 fps 9 min

Implementation Details. Our X-Gaussian is implemented by PyTorch [40]
and CUDA [17]. The model is trained with the Adam optimizer [26] (51 =
0.9, Bo = 0.999, and ¢ = 1x1071%) for 2x10* iterations. The learning rate for
point cloud position is initially set to 1.9x10™* and exponentially decays to
1.9%x107%. The learning rates for point feature, opacity, scaling, and rotation are
set to 2x1073, 8x1073, 5x1073, and 1x1073. 4 in Eq. is set to 0.2. We
adopt peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM) [49] to evaluate the performance. Frames per second (fps) is used to
measure the inference speed. Experiments are conducted on an RTX 8000 GPU.

4.2 Novel View Synthesis

Quantitative Results. Tab. [1| shows the quantitative comparisons between
our X-Gaussian and five SOTA NeRF-based algorithms, including InTomo [5§],
NeRF [37], TensoRF [9], NeAT [42], and NAF [60] on the NVS task.

We report the average inference speed and training time of different methods
on all scenes. In the cell of the results of each scene, PSNR (upper entry in the
cell) and SSIM (lower entry in the cell) are listed. As can be observed that our
X-Gaussian not only surpasses SOTA methods by large margins in performance
but also enjoys much faster inference speed and cheaper training costs. More
specifically, compared with the recent best X-ray NeRF-based method NAF, our
X-Gaussian outperforms it by 6.5 dB on average and is 73x faster in inference
while requiring less than 15% training time. When compared with the SOTA
RGB NeRF-based method TensoRF, our X-Gaussian is 12.93 dB higher while
enjoying 192x inference speed and 20x training speed.
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X-Gaussian

Fig. 4: Qualitative results of novel view synthesis on the scenes of pancreas (top) and
chest (bottom). Our X-Gaussian yields clearer results. Please zoom in for a better view.

Qualitative Results. Figs. [d] depict the qualitative comparisons of NVS on
the scenes of pancreas and chest. It can be observed from the zoomed-in patches
that previous NeRF-based algorithms fail to render clear novel views. They either
introduce undesired artifacts or produce blurry textures such as the toe bones
of the foot. In contrast, our method yields visually realistic images by rendering
more fine-grained details and clearer structural contents.

4.3 Sparse-View CT Reconstruction

We compare our method with SOTA NeRF-based algorithms on sparse-view
CT reconstruction. Since the Gaussian point clouds cannot directly infer the
radiodensities of the CT volume, we evaluate different NeRF-based methods and
our X-Gaussian by using them to create novel-view projections for three learning-
free CT reconstruction methods, including an analytical method (FDK )
and two iterative methods (SART [1] and ASD-POCS [45]). Specifically, these
three methods reconstruct the CTs from 5 original projections and 95 novel-view
projections rendered by different NVS algorithms. The quantitative results are
listed in Tab. [2| When only using 5 original views (+ None), FDK, SART, and
ASD-POCS achieve 7.41, 17.24, and 17.03 dB in PSNR, respectively. They fail to
reconstruct the CT volumes. When employing our X-Gaussin to create novel X-
ray projections for FDK, SART, and ASD-POCS, they yield the most significant
improvements of 15.19, 13.01, and 13.53 dB in PSNR. These improvements are
1.32, 2.41, and 2.65 dB higher than the improvements of using NAF.

Figs. [5] shows the qualitative results of sparse-view CT reconstruction on
the scenes of foot and chest. Without using rendered novel-view projections,
SART fails in reconstructing the CT slices. When using SOTA X-ray NeRF-
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Table 2: Results on sparse-view CT reconstruction. NeRF-based methods and our X-
Gaussian are used to create novel views for FDK [16], SART [1], and ASD-POCS |[45].

Method - None + InTomo [58] + NeRF |37 { TensoRF |9]  + NeAT [42] - NAF |60 {- X-Gaussian
Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM | PSNR SSIM

FDK 741 0.093 20.31 0.498 20.57 0.502 20.61 0.501 20.94 0.511 21.28 0.523 | 22.60 0.584
A FDK 0 0 12.90 0.405 13.16 0.409 13.20 0.408 13.52 0.418 13.87 0430 | 15.19 0.491
SART 1724 0.528 26.28 0.859 26.78 0.853 27.06 0.867 27.31 0.869 27.84 0.879 | 30.25  0.907
A SART 0 0 9.04  0.331 9.54  0.325 9.82 0339 10.07 0.341 10.60 0.351 13.01  0.379

ASD-POCS | 17.03 0.525 25.44 0.847 26.58 0.857 26.93 0.868 26.95 0.865 27.91 0.880 | 30.56  0.926

A ASD-POCS 0 0 8.41 0322 9.55 0.332 9.90 0.343 9.92 0.340 10.88 0.355 | 13.53  0.401

based methods to create novel views, SART produces over-smooth CT slices
with blurry structural contents. On the contrary, when using our X-Gaussian
to assist SART and ASD-POCS, they can reconstruct much clearer CT slices
with more high-frequency textures and fine-grained structural details, such as
the vessels in the chest (Fig. [5)). These results clearly demonstrate the potential
practical values of our method on the sparse-view CT reconstruction task.

4.4 Ablation Study

Break-down Ablation. We first conduct a break-down ablation experiment
to study the effect of each proposed technique towards higher performance and
faster speed. We adopt the original 3DGS [25] as the baseline model and naively
average the RGB channels to represent the value of radiation intensity. The
results are listed in Tab. The baseline model yields 37.21 dB PSNR in per-
formance. Its average training time and inference speed are 31 min 38 s and 64
fps, respectively. We can observe from Tab. : (i) When using ACUI to replace
the time-consuming SfM [46] algorithm for initialization, the training time is
significantly reduced by 34% while the performance yields an improvement of
1.66 dB. This evidence suggests that our ACUI strategy is much faster than the
SIM |46] algorithm used in the original 3DGS and can compute more accurate
camera calibration parameters for 3D Gaussians and subsequent rendering. (ii)
Then we apply our radiative Gaussian point cloud model equipped with the
proposed Differentiable Radiative Rasterization (DRR) to replace the original
RGB Gaussian point cloud model and its RGB rasterization. As analyzed in
Sec. and compared in Fig. [3] the anisotropic spherical harmonics (SH) are
not suitable for X-ray imaging because X-ray imaging based on penetration is
isotropic. In contrast, our radiative Gaussian point cloud model can better fit the
view-independent radiation intensity in 3D space. Therefore, the performance is
significantly improved by 4.53 dB in PSNR. Besides, removing the computation
related to the view direction from the forward and backward processes of rasteri-
zation can further accelerate the training and inference speed. Thus, the training
time is reduced by 54.10% and the inference speed is 2.1x faster.
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SART + InTomo + NeRF + TensoRF + NeAT + NAF + X-Gaussian

Fig. 5: Visual results of sparse-view CT reconstruction on the scenes of foot and chest.
NeRF-based methods and our X-Gaussian are used to create novel views for SART [1].

Initialization of Point Position. We compare different initialization strate-
gies for the center positions of Gaussian point clouds including random, spherical,
FDK [16], and cubic initialization. To be specific, Random initialization means
randomly sampling points within the scanned area in 3D space. Spherical initial-
ization uniformly samples point positions within a sphere that can completely
enclose the scanned object. FDK |16] initialization adopts the FDK algorithm to
back-project the given projections into 3D point positions. Cuboid initialization
is our ACUI. Please note that we keep the computed intrinsic and extrinsic ma-
trices the same for fair comparison between different strategies. The results are
reported in Tab. 3] FDK initialization slightly outperforms our ACUI by 0.066
dB but its training time is 2.59x longer and its inference speed is 55 fps slower
than ACUI. This is because the back-projection in FDK is time-consuming and
initializes redundant points. The random and spherical initialization strategies
yield lower PSNR and slower speed than cubic initialization. To achieve a bet-
ter trade-off, we adopt the cubic initialization, i.e., ACUI, which enjoys good
performance, the cheapest training cost, and the fastest inference speed.

Parameter Analysis. We conduct parameter analysis of the number of features
Ny and the sampling interval d. The results are shown in Tab. [3c|and Tab.

In Tab. (i) When increasing Ny, the performance gradually improves but
the magnitude of the improvement decreases. In particular, Ny = 32 achieves
the best results of 43.42 dB in PSNR. Ny = 16 achieves on-par results with
Ny = 32, only 0.013 dB lower. (ii) We notice that the training time and in-
ference speed do not change monotonically. This is because the Gaussian point
clouds with various feature dimensions have different representing ability and
computational complexity. The number of final 3D Gaussians after training also
varies substantially. When Ny = 16, the training time reaches a local minimum
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Table 3: Ablation study. PSNR, SSIM, training time, and inference speed are reported.

Method 3DGS |25 + ACUI -+ DRR Method Random Spherical FDK [16] Cubic
PSNR 37.213 38.872 43.404 PSNR 41.329 42.837 43.470 43.404
SSIM 0.9813 0.9871 0.9993 SSIM 0.9942 0.9988 0.9993 0.9993
Train time (s) 1898 1172 538 Train time (s) 601 575 1394 538
Infer speed (fps) 64 72 148 Infer speed (fps) 112 136 93 148
(a) Break-down ablation study (b) Ablation of point position initialization
Number 1 2 4 8 16 32 Interval 1 2 4 8 16 32
PSNR 38.818 40.205 42.130 42.868 43.404 43.417 PSNR 42.853 42.979 43.215 43.404 43.311 43.294
SSIM 0.9840 0.9931 0.9983 0.9991 0.9993 0.9993 SSIM 0.9989 0.9990 0.9992 0.9993 0.9992 0.9992
Train time (s) 511 525 521 553 538 752 Train time (s) 785 593 545 538 534 566
Speed (fps) 153 152 158 127 148 101 Speed (fps) 86 94 114 148 135 97
(c) Analysis of the number of features Ny (d) Analysis of the initialized interval d

and the inference speed is at its local maximum. Hence, we eventually adopt
Ny = 16 to reach a more optimal balance between performance and speed.

In Tab. the best reconstruction performance and the fastest inference
speed are achieved at d = 8. The training time (538 s) at d = 8 is almost the
same as the shortest one (534 s) at d = 16. Thus, we eventually set d to 8.

Convergence Analysis. We conduct two visual analyses to compare the con-
vergence between our X-Gaussian and original 3DGS [25] in Fig. |1} and between
X-Gaussian and the SOTA X-ray NeRF-based method NAF [60] in Fig. [6]
Specifically, we adopt the same ACUI strategy for the original 3DGS to focus
on comparing the Gaussian point cloud model and the rasterization. For fair-
ness, we train 3DGS and our X-Gaussian on the scene of foot with the same
settings and visualize the positions and opacities of Gaussian point clouds at
the 100-th, 1000-th, 5000-th, 10000-th, and 20000-th iterations of the training
process in Fig. [I} We also visualize the CT volume of foot as a reference. As can
be seen that 3DGS with RGB rasterization converges slowly and suffers from
more noisy point clouds. Plus, the final trained model of 3DGS at the 20000-th
iteration contains more redundant Gaussians that are unnecessary to represent
the 3D structure of the foot, which reduces the model’s inference speed. In con-
trast, our X-Gaussian equipped with the proposed DRR shows faster and better
convergence. In particular, as early as the 1000-th iteration, our radiative Gaus-
sian point clouds have essentially formed the basic shape of the foot. Besides,
the final trained X-Gaussian at the 20000-th iteration can better represent the
3D geometry and more accurate structural contents than the original 3DGS.
Additionally, in Fig. [6] we visualize the rendered novel projections with the
same angle ¢ of NAF and our X-Gaussian at 20s, 60s, and 180s of the training
process on the scene of chest. NAF produces blurry images with severe noises on
the background regions within the first three minutes of the training. In contrast,
our X-Gaussian can reconstruct clearer structural details like the ribs and blood
vessels with cleaner background of the chest at the first minute of the training.
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Fig. 6: Convergence analysis of NAF |60] vs. Fig.7: Analysis of covariance. The
our X-Gaussian. We visualize the rendered pro- mean covariance of 3D Gaussians on
jections at 20s, 60s, and 180s of training. Our X- different scenes decreases when the
Gaussian shows faster and better convergence. number of training views increases.

Analysis of Covariance. We study how the shape of the 3D Gaussian point
cloud changes with the number of training views in Fig. [7] As the number of
training views increases, the mean covariance of 3D Gaussians that control the
size of Gaussian point clouds decreases. This indicates that the 3D Gaussian
point clouds gradually change from coarse to fine, thereby being more capable
of representing fine-grained structures, such as a small tumor in the abdomen.

5 Limitation

The main limitation of our method is that its memory cost is non-trivial, about
51.25 MB on average. It is challenging to deploy it on low-RAM mobile devices.

6 Conclusion

In this paper, we propose the first 3DGS-based framework, X-Gaussian, for X-
ray novel view synthesis. Firstly, we design a radiative Gaussian point cloud
model based on X-ray imaging properties. This model excludes the influence
of view direction when fitting radiation intensity. For this model, we develop
a GPU-friendly differentiable radiative rasterization CUDA kernel that renders
projections at a faster speed than RGB rasterization. Secondly, we customize an
initialization strategy, ACUI, that does not need to execute the SfM algorithm.
Instead, ACUI uses the parameters of X-ray scanner to compute the extrinsic and
intrinsic matrices, and then uniformly samples center points for 3D Gaussians
within a cuboid enclosing the scanned object. Experiments demonstrate that
our X-Gaussian significantly outperforms SOTA methods by over 6.5 dB while
enjoying 73x faster inference speed and only requiring 15% of training time.
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