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In this supplementary material, we begin by detailing the implementation as-
pects, including datasets and hyperparameters for dynamic classification, clus-
tering, and training, as outlined in Sec. 1.1 and Sec. 1.2. Following this, we
present additional results in several key areas:

– Section 1.3 (Loss Terms): This section explores various applications of static
and dynamic classification in designing loss functions. To validate the ef-
fectiveness of our proposed upper bound flow in the object cluster, we also
incorporate common strategies such as averaging or maximizing the esti-
mated flows within clusters. Furthermore, an additional ablation study table
is provided to further elucidate the impact of our loss terms.

– Section 1.4 (Different Model Backbones): This section demonstrates that
SeFlow’s effectiveness is not limited to a specific model backbone. We show
that also with the same backbone as FastFlow3D, SeFlow outperforms both
self-supervised and supervised baselines, underscoring the strength of our
self-supervised pipeline.

– Section 2 (Qualitative Results): In addition to the sequence scenes discussed
qualitatively in the main paper, we present two more qualitative results
showcasing SeFlow’s performance on both Argoverse 2 and Waymo datasets,
including some failure cases.

1 Appendix A - Experiment

1.1 Implementation Details

Our Method The resolution of network voxelization is set as 0.2 m, con-
squently, the [512, 512] grid corresponds to a 102.4 m × 102.4 m map. DU-
FOMap [2] is used for the dynamic classification in our method and its res-
olution is consistent with the voxelization setting of 0.2 m. For DUFOMap’s
parameters dp and ds, we keep them as default which is 1 and 0.2 respectively.
HDBSCAN only clusters dynamic points inside Pt,d where the minimum cluster
size is set to 20 and cluster selection ϵ is set to 0.7. Our SeFlow is trained for
50 epochs with a batch size of 80 without any ground truth labels. We employ
Adam optimizer with a 2 × 10−6 learning rate. The code is open-sourced at
https://github.com/KTH-RPL/SeFlow.
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Other Methods In our main comparison on the Argoverse 2 test set (as shown
in Table 1 of our main paper), we directly reference results from the online
leaderboard [1] and Table I in DeFlow [9], with result files available in their
discussion thread5. For the Waymo validation set results (Table 2 in our main
paper), we present the outcomes for FastFlow3D [3], ZeroFlow [7], and NSFP [4]
as reported in Table 2 of ZeroFlow [7], which were trained on the Waymo train
set. FastNSF [5] results were obtained by running their model6 with default
Waymo settings. For DeFlow [9] and our method SeFlow, we conducted our
own training on the Waymo training set, adhering to the same training strategy
outlined earlier. Regarding all ZeroFlow entries in our ablation study, we utilized
the pre-trained weights available in their official repository7.

Setup For inference, to measure the complexity and computational cost of our
model and other methods, all experiments are executed on a desktop powered by
an Intel Core i9-12900KF CPU and equipped with a GeForce RTX 3090 GPU.

Process Time Regarding the processing time on labeling DUFOMap and HDB-
SCAN steps, taking the Argoverse 2 dataset as an example, the average runtimes
of DUFOMap and HDBSCAN are 50ms/frame and 500ms/frame respectively.
It take approximately 16.35 CPU hours for the whole dataset in the setup we
mentioned above. The DUFOMap and HDBSCAN steps are pre-processed be-
fore training to avoid redundant computations. SeFlow’s training time compared
to DeFlow is 30 hours vs 21 hours on 8 A100 GPUs.

1.2 Datasets

In this section, we present the datasets we use. For the convenience of the reader
and to make these presentations self-contained there are some repetitions from
the main paper.

Argoverse 2 [8] It contains two subdataset - Sensor and Lidar. The Sensor
dataset encompasses 700 training and 150 validation scenes. Each scene is ap-
proximately 15 seconds long in 10 Hz, complete with annotations for evaluation.
The LiDAR dataset lacks imagery and any other annotations containing 16,000
training, 2,000 validation, and 2,000 test scenes, respectively. Each scene is ap-
proximately 30 seconds long in 10 Hz. The LiDAR dataset is designed to support
research into self-supervised learning in the lidar domain, as well as point cloud
forecasting. All of the above datasets are collected using two 32-channel LiDARs.
The average number of points in one frame is around 52,871 after ground re-
moval. The 200% data (214k frames in total) in the main paper means 100%

5 https://github.com/KTH-RPL/DeFlow/discussions/2
6 https://github.com/Lilac-Lee/FastNSF
7 https://github.com/kylevedder/zeroflow_weights
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Sensor dataset which contains 107k frames plus another 107k frames from Li-
DAR dataset, selected via the same process as in [7]. [7] uniformly sampled 12
pairs of frames from each scene of the LiDAR dataset first, followed by random
sampling to get another 107k frames, i.e., another 100% of data.

Waymo Open Dataset [6] The dataset contains 798 training and 202 valida-
tion sequences. Each sequence contains 20 seconds of 10Hz point clouds collected
using a custom LiDAR mounted on the roof of a car. The total number of train-
ing frames is 155k. The average number of points in one frame is around 79,327
after ground removal. Since it does not have a public leaderboard or official eval-
uation scripts, in this paper, we follow the same setting and process steps as
ZeroFlow [7] to make fair comparisons. The evaluation follows the same Argov-
erse 2 official evaluation scripts and evaluates flow performance on points that
do not belong to the ground and are within a 100m × 100m range centered on
the origin.

1.3 Additional Ablation Studies in Loss Terms

Dynamic Chamfer and Static Loss We investigate different alternatives
for the design of dynamic Chamfer and static losses. In addition to the standard
Chamfer loss Lcham, both FastFlow3D [3] and DeFlow [9] propose different losses
and weights for static and dynamic points based on ground truth classification
labels. In the comparison, we reformat the dynamic weight loss formulas of these
two methods, making use of the classification results:

[3] : Ld,s =
1

|Pt|
∑
p∈Pt

σ(p)S(p), where σ(p) =

{
0.9 if p ∈ Pt,d

0.1 if p ∈ Pt,s

. (1)

[9] : Ld,s =
1

|Pt,d|
∑

p∈Pt,d

S(p) +
1

|Pt,s|
∑

p∈Pt,s

S(p). (2)

In the above formulas, S(·) = D(·)2, and D(p,Pt+1) denotes the distance between
point p and its nearest neighbor in Pt+1. Since we do not use any labels, the
dynamic points Pt,d and static points Pt,s in Eq. (1) (FastFlow3D strategy) and
Eq. (2) (DeFlow strategy) are obtained from the dynamic classification results.
As a comparison, our dynamic and static losses can be represented as:

Ld,s = Ldcham + Lstatic. (3)

Table 1 shows that under the self-supervised strategy, our static and dynamic
loss design with Ldcham + Lstatic is the best solution according to EPE 3-way.
Looking at the individual EPE components, EPE FD is similar to the three
strategies and the main difference is in the static EPE components (FS and
BS) where our strategy results in significantly lower errors. We attribute this to
targeted loss selection rather than just loss weight balancing.
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Table 1: Ablation study on different static dynamic usage in loss design. Our design
is Lcham + Ldcham + Lstatic, while others are Lcham + Ld,s.

Stategy
EPE

3-way FD FS BS

Eq. (1) [3] 0.094 0.192 0.057 0.034

Eq. (2) [9] 0.099 0.211 0.053 0.033

Eq. (3) Ours 0.078 0.220 0.012 0.002

Cluster Loss To show the superiority of our cluster loss design, we experi-
mented with different designs to determine f̃ci . Table 2 presents a comparison
of different cluster flow loss configurations under the following definitions:

avg : f̃ci =
1

|Pci |
∑

p∈Pci

F̂(p). (4)

max : f̃ci = max
p∈Pci

F̂(p). (5)

Ours : f̃ci = p′κ − pκ, where κ = argmax{D(pk,Pt+1,d)|pk ∈ Pci}. (6)

In the above formulas, F̂(p) represents the estimated flow of point p and p′κ is the
nearest neighbor of pκ in Pt+1,d. We explored the average of the estimated flow
(Eq. (4)), the maximum from the estimated flow (Eq. (5)), and our proposed
method as detailed in Eq. (6).

Table 2: Ablation study on different cluster flow consistency. All variations utilize four
losses, and the only difference is the choice of f̃ci .

f̃ci
EPE

3-way FD FS BS

Eq. (4) avg 0.078 0.221 0.012 0.002

Eq. (5) max 0.092 0.262 0.013 0.001
Eq. (6) Ours 0.064 0.160 0.029 0.004

The results in Tab. 2 demonstrate that our method decreases the EPE of
foreground dynamics the most among the three definitions, which contributes
significantly to the reduction of 3-way EPE. Compared to the huge improvement
in the foreground dynamic (FD) estimation, the resulting fluctuation in the flow
estimation of the static points (FS and BS) is minor.

Different Loss Combinations In this section, as detailed in Tab. 3, we present
additional ablation studies where we deactivate one of the four losses to analyze
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the impact of each loss’s absence. Experiment A2 demonstrates that our model,
even without Lcham, achieves results comparable to using all loss terms (A1) as
suggested in our paper. Our dynamic and static losses can replace the general
chamfer distance loss to a large extent, but the overall scene-level considera-
tion is still beneficial. Our three proposed losses, which are based on dynamic
classification and divided into static, dynamic, and object-level aspects, still ef-
fectively reduce the EPE 3-way when combined with the Chamfer distance as a
foundational constraint.

Table 3: Ablation study in different loss combinations. Results are evaluated on the
Argoverse 2 validation set with 20 training epochs.

Exp. Id Lcham Ldcham Lstatic Ldcls
EPE ↓

3-way FD FS BS

A1 ✓ ✓ ✓ ✓ 0.0643 0.160 0.029 0.004

A2 ✓ ✓ ✓ 0.0651 0.162 0.030 0.003

A3 ✓ ✓ ✓ 0.0717 0.175 0.037 0.003

A4 ✓ ✓ ✓ 0.0890 0.150 0.077 0.040

A5 ✓ ✓ ✓ 0.0779 0.220 0.012 0.002

Comparing experiments A3 and A5 with A1 in Tab. 3, it’s evident that
omitting Ldcham or Ldcls leads to a decline in dynamic flow estimation accuracy
(FD). This highlights the significance of both dynamic and object-level self-
supervised losses in assisting networks to understand object motion patterns.
Notably, Ldcls (A5) has a more substantial impact than Ldcham (A3). A similar
trend is observed for static aspects; comparing A4 with A1 reveals that the
absence of Lstatic results in increased errors in both EPE FS and EPE BS,
underscoring its importance in static error reduction.

Table 4: Ablation study in difference model backbones, where FF and DF mean
different model backbones from supervised methods FastFlow3D [3] and DeFlow [9],
respectively. We bold the best results and underline the second best results.

BackBone
EPE

3-way FD FS BS

FastFlow3D 0.081 0.222 0.020 0.002

ZeroFlow (FF) 0.088 0.231 0.022 0.011

Ours (FF) 0.065 0.164 0.028 0.002

Ours (DF) 0.059 0.147 0.026 0.004
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1.4 Ablation Study in Difference Model Backbones

In this section, we examine the effects of varying the model backbone on per-
formance. We replaced the DeFlow backbone with the FastFlow3D backbone,
aligning our model structure with that of ZeroFlow and FastFlow3D. The re-
sults, presented in Tab. 4, show that even with the same backbone (Ours (FF)),
our method still surpasses both ZeroFlow (ZF) and FastFlow3D (FF). This out-
come underscores that the strength of our approach lies not in a specific model
backbone.
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2 Appendix B - Qualitative Results

In this section, we present additional qualitative results from the Argoverse 2
and Waymo validation datasets, including some failure cases. In each figure,
unless otherwise specified, different colors represent different motion directions,
and more saturated colors indicate larger flow estimations. The qualitative re-
sults in the main paper are derived from the scene ‘b5a7ff7e-d74a-3be6-b95d-
3fc0042215f6’ in the Argoverse 2 validation set. Here, we include two more scenes
for further illustration from the Waymo and Argoverse 2 validation set.

Fig. 1: Qualitative results from Waymo validation set (scene id
‘14081240615915270380_4399_000_4419_000’). The top row displays the ground
truth flow, the middle row presents the SeFlow result, and the bottom row showcases
the result of another self-supervised method ZeroFlow.

In terms of flow estimation accuracy, our SeFlow method demonstrates su-
perior performance compared to ZeroFlow in the Waymo dataset, as depicted
in Fig. 1. The flows estimated by our method closely align with the ground truth
in both direction and magnitude, whereas there are flows from vehicles or parts
of vehicles that are ignored in the ZeroFlow results. In Fig. 2, the ZeroFlow re-
sults exhibit noticeable issues with no flow estimation in small-scale objects like
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pedestrians. In contrast, our SeFlow method maintains consistent and accurate
flow estimation throughout the scene.

This additional qualitative analysis further validates the effectiveness of Se-
Flow in accurately capturing scene dynamics across diverse scenarios.

Fig. 2: Qualitative results from Argoverse 2 validation set (scene id ‘77574006-881f-
3bc8-bbb6-81d79cf02d83’). Different colors represent different motion directions, and
more saturated colors indicate larger flow estimations. The top row displays the ground
truth flow, the middle row presents the SeFlow result, and the bottom row showcases
the result of another self-supervised method ZeroFlow. The bottom right of the third
column is the zoom-in view at the moment.

Failure Cases As illustrated in Fig. 3, our method also has a few deficiencies
that need to be improved. One notable issue is the presence of false positive
flow estimations, particularly when ground points are not completely removed
(Fig. 3.b.i). Additionally, predicting the flow of pedestrians near static structures
poses a challenge (Fig. 3.b.ii). Furthermore, accurately predicting the motion of
distant objects proves difficult when relying solely on two consecutive point cloud
inputs (Fig. 3.b.iii). These limitations highlight specific challenges in scene flow
estimation and underscore the need for further refinement and development of
our approach.
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Fig. 3: Qualitative analysis of failure cases in SeFlow on Argoverse 2 validation set
(scene id ‘22052525-4f85-3fe8-9d7d-000a9fffce36’). (a) displays the ground truth flow
where black boxes are the zoom-in views. (b) presents the SeFlow result where the red
circle means limitations in our estimation.
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