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Abstract. Scene flow estimation predicts the 3D motion at each point
in successive LiDAR scans. This detailed, point-level, information can
help autonomous vehicles to accurately predict and understand dynamic
changes in their surroundings. Current state-of-the-art methods require
annotated data to train scene flow networks and the expense of labeling
inherently limits their scalability. Self-supervised approaches can over-
come the above limitations, yet face two principal challenges that hin-
der optimal performance: point distribution imbalance and disregard for
object-level motion constraints. In this paper, we propose SeFlow, a self-
supervised method that integrates efficient dynamic classification into
a learning-based scene flow pipeline. We demonstrate that classifying
static and dynamic points helps design targeted objective functions for
different motion patterns. We also emphasize the importance of inter-
nal cluster consistency and correct object point association to refine the
scene flow estimation, in particular on object details. Our real-time capa-
ble method achieves state-of-the-art performance on the self-supervised
scene flow task on Argoverse 2 and Waymo datasets. The code is open-
sourced at https://github.com/KTH-RPL/SeFlow.

Keywords: 3D scene flow, self-supervised, autonomous driving, large-
scale point cloud

1 Introduction

Scene flow [30] captures the 3D velocity at every point in a point cloud. These de-
tailed 3D flow estimates can enhance downstream tasks in autonomous driving,
such as detection, segmentation, tracking, and occupancy flow estimation [20]. A
common paradigm for addressing the scene flow problem is supervised learning
by utilizing annotated LiDAR data [11, 38]. However, expensive labeling inher-
ently limits the scalability of supervised learning methods.

Given the difficulty and expense of labeling scene flow ground truth, we
instead focus on self-supervised scene flow approaches. Existing self-supervised
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(a)

(b) Baseline

Length: ~19.21m

Velocity: ~8.15m/s

(c) Ours

Fig. 1: LiDAR scene flow estimation using our SeFlow method on Argoverse 2. The
predicted scene flow for each point is color-coded based on direction. The white indi-
cates static points whose flow is zero. More saturated colors indicate higher velocities.
(a) Camera view for visualization purposes only. (b),(c) are zoomed-in views showing
the baseline from ZeroFlow [29] as well as SeFlow (ours). When predicting the flow of
a large and long vehicle, the baseline predicts a portion of the flow as 0, whereas our
estimates are consistent. In addition, the baseline tends to ignore small-scale objects,
e.g., pedestrians, while our method can better handle such small and slow-moving ob-
jects.

methods can be divided into two categories: knowledge distillation and data
exploration. Knowledge distillation methods [2,25,29] typically rely on a ‘teacher’
method to generate pseudo flow labels. These pseudo labels are then used to
supervise student models. Data exploration methods [3, 14, 15, 19, 31], on the
other hand, directly utilize the predicted flow to project the input points and
find nearest neighbors in the next frame to establish constraints for training.

A key challenge for self-supervised methods is that the vast majority of the
points are static (about 86% of points are background [7,34]). This data imbal-
ance often leads to overly conservative scene flow predictions. One common way
to counter this is to use large amounts of training data as in ZeroFlow [29]. Ze-
roFlow experimentally shows that more data helps to improve the dynamic flow
accuracy. In this paper, we investigate ways to improve data efficiency and take
inspiration from supervised methods [11, 38]. We address the data imbalance
by first classifying points as dynamic or static based on traditional ray cast-
ing when integrating frames [9]. This allows us to constrain the corresponding
motion patterns by proposing novel loss functions.

Another shortcoming of existing self-supervised scene flow methods is that
they disregard object-level motion constraints. The flow should be consistent,
i.e., all points in a rigid object should have similar flows. A clear case of incon-
sistent flow can be seen on the big truck in Fig. 1, where ZeroFlow [29] predicts
an absence of flow in certain sections. This inconsistency is caused by incorrect
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object point associations which also can be observed in small-scale objects, as
shown in the case of the pedestrian. To account for object-level motion con-
straints, we propose to cluster the dynamic points into object candidates and
encourage consistent flow and correct associations for the points in each cluster.
This reduces the fragmentation of the flow estimate for points inside the same
object.

Overall, our method improves the estimated flow accuracy and addresses is-
sues in previous methods as shown in Fig. 1(c). We propose an efficient and
effective self-supervised scene flow method that integrates traditional classifi-
cation and learning-based strategies. Our approach is open-source at https:
//github.com/KTH-RPL/SeFlow. Our primary contributions include:

– We propose SeFlow, a novel method that integrates a dynamic classification
method in formulating efficient self-supervision objectives.

– We further construct loss functions to learn dynamic flow estimation in im-
balanced data and ensure consistent object-level flow, mitigating the effects
of correspondence errors.

– We show that SeFlow achieves state-of-the-art results on the self-supervised
scene flow task in Argoverse 2 and Waymo datasets and even outperforms
all but one supervised method on the leaderboard.

2 Related Work

In this section, we explore existing works in scene flow estimation. We also
discuss current traditional frameworks capable of classifying dynamic points,
highlighting their relevance and application in the context of scene flow tasks.

2.1 Scene Flow Estimation

Scene flow estimation in autonomous driving is slightly different from flow es-
timation in object registration. Methods in object registration [8, 13, 16, 24,
32, 33] focus on relatively small-scale point cloud data like synthetic datasets
Shapenet [5] and FlyingThing3D [17]. These methods scale poorly with the
number of points. When applied to point cloud data for autonomous driving,
they require downsampling to 8,192 points or less [11, 18]. In recent datasets
like Argoverse 2 [34] and Waymo [11], the number of points in one full frame is
around 80k-177k. Methods that can handle such large-scale point cloud data as
input usually use a voxel-based pipeline [11, 38]. However, expensive labeling of
ground truth flow limits the scalability of these supervised methods, especially in
autonomous driving where we have continuously increasing amounts of potential
training data.

To train models without labeled data, recent methods propose self-supervised
losses. Many commonly used losses, such as Chamfer distance, are based on the
nearest neighbor distance between two point cloud inputs [3,12,14,15,19,27,36].
However, a major limitation of nearest neighbor based losses is that only part
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of the points on dynamic objects provides good supervision due to incorrect
associations. This is especially apparent when big trucks are moving fast in au-
tonomous driving scenarios (see Fig. 1 and Fig. 3). Mittal et al. [19] define a
self-supervised loss by tracking a patch forward and backward in time to form a
cycle while penalizing the errors through cycle consistency and feature similarity.
Baur et al. [3] propose three loss functions with k-NN loss, rigid cycle consistency
inspired by Mittal, and artificial labels based on the distance between points in
the original and estimated point clouds. In the following we describe NSFP [14],
FastNSF [15], and ZeroFlow [29] in more detail. These are the publically avail-
able methods that perform best on the Argoverse 2 self-supervised scene flow
challenge and are therefore used as our baselines.

NSFP [14] is an optimization-based method. For each pair of consecutive in-
put point clouds, NSFP iteratively learns new weights for an MLP network
to predict the flow using the Chamfer distance loss. However, thousands of
iterations are needed and their runtimes extend from 26 to 35 seconds per
frame, which fails to meet the real-time requirements of autonomous driving.
FastNSF [15] improves the efficiency by voxelizing the point cloud first and then
converting it to a distance transform map for faster neighbor calculation. This
reduces the runtime to 0.5 seconds, at the expense of increased error.

ZeroFlow [29] adopts a semi-supervised strategy. Pseudo-flow labels are cre-
ated offline using NSFP [14], and a FastFlow3D [11] model is used as a student for
knowledge distillation. This setup allows the student model to perform real-time
inference. In this case, the teacher network needs significant resources (around
3.6 GPU months [29]) to label the entire training data. The final accuracy is
also influenced by the performance of the teacher.

To increase data efficiency and address the limitations of the above methods,
we propose to integrate efficient ray-casting-based dynamic awareness mapping
into our pipeline. The core idea is to classify which points move and cluster these
points into objects for which we can estimate group-level motion statistics and
define better self-supervised loss functions.

2.2 Dynamic Awareness in Mapping

In the field of Simultaneous Localization and Mapping (SLAM), there is a grow-
ing interest in dynamic awareness [9,22,23,35,37]. This interest stems from the
fact that points associated with moving objects in a scene can significantly im-
pact localization and planning performance. Existing dynamic awareness meth-
ods in mapping [9, 23, 37] often utilize ray casting techniques to binary classify
points as either dynamic or static.

The scene flow task, on the other hand, aims to predict the specific 3D flow
at each point, a goal that extends beyond the mere categorization of dynamic
and static points. In mapping, a point is considered dynamic if it moves once
within a scene (even if it becomes static later), whereas, in scene flow tasks,
a point is deemed dynamic if it moves faster than a certain velocity threshold
in the current frame. Despite these differences, insights from the mapping field
are invaluable. By integrating information over time, these frameworks develop a
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more comprehensive understanding of the entire scene. Such scene level dynamic
awareness can inform and enhance our exploration of point cloud data in scene
flow tasks.

3 Problem Statement

This work addresses the problem of real-time scene flow estimation in autonomous
driving. Given two consecutive input point clouds, Pt and Pt+1, along with the
ego movement Tt,t+1 ∈ SE(3), the goal is to predict the motion vector as flow
F̂t,t+1(p) = (x, y, z)T for each point p ∈ Pt.

The objective is to minimize the End Point Error (EPE) which represents the
difference between the predicted flow and the ground truth flow, as expressed
by the following equation:

min
1

|Pt|
∑
p∈Pt

∥∥∥F̂(p)−Fgt(p)
∥∥∥
2︸ ︷︷ ︸

EPE

, (1)

where |Pt| denotes the cardinality of (i.e., the number of points in) Pt. For
consistency, in the subsequent presentation, capital symbols correspond to sets,
while the lowercase symbols represent variables of specific points.

4 Method

4.1 Input and Output

The first step to process the input data, as is commonly done, is to remove
ground points from Pt and Pt+1. This is typically done using HD maps [26, 34]
or ground segmentation techniques [10].

The estimated flow F̂ from Pt to Pt+1 can be decomposed into two parts as
follows:

F̂ = Fego +∆F̂ , (2)

where Fego is the flow resulting from the ego vehicle’s motion which can be
directly obtained from Tt,t+1, and ∆F̂ is our network output.

4.2 Model Backbone

To enable real-time computation and estimation of scene flow across a large point
set, voxelization is considered a practical encoding strategy in the model back-
bone. However, the reduction in resolution often leads to a poorer distinction
of point features within the same voxel. With this in mind, we use DeFlow [38]
as the architectural basis in this paper. DeFlow integrates GRU [6] with it-
erative refinement in the decoder design. More specifically, the GRU module
maintains voxel features as its hidden state and selectively forgets or updates
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Training Stage Sec. 4.4 Self-supervised Loss (including Sec. 4.3 Dynamic Classification)

The nearest 
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The nearest 
dynamic neighbor

Distance Error

Current Flow Estimates
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Sec. 4.2 Backbone

DecoderEncoderEncoderVoxelization

Speed

Direction

Fig. 2: SeFlow Architecture. Top: With two consecutive point clouds as inputs, our
model predicts the estimated flows of all points. Bottom: Conceptual visualization of
the Chamfer loss and the three proposed training losses. With the original input Pt

(2 static points for the building, and 2 dynamic points for the car) plus the estimated
flow F̂t, we can calculate the error between estimated P̂t+1 and the next frame point
cloud Pt+1 (Lcham). The second part is Ldcham that only calculates the distance error
between dynamic points. The third loss says that the estimated flows of static points
should be zero. Finally, we assume that the flow at points from the same cluster should
be consistent, and mitigate underestimation by using the proposed upper bound on
the flow.

the information of the hidden state during each iteration according to the input
point features. After multiple iterations, the optimized voxel features are con-
catenated with the original point features to obtain the final individual point
features. Benefiting from this design, we improve the inference efficiency com-
pared to the commonly used backbone FastFlow3D [11] without sacrificing the
accuracy of scene flow estimation in coarse resolution settings.

4.3 Dynamic Classification of Points

To facilitate dynamic classification of points during the training stage, we in-
corporate the DUFOMap framework, a mapping-based dynamic awareness ap-
proach [9]. The key insight of this is that points observed inside a region that
at one time has been observed as empty must be dynamic. Built on this insight,
DUFOMap utilizes ray-casting to classify dynamic points at the sensor rate on
the CPU. The result is two disjoint sets, Pt,d and Pt,s, where Pt,d is the set
of dynamic points that have moved once inside a scene (even if they later be-
come static) and Pt,s is the set of static points that did not move at any time.
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Note that the dynamic-static classification is separated from the inference and
training, offering our method good flexibility.

4.4 Self-supervised Loss

As discussed, self-supervised learning with only Chamfer distance loss is vulner-
able to problems with data imbalance and incorrect associations. We therefore
construct three additional loss functions, illustrated in Fig. 2 and described in
turn below, to mitigate problems with data imbalance as well as encourage con-
sistent object-level flow.

Chamfer Distance The Chamfer distance, a common self-supervised loss in
existing work [3, 14,15,19], has the following definition:

Lcham =
1

|P̂t+1|

∑
p∈P̂t+1

S(p,Pt+1) +
1

|Pt+1|
∑

p∈Pt+1

S(p, P̂t+1) (3)

S(p,Po) = min
pi∈Po

||p− pi||22, (4)

where, P̂t+1 = Pt + F̂t, S(·) = D(·)2, D(p,Po) denotes the distance between
point p and its nearest neighbor in Po.

The Chamfer distance is proposed to calculate a similarity between two point
clouds. However, when using it directly as a supervised signal for scene flow in
autonomous driving, there are two issues we note. First, the number of static
points is often much larger than that of dynamic points and averaging S(·) over
all points leads the training to favor static points, i.e., zero flow estimation.
Second, due to erroneous correspondence assumptions, only part of the flows
within a dynamic object can be estimated correctly as shown in Fig. 3, where
the estimated flows of points in the overlap area are zero.

To solve these issues, we contribute the following constraints using the dy-
namic classification information prior to supervising the network.

Dynamic Chamfer Distance The imbalance in the number of dynamic and
static points presents a significant challenge in scene flow estimation, as high-
lighted in previous works [11,29,38]. Supervised methods, provided with ground
truth labels for point velocity or classification, can weight their loss functions to
account for this imbalance. For self-supervised learning, we introduce a dynamic
Chamfer distance. In this context, ‘dynamic’ points are identified based on the
output from Sec. 4.3. Specifically, this loss, Ldcham, is only computed on points
classified as dynamic in two consecutive point clouds. By exclusively considering
dynamic points, this loss captures the nuances of motion in point cloud data.
This is defined as:

Ldcham =
1

|P̂t+1,d|

∑
p∈P̂t+1,d

S(p,Pt+1,d) +
1

|Pt+1,d|
∑

p∈Pt+1,d

S(p, P̂t+1,d), (5)

where P̂t+1,d = Pt,d + F̂t,d.
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(b) Point flow magnitude

Flow
low high

Overlap

(a) Chamfer distance

Fig. 3: Simple visualization of the shortcomings of using Chamfer distance as a su-
pervisory signal for flow value estimation. The denser color on points in (b) represents
higher flow values and white means the point’s flow is zero. (a) illustrates how to cal-
culate loss based on Chamfer distance, and (b) shows that the flow results, based on
the nearest neighbor principle, can lead to zero flow estimation for the middle of the
object.

Static Flow The standard Chamfer distance rests on a very strong assump-
tion: nearest neighbor matching can find perfect one-to-one correspondences of
all points between two frames. However, due to varying observations, the num-
ber of points in the two frames differs, leading to inconsistencies and potential
mismatches. To deal with the possible mismatches in the static areas, we add a
constraint to encourage the model to estimate zero flow for static points. This
loss is defined as follows:

Lstatic =
1

|Pt,s|
∑

p∈Pt,s

||∆F̂(p)||22, (6)

where ∆F̂(p) represents the network output flow of point p.

Dynamic Cluster Flow For dynamic fields, the inconsistencies and correspon-
dence errors are even more complicated. For instance, we observe that nearest
neighbor matching often leads to erroneous results, e.g., on large objects un-
dergoing translation, which is very common for moving vehicles in urban street
environments as shown in Fig. 1. More specifically, Figure 3 illustrates the is-
sue on a simplified car example. In this case, the flow is parallel to the object’s
surface, which means that nearest neighbor matching does not provide good
supervision in the interior of the surface (D ≈ 0 for the points in the overlap
area). This mismatch results in an incorrect local optimum that remains unre-
solved during the training process as it minimizes the losses based on Chamfer
Distance.

Therefore, we suggest that the motion of all parts within an object (a cluster)
should be approximately homogeneous over a short time interval. We use the
HDBSCAN [4,21] clustering algorithm to identify different moving objects. This
clustering is only applied to dynamic points, thus reducing the computational
overhead.

Ct,d = HDBSCAN(Pt,d). (7)
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Directly constraining the variance of the flow distribution inside a cluster
would be a straightforward idea, but does not guarantee the correctness of the
obtained mean value after convergence. As we know that nearest-neighbour point
correspondence can considerably underestimate flow on geometrically featureless
object surfaces, we here instead propose to use an upper bound on the object
motion as the supervisory signal. We derive this upper bound, per object cluster,
by taking the maximum inter-frame distance of all point correspondences within
the cluster. Specifically, we exploit information from the original input point
cloud data, i.e., Pt and Pt+1. After the dynamic classification and clustering
process, we find the index of the point pk in cluster ci ∈ Ct,d with the largest
distance to its nearest neighbor point in Pt+1,d, i.e.,

κi = argmax
k

{D(pk,Pt+1,d)|pk ∈ Pci}. (8)

We calculate the upper bound, f̃ci on the flow for cluster ci as

f̃ci = p′κi
− pκi

, (9)

where p′κi
is the nearest neighbor of point pκi in Pt+1,d. We use this to drive the

estimated flows of cluster ci towards f̃ci as follows:

Lci =
∑

pj∈Pci

||f̂pj
− f̃ci ||22, (10)

Ldcls =
1

|Pt,d|
∑

ci∈Ct,d

Lci . (11)

In conclusion, the final SeFlow loss incorporates all four losses introduced
above,

Ltotal = Lcham + Lstatic + Ldcham + Ldcls. (12)

The effect of each loss will be evaluated in the ablation study in Sec. 5.3.

5 Experiment

In this section, we first outline evaluation details and then present quantitative
comparisons with state-of-the-art methods on two benchmark datasets. A series
of ablation studies are presented to better evaluate the individual components of
our approach. Finally, we conclude with qualitative results on Argoverse 2 and
discuss limitations of the approach.

5.1 Dataset and Metric

We briefly introduce the dataset and metrics for evaluation in the following
section. More implementation details, such as hyperparameters for training and
dataset descriptions, can be found in the supplementary material.
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Table 1: Comparisons on Argoverse 2 test set from the online leaderboard [1]. Up-
per groups are supervised methods, lower groups are self-supervised methods. Our
method achieves state-of-art performance in the self-supervised scene flow task. † means
methods can run in real-time (10 Hz) onboard.

Method
Run Time

per frame [ms]

EPE ↓

3-way FD FS BS

FastFlow3D† [11] 34 ± 5 0.0782 0.2072 0.0253 0.0020

DeFlow† [38] 48 ± 4 0.0534 0.1340 0.0232 0.0029

FastNSF [15] 507 ± 312 0.1657 0.3540 0.0406 0.1025

NSFP [14] 32,060 ± 10,112 0.0685 0.1503 0.0302 0.0248

ZeroFlow† [29] 34 ± 5 0.0814 0.2109 0.0254 0.0080

SeFlow (Ours)† 48 ± 4 0.0628 0.1525 0.0321 0.0038

Dataset We evaluate our approach on two large-scale autonomous driving
datasets: Argoverse 2 [34] and Waymo [26]. Ground removal is performed using
HD maps for both datasets as described in [34]. Waymo datasets contain 798
training and 202 validation scenes respectively. We focus our description here on
Argoverse 2, which provides official and public scene flow challenges [1,28], with
the Sensor and LiDAR datasets. The Sensor dataset encompasses 700 training
and 150 validation scenes. Each scene is approximately 15 seconds long in 10 Hz,
with complete annotations for evaluation. The evaluation for another 150 test
scenes can be accessed indirectly by submitting a solution to the leaderboard.
The LiDAR dataset contains 20,000 scenes without any annotation and is only
used as extra data in Sec. 5.3.

Metric The benchmark follows existing works [1,7,29,38] and uses the three-way
End Point Error. End Point Error (EPE), as defined in Eq. (1), measures the L2
norm of the discrepancy between the predicted and actual flow vectors, expressed
in meters. The EPE three-way (3-way) is defined as the unweighted average EPE
across three disjoint sets of points: Foreground Dynamic (FD), Foreground Static
(FS), and Background Static (BS). The definition of ‘dynamic’ is as follows: If the
flow at a point exceeds the threshold (the public leaderboard setting is 0.05m),
the point is defined as dynamic. Given the 10 Hz sensor frequency, this threshold
corresponds to a speed of 0.5 m/s. All evaluations are limited to points that are
within a 100m × 100m box centered on the ego vehicle.

5.2 Quantitative Results

We evaluate the performance of our method SeFlow and compare it with the
currently best-performing methods on the Argoverse 2 test set and Waymo vali-
dation set. In Tab. 1 and Tab. 2, the upper group, FastFlow3D and DeFlow, are
supervised methods trained with ground truth flow. Compared to the supervised
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Table 2: Comparisons on Waymo Open dataset validation set. Upper groups are su-
pervised methods, lower groups are self-supervised methods. Our method achieves
state-of-art performance in the self-supervised scene flow task. † means methods can
run in real-time (10 Hz) onboard.

Method
Run Time

per frame [ms]

EPE ↓

3-way FD FS BS

FastFlow3D† [11] 27 ± 6 0.0782 0.1954 0.0246 0.0152

DeFlow† [38] 42 ± 4 0.0446 0.0980 0.0259 0.0098

FastNSF [14] 593 ± 308 0.1579 0.3012 0.0146 0.0403

NSFP [15] 76,163 ± 32,256 0.1005 0.1712 0.1081 0.0221

ZeroFlow† [29] 27 ± 6 0.0921 0.2162 0.0153 0.0241

SeFlow (Ours)† 42 ± 4 0.0598 0.1506 0.0181 0.0106

methods, we note that SeFlow outperforms FastFlow3D and approaches the level
of DeFlow in terms of EPE 3-way. This comparative analysis demonstrates the
great potential of self-supervised learning in scene flow estimation and validates
the effectiveness of our approach.

In the self-supervised category, our SeFlow method achieves state-of-the-art
performance on both datasets. While FastNSF and NSFP are optimization-based
methods that do not rely on pre-trained weights for subsequent estimations,
their inference times are not conducive to real-time requirements. NSFP, with
the second best result in Tab. 1, takes approximately 30 seconds to predict a
single frame, which is impractical for real-time autonomous driving applications.
FastNSF, on the other hand, enhances efficiency through voxelization for quicker
Chamfer distance calculation. Although significantly faster than NSFP, the per-
formance of FastNSFP is the worst among all methods evaluated.

ZeroFlow is capable of estimating scene flow in real-time, with an accuracy
similar to NSFP (slightly better on Waymo and slightly worse on Argoverse 2).
SeFlow stands out not only for achieving the best result, but also for drastically
reducing the run time to 50 milliseconds, which is more than two orders of mag-
nitude faster than NSFP while providing more accurate flow estimates. SeFlow’s
state-of-the-art performance demonstrated in Tab. 1 and Tab. 2 underscores the
effectiveness of our novel self-supervised method in scene flow estimation.

5.3 Ablation study

In this section, we delve into two key aspects of our SeFlow pipeline. Firstly, we
examine the impact of different loss terms on the accuracy of our flow prediction
results. This analysis aims to demonstrate the necessity and effectiveness of the
loss components we propose. Secondly, we explore how the size of the training
dataset, especially in the case of limited training data, affects the outcomes of
our self-supervised training process.
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Table 3: Ablation study of loss terms. Results are evaluated on the Argoverse 2
validation set with 20 training epochs.

Exp. Id Lcham Ldcham Lstatic Ldcls
EPE ↓

3-way FD FS BS

1 ✓ 0.0962 0.203 0.052 0.033

2 ✓ ✓ 0.0916 0.181 0.059 0.035

3 ✓ ✓ ✓ 0.0779 0.220 0.012 0.002
4 ✓ ✓ ✓ ✓ 0.0643 0.160 0.029 0.004

Loss Terms The advantages of each loss design are evident in Tab. 3 evaluated
on the Argoverse 2 validation set with 20 training epochs. Instead of relying solely
on the chamfer loss Lcham, we investigate how incorporating the additional three
losses (Lstatic, Ldcham, Ldcls) can boost the performance.

After adding the dynamic Chamfer loss Ldcham, experiment 2 shows a de-
crease in flow estimation error of about 0.22 (10%) for foreground dynamics
(FD), while the static errors (FS, BS) remain essentially the same. Experiment
3 then incorporates Lstatic constraint, which significantly reduces the foreground
and background static flow estimation errors, 80% for FS and 94% for BS. How-
ever, adding Lstatic also increases the foreground dynamic error. We attribute
this to the difficulty of estimating the flow of moving, geometrically featureless,
objects as mentioned previously, which would be reinforced by Lstatic. Even so,
considering the two static components in the EPE 3-way metric, the EPE 3-way
would still benefit considerably from this loss (15% error reduction). Finally, in
experiment 4, we incorporate the Ldcls. This results in a notable decrease in
overall EPE 3-way by 33% compared to solely using the chamfer loss (experi-
ment 1). The above experiments illustrate that our method is not a simple stack
of losses, but a complementary holistic design.

Training Dataset Size In the context of robotics and autonomous driving,
there are situations where the number of accessible frames is limited. This section
evaluates the performance of SeFlow given different amounts of training data.

In this experiment, we denote the entire Argoverse 2 Sensor training set as
100%. Extra unlabeled data can be retrieved from the LiDAR dataset for self-
supervised methods. To assess the impact of dataset size, we conduct the same
50 epochs of training for methods using 10%, 20%, 50%, and 100% of the total
data in Tab. 4 and Fig. 4 and evaluate the resulting models.

From Tab. 4, we can observe that with only 20% or 50% training data,
our SeFlow can already outperform ZeroFlow which uses 100% or 200% data.
Figure 4 illustrates even more intuitively that our SeFlow can easily outperform
both existing supervised (FastFlow3D) and unsupervised (ZeroFlow) approaches
with the same amount of data. We attribute the demonstrated data efficiency
of our method to the well-designed loss functions, which integrate a dynamic
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awareness mapping method into our framework and enable better scene-level
comprehension.

Dataset
EPE ↓

3-way FD FS BS

10% 0.094 0.234 0.040 0.006
20% 0.078 0.197 0.032 0.004
50% 0.066 0.167 0.028 0.004
100% 0.059 0.147 0.026 0.004

ZF 100% 0.088 0.231 0.022 0.011
ZF 200% 0.076 0.198 0.018 0.011

Table 4: Ablation study of dataset size
compared with Zeroflow (ZF), another self-
supervised learning method. Results are
evaluated on the Argoverse 2 validation set
with 50 training epochs. The total dataset
(100%) is 107k frames. 200% data means all
of the Sensor dataset plus an equal amount
of the LiDAR dataset (214k frames).
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Fig. 4: The relationship between flow
estimation error and training dataset
size, scaled in log10. Methods with ⋆ are
supervised by ground truth labels. Se-
Flow uses less data but gets compara-
ble results compared to FastFlow3D and
ZeroFlow.

5.4 Qualitative Results

Figure 5 presents a qualitative flow estimation result on a sequence of scenes
in the Argoverse 2 validation set. The first three columns showcase the same
scene at different timestamps, and the last column shows a zoomed-in view of
the scene.

In the first column featuring a vehicle partially occluded by a traffic pole, Se-
Flow demonstrates superior flow estimation capabilities compared to ZeroFlow.
Sometimes, SeFlow can even detect flow overlooked by the ground truth annota-
tions. Argoverse 2 derives ground truth flow from manual instance level labels,
and as a result, the flow of points outside the bounding box may be ignored.
This issue is particularly pronounced in smaller objects, and an example of this
can be seen in the fourth column where we zoom in on a case. In this example,
a pedestrian is pushing a shopping cart across the road. By comparing the first
and the third column, we can observe that both objects are moving. However,
the ground truth labels zero flow (white) for the shopping cart. SeFlow, on the
other hand, successfully predicts consistent flow even at this small scale. In com-
parison, the baseline method ZeroFlow suffers at flow prediction of small objects
and regards both the pedestrian and the shopping cart as static (white).

Although our method shows superior scene flow estimation compared to other
baseline methods, it also has some limitations. Based on the zoom-in view in the
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Fig. 5: Qualitative results from Argoverse 2 validation set. The top row displays the
ground truth flow, the middle row presents the SeFlow result, and the bottom row
showcases another self-supervised method ZeroFlow [29] result. Different color indicates
different directions and more saturated color means larger flow estimation. Ego motion
is compensated for a clearer view.

fourth column in Fig. 5, we can find some purple flow labels at the top right
corner in the first row (Ground Truth). Both SeFlow (Ours) and ZeroFlow fail
to predict any flow for these points. One possible reason is that the point cloud
of distant objects is sparse and easily ignored by both the voxelization process
and clustering algorithms. This makes it difficult to estimate the flow of distant
objects using only two consecutive frames. Based on this, multi-modality or
time-consistent networks would be a further direction for future research.

6 Conclusions

In this paper, we proposed SeFlow, an efficient and effective self-supervised train-
ing method for scene flow estimation in autonomous driving with large-scale
point clouds as input. Our primary contributions include a learning method
that integrates static and dynamic awareness to construct self-supervision ob-
jectives. We further identify problems with the correspondence assumptions of
Chamfer-based loss functions commonly used for self-supervised learning, and
mitigate these with a constraint based on the upper bound of object motion.
Our experimental results underscore the efficacy of our approach.

Future research may concentrate on integrating multi-modality (e.g., cameras
and radar) within the SeFlow framework for higher flow estimation accuracy or
embedding temporal coherence concepts within our pipeline. Additionally, the
optimization of multi-loss learning weights warrants further exploration.



SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving 15

Acknowledgement

Thanks to RPL member: Li Ling helps review this manuscript. Thanks to Kyle
Vedder (the author of ZeroFlow), who kindly opened his code including pre-
trained weights, and discussed their result with us which helped this work a lot.
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation and Prosense (2020-02963) funded by Vinnova. The computations were
enabled by the supercomputing resource Berzelius provided by National Super-
computer Centre at Linköping University and the Knut and Alice Wallenberg
Foundation, Sweden.

References

1. 2, A.: Argoverse 2 scene flow online leaderboard. https://eval.ai/web/
challenges/challenge-page/2010/leaderboard/4759 (2024 Mar 4th)

2. Aleotti, F., Poggi, M., Tosi, F., Mattoccia, S.: Learning end-to-end scene flow
by distilling single tasks knowledge. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 34, pp. 10435–10442 (2020)

3. Baur, S.A., Emmerichs, D.J., Moosmann, F., Pinggera, P., Ommer, B., Geiger, A.:
Slim: Self-supervised lidar scene flow and motion segmentation. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 13126–13136
(2021)

4. Campello, R.J., Moulavi, D., Sander, J.: Density-based clustering based on hier-
archical density estimates. In: Pacific-Asia conference on knowledge discovery and
data mining. pp. 160–172. Springer (2013)

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

6. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

7. Chodosh, N., Ramanan, D., Lucey, S.: Re-evaluating lidar scene flow for au-
tonomous driving. arXiv preprint arXiv:2304.02150 (2023)

8. Deng, D., Zakhor, A.: Rsf: Optimizing rigid scene flow from 3d point clouds without
labels. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. pp. 1277–1286 (2023)

9. Duberg, D., Zhang, Q., Jia, M., Jensfelt, P.: DUFOMap: Efficient dynamic aware-
ness mapping. IEEE Robotics and Automation Letters 9(6), 5038–5045 (2024).
https://doi.org/10.1109/LRA.2024.3387658

10. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.J.: Fast segmentation of 3d
point clouds for ground vehicles. In: Intelligent Vehicles Symposium (IV), 2010
IEEE. pp. 560–565. IEEE (2010)

11. Jund, P., Sweeney, C., Abdo, N., Chen, Z., Shlens, J.: Scalable scene flow from point
clouds in the real world. IEEE Robotics and Automation Letters 7(2), 1589–1596
(2021)

12. Kittenplon, Y., Eldar, Y.C., Raviv, D.: Flowstep3d: Model unrolling for self-
supervised scene flow estimation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4114–4123 (2021)

https://eval.ai/web/challenges/challenge-page/2010/leaderboard/4759
https://eval.ai/web/challenges/challenge-page/2010/leaderboard/4759
https://doi.org/10.1109/LRA.2024.3387658
https://doi.org/10.1109/LRA.2024.3387658


16 Q Zhang et al.

13. Lang, I., Aiger, D., Cole, F., Avidan, S., Rubinstein, M.: Scoop: Self-supervised cor-
respondence and optimization-based scene flow. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5281–5290 (2023)

14. Li, X., Kaesemodel Pontes, J., Lucey, S.: Neural scene flow prior. Advances in
Neural Information Processing Systems 34, 7838–7851 (2021)

15. Li, X., Zheng, J., Ferroni, F., Pontes, J.K., Lucey, S.: Fast neural scene flow. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
9878–9890 (2023)

16. Liu, J., Wang, G., Ye, W., Jiang, C., Han, J., Liu, Z., Zhang, G., Du, D., Wang, H.:
Difflow3d: Toward robust uncertainty-aware scene flow estimation with diffusion
model. arXiv preprint arXiv:2311.17456 (2023)

17. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4040–4048 (2016)

18. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 3061–3070
(2015)

19. Mittal, H., Okorn, B., Held, D.: Just go with the flow: Self-supervised scene flow
estimation. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11177–11185 (2020)

20. Najibi, M., Ji, J., Zhou, Y., Qi, C.R., Yan, X., Ettinger, S., Anguelov, D.: Mo-
tion inspired unsupervised perception and prediction in autonomous driving. In:
European Conference on Computer Vision. pp. 424–443. Springer (2022)

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

22. Pfreundschuh, P., Hendrikx, H.F., Reijgwart, V., Dubé, R., Siegwart, R., Cramar-
iuc, A.: Dynamic object aware lidar slam based on automatic generation of train-
ing data. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). pp. 11641–11647. IEEE (2021)

23. Schmid, L., Andersson, O., Sulser, A., Pfreundschuh, P., Siegwart, R.: Dynablox:
Real-time detection of diverse dynamic objects in complex environments. IEEE
Robotics and Automation Letters (RA-L) 8(10), 6259 – 6266 (2023). https://
doi.org/10.1109/LRA.2023.3305239

24. Shen, Y., Hui, L., Xie, J., Yang, J.: Self-supervised 3d scene flow estimation guided
by superpoints. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5271–5280 (2023)

25. Song, J., Lee, S.J.: Knowledge distillation of multi-scale dense prediction trans-
former for self-supervised depth estimation. Scientific Reports (18939) (2023)

26. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous
driving: Waymo open dataset. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 2446–2454 (2020)

27. Tishchenko, I., Lombardi, S., Oswald, M.R., Pollefeys, M.: Self-supervised learning
of non-rigid residual flow and ego-motion. In: 2020 international conference on 3D
vision (3DV). pp. 150–159. IEEE (2020)

28. Vedder, K., Khatri, I., Peri, N., Chodosh, N., Liu, Y., Hays, J.: Av2 2024 scene flow
challenge announcement. https://www.argoverse.org/sceneflow.html (2024
Feb 25th)

https://doi.org/10.1109/LRA.2023.3305239
https://doi.org/10.1109/LRA.2023.3305239
https://doi.org/10.1109/LRA.2023.3305239
https://doi.org/10.1109/LRA.2023.3305239
https://www.argoverse.org/sceneflow.html


SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving 17

29. Vedder, K., Peri, N., Chodosh, N., Khatri, I., Eaton, E., Jayaraman, D., Ramanan,
Y.L.D., Hays, J.: ZeroFlow: Fast Zero Label Scene Flow via Distillation. Interna-
tional Conference on Learning Representations (ICLR) (2024)

30. Vedula, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow.
IEEE transactions on pattern analysis and machine intelligence 27(3), 475–480
(2005)

31. Vidanapathirana, K., Chng, S.F., Li, X., Lucey, S.: Multi-body neural scene flow.
In: 2024 International Conference on 3D Vision (3DV). pp. 126–136. IEEE (2024)

32. Wang, Z., Wei, Y., Rao, Y., Zhou, J., Lu, J.: 3d point-voxel correlation fields
for scene flow estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2023)

33. Wei, Y., Wang, Z., Rao, Y., Lu, J., Zhou, J.: PV-RAFT: Point-Voxel Correlation
Fields for Scene Flow Estimation of Point Clouds. In: CVPR (2021)

34. Wilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J., et al.: Argoverse 2: Next
generation datasets for self-driving perception and forecasting. In: Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks
(NeurIPS Datasets and Benchmarks 2021) (2021)

35. Wu, H., Li, Y., Xu, W., Kong, F., Zhang, F.: Moving event detection from lidar
point streams. Nature Communications 15(1), 345 (2024)

36. Wu, W., Wang, Z.Y., Li, Z., Liu, W., Fuxin, L.: Pointpwc-net: Cost volume on
point clouds for self-supervised scene flow estimation. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part V 16. pp. 88–107. Springer (2020)

37. Zhang, Q., Duberg, D., Geng, R., Jia, M., Wang, L., Jensfelt, P.: A dynamic points
removal benchmark in point cloud maps. In: IEEE 26th International Conference
on Intelligent Transportation Systems (ITSC). pp. 608–614 (2023)

38. Zhang, Q., Yang, Y., Fang, H., Geng, R., Jensfelt, P.: Deflow: Decoder of scene
flow network in autonomous driving. arXiv preprint arXiv:2401.16122 (2024)


	SeFlow: A Self-Supervised Scene Flow  Method in Autonomous Driving

