
ZeST : Zero-Shot Material Transfer
from a Single Image

Ta-Ying Cheng1,2, Prafull Sharma3, Andrew Markham1,
Niki Trigoni1, and Varun Jampani2

1University of Oxford 2Stability AI 3MIT CSAIL

(a) Zero-shot Material Transfer

In
pu
tI
m
ag
e

Material Exemplar

(c) Lighting-aware Material Transfer

(b) Multi-Object Material Transfer

Original Image
Multiple Material Edits

Fig. 1: Overview. We present ZeST , a zero-shot single-image approach to (a) transfer
material from an examplar image to an object in the input image. (b) ZeST can easily
be extended to perform multiple material edits in an single image, and (c) perform
implicit lighting-aware edits on rendering of a textured mesh.

Abstract. We propose ZeST , a method for zero-shot material trans-
fer to an object in the input image given a material exemplar image.
ZeST leverages existing diffusion adapters to extract implicit material
representation from the exemplar image. This representation is used to
transfer the material using pre-trained inpainting diffusion model on the
object in the input image using depth estimates as geometry cue and
grayscale object shading as illumination cues. The method works on real
images without any training resulting a zero-shot approach. Both qualita-
tive and quantitative results on real and synthetic datasets demonstrate
that ZeST outputs photorealistic images with transferred materials. We
also show the application of ZeST to perform multiple edits and robust
material assignment under different illuminations.
Project Page: https://ttchengab.github.io/zest

https://ttchengab.github.io/zest/
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1 Introduction

Editing object materials in images (e.g., changing a marble statue into a steel
statue) is useful for several graphics and design applications such as game de-
sign, e-commerce, etc. It is a highly challenging and time-consuming task even
for expert artists and graphic designers – typically requires explicit 3D geome-
try and illumination estimation followed by careful tuning of the target material
properties (e.g., metallic, roughness, transparency). Previous works try to alle-
viate the tedious material specification by synthesizing textures given input text
prompts [39,50]. However, they are focused on texturing 3D meshes, which over-
looks some of the unique challenges for material editing in 2D images, such as
illumination. Another work [41] proposes fine-grained material editing on images,
but it cannot directly transfer materials from a given exemplar.

In this work, we aim to make 2D-to-2D material editing practical by elimi-
nating the need for any 3D objects as well as explicit specification of material
properties. Given a single image of an object and another material exemplar
image, our goal is to transfer the material appearance from the exemplar to the
target object directly in 2D. See Fig. 1 for some sample input and material ex-
emplar images. We do not assume any access to the ground-truth 3D shapes,
illumination, or even the material properties, making this problem setting prac-
tical and widely applicable for material editing.

This setup is particularly challenging from two perspectives. First, an explicit
approach to material transfer requires an understanding of many object-level
properties in both the exemplar and the input image, such as geometry and
illumination. Subsequently, we have to disentangle the material information from
these properties and apply it to the new image; the entire process has several
unsolved components. Second, there currently exists no real-world datasets for
supervising this task. Collecting high-quality datasets presenting the same object
with multiple materials and exemplars may be quite tedious.

One of the main contributions of this work in alleviating these challenges is
a zero-shot approach that can implicitly transfer arbitrary material appearances
from a given 2D exemplar image onto a target 2D object image, without explicitly
estimating any 3D or material properties from either image. We call our approach
‘ZeST ’, as it does not require multiple exemplars or any training like previous
works, making it easy to generalize to any images in the wild.

With ZeST , we propose a carefully designed pipeline that repurposes several
recent advances in 2D image generation and editing for our problem setting. At a
high level, we adapt the geometry-guided generation (e.g., ControlNet [51]) and
also exemplar-guided generation (e.g., IP-Adapter [49]) to implicitly isolate and
transfer material appearance from a source exemplar to the target image while
applying a foreground decolored image and inpainting for illumination cues. Our
key contribution is presenting a simple pipeline with careful design choices that
can be used to tackle a highly challenging problem of 2D-to-2D material transfer.

Since this is a new problem setting, we created both synthetic and real-world
evaluation datasets with material exemplars and object images. Extensive qual-
itative and quantitative evaluations demonstrate that ZeST excels in photo-
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realism and material accuracy in the output images when compared against
various baselines while being completely training-free. See Fig. 1(a) for sample
results of ZeST . With our pipeline, artists can grab pre-designed materials as
material exemplars and directly transfer them to real-world images. By using dif-
ferent object masks, we can also use ZeST to cast different materials to multiple
objects present in a single image (Fig. 1 (b)). In addition, with slight alteration of
the inputs, ZeST can perform light-aware material transfer by changing the re-
flections while keeping textural patterns consistent (Fig. 1 (c)); this method can
have potential application when used in conjunction with 3D texture generation
methods [10].

In summary, ZeST has several favorable properties for material editing:

◦ Zero-shot, training free, single-image material transfer. By leverag-
ing 2D generative priors, ZeST works in a zero-shot manner without needing
dataset finetuning. Unlike some contemporary works [50] that implicitly cap-
ture material properties using several material images, ZeST only needs a
single material exemplar image to transfer the material in pixel space.

◦ No explicit 3D, illumination or materials. With 2D depth and segmen-
tation estimation (which are readily available these days) and implicit ma-
terial transfer, we eliminate the need for explicit specification of 3D meshes,
illumination or material properties (say, in terms of BRDF).

◦ Several downstream applications. Given the simplistic and practical
nature of our approach, ZeST can be used for several downstream graphics
applications such as applying pre-designed materials to real-world images,
editing multiple object materials in a single image, and perform lighting-
aware material transfer given untextured mesh renderings.

2 Related Work

Diffusion Models. Denoising Diffusion Probabilistic models have emerged as
the state-of-the-art for class-conditional and text-prompt conditioned image gen-
eration [18, 23–27, 43]. These models generate photorealistic images with exem-
plary geometry, materials, illumination, and scene composition. The models have
been extended to be conditioned on input images for computational photography
tasks such as super-resolution, style transfer, and inpainting.

Further work demonstrate controllable generation conditioned on text-based
instructions [8,20,22,46], semantic segmentation [4], bounding box [11,30,47,48],
depth [6, 53], sketch [34, 51], and image prompt [49]. Prompt-to-prompt and
Prompt+ edit the input image by performing inversion followed by the introduc-
tion of new terms and reweighting the effect of terms in the input prompt [22,46].
InstructPix2Pix performs edits an input image conditioned on an instruction [7].
Ge et al. proposed rich text based image editing allowing for style assignment
and specific description to specific terms in the prompt [20]. While these meth-
ods edit the image semantically and high-level descriptions, assigning specific
materials using text-based approach is challenging since text acts as a limiting
modality for describing textures.
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A collection of reference images can be used to learn concepts which can
be further included in text prompts to generate images with the learned con-
cepts [12, 29, 40]. Spatial modalities such as depth and sketches have been used
for controlling the generated images [34,49,51]. Pre-trained text-to-image mod-
els can be leveraged for 3D-aware image editing using language and depth
cues [13, 33, 35]. The use of ControlNet has been extended by Bhat et al. to
use depth for controlling the scene composition while maintaining other scene
attributes [6]. Object orientation, illumination, and other object attributes can
be controlled in a continuous manner using ControlNet and learned continuous
tokens embedding the 3D properties [13].
Material acquisition and editing. Material acquisition and editing is an ac-
tive field of research taking into account illumination and object geometry. Previ-
ous work has demonstrated material acquisition under known illumination condi-
tions and camera [2,3,17]. Such acquisition in the wild requires localizing objects
with similar materials, which has been facilitated by supervised material segmen-
tation and leveraging pre-trained vision representation backbones [5, 31, 42, 45].
Khan et al. introduced in-image material editing using estimates of depth [28].
Recent works have employed generative adversarial networks [21] for perceptual
material editing [16, 44] and physical shader-based editing using text-to-image
models [41]. The use of generative models has been extended to explicitly learn-
ing materials [32] and texturing 3D meshes [9, 10,39,50].

In our work, we aim to use pre-trained image generation diffusion models
to perform exemplar-based material transfer from a single image. We aim to
use ControlNet and IP-adapter to perform material transfer in a zero-shot way
without any training.

3 Method

In this section, we describe our method ZeST that performs exemplar-based ma-
terial transfer. Recent methods perform the related problem of texture synthesis
on meshes [39,50] by finetuning a diffusion model on 3-5 material exemplar im-
ages to capture the texture/material in the latent space. On the contrary, ZeST
only requires a single material exemplar image and a single input image, accom-
plishing material transfer in a zero-shot, training-free manner.

3.1 Problem Setting

Given a material exemplar image M and an input image I, we aim to output
an edited image Igen from I by transferring the material from the material
exemplar to the object in the input image while preserving other object and
scene properties (e.g. object geometry, background, lighting etc.). Performing
this task requires understanding the material, geometry, and illumination from
both the exemplar and the input image.

In practice, estimating all the aforementioned object-level properties and
further isolating material information explicitly from M is challenging since these
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Fig. 2: ZeST Architecture. Given a material exemplar M and an input image I, we
first encode material exemplar with an image encoder (e.g., IP-Adaptor). Concurrently,
we convert the input image into a depth map DI and a foreground-grayscaled image
Iinitto feed into the geometry and latent illumination guidance branch, respectively.
By combining the two sources of guidance with the latent features from the material
encoding, ZeST can transfer the material properties onto the object in input image
while preserving all other attributes.

properties are entangled in the pixel space. Therefore, we propose to tackle this
problem in the latent space of diffusion models. Specifically, we aim to extract a
latent representation zM containing the material and texture information that
we can then inject into a generative diffusion model S to generate Igen.

3.2 ZeST Overview

Since there exists no synthetic/real image dataset to supervise the learning of
a 2D-to-2D material transfer, we perform the material transfer in a zero-shot
training-free manner. We first break down this complex task into sub-problems of
(1) encoding the material exemplar, (2) geometry-guided image editing, and (3)
making the generation process illumination-aware. Given the recent advances in
high-fidelity diffusion models and complementary adapters for image generation,
we leverage existing pre-trained modules to tackle each of the sub-problems that
together compose our pipeline to perform image-prompted material editing.

Figure 2 presents an overview of our pipeline, which comprises three branches
to guide the material, geometry, and lighting information, respectively. The Ma-
terial Encoding branch takes the material exemplar image M as input, which is
processed by the image encoder to obtain a material latent representation zM .

Concurrently, we feed the input image I into Geometry Guidance and La-
tent Illumination Guidance Branch. The Geometry Guidance branch computes
the depth map DI for the image I, which is used as the input to ControlNet.
The Latent Illumination Guidance branch computes a foreground mask F using
I and creates a foreground-grayscale image Iinit, which we use as input to the
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(a) Img2Img + TextMaterial Exemplar Input Image Estimated Depth (Optional)

Inputs to the Diffusion Model IP-Adaptor Combinations

(b) ControlNet Model

Fig. 3: The design choice of IP-Adaptor with ControlNet. Given the material
exemplar and the input image, we dive into the different choices of utilizing the IP-
Adaptor. In particular we realize that an Img2Img + text module (a) wouldn’t properly
transfer the materials properly to the main object. On the other hand, ControlNet (b)
will preserve the geometry information of the given input. We thus utilize this as the
starting point for geometry guidance to further explore the best illumination cues.

Diffusion Inpainting pipeline. We concatenate the embeddings from ControlNet
with the inpainting diffusion model at the corresponding and inject the material
embedding zM through the cross-attention. The output of the inpainting dif-
fusion model, Igen, with the edited image containing the object in I cast with
material from exemplar image M .

Our design choices to facilitate computation of material embedding, geometry
guidance, and illumination cues are discussed in the following sections.

3.3 Encoding Material Exemplar

Given the material exemplar image M , this branch encodes the image into a la-
tent representation while preserving its material properties. Previous works [39,
50] address this by finetuning a text-to-image diffusion model to encode the im-
age into a rare token, implicitly treating the rare token as a latent representation
that can be used in conjunction with other texts for image generation. However,
this approach of optimizing for the material token requires the time-consuming
step for every new material exemplar and usually requires 3-5 images to prevent
overfitting.

We draw inspiration from the recently introduced IP-Adapter [49]. The IP
adapter uses a CLIP image encoder to extract image features that can be in-
jected into a diffusion model via the cross-attention layers. These features can be
used as an additional condition to guide text prompts or other mediums for the
generation. For example, one can input an image of a person and then describe
“on the mountain” with text to obtain an image of the person in the mountains.

However, we realize that IP-Adaptor does not work well when combined
with an Img2Img pipeline, as shown in Figure 3 (a) for our task. Moreover,
adding text guidances like “changing the apple texture to golden bowl” does not
produce photorealistic output and does not preserve other scene information
(i.e. background). This problem of geometry and material entanglement within
material embedding zM remains unsolved, thus motivating the need for geometry
and illumination guidance.
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3.4 Geometry Guidance via Depth Estimation

Since decoupling geometry and material properties in images is challenging and
requires additional training data, we provide an alternative solution where we
enforce a stronger geometry prior to the diffusion model to overwrite the struc-
tural information present in zM . To this end, we adopt a depth-based ControlNet
to provide geometry guidance from the input image I. We observe that the ge-
ometry information from the depth map DI overwrites the geometry information
encoded in the zM (see Figure 3 (b)). Note that with the geometry enforced by
using depth-based ControlNet, we can successfully transfer the golden material
of the bowl to the apple.

While the use of ControlNet with IP-Adaptor is introduced in the original
IP-Adaptor paper [49], we employ it for a different purpose contrary to applying
new structural control over an object in the image (e.g., changing a person’s
pose). After extensively comparing various components for encoding the material
exemplar and input image (analysis in Section 4.2), we find the depth-based
guidance from pre-trained ControlNet helps us preserve the original geometry of
the object for the task of material transfer.

While the addition of ControlNet helps preserve the geometry, we observe
that the results suffer from inconsistency in preserving the illumination and back-
ground from the input image. This is evident in Figure 3, where the background
and the lighting changes differ from the input.

3.5 Latent-space Illumination Guidance

Our final branch is primarily responsible for preserving the illumination and
background in the input image. We propose two-fold guidance for illumination
in the latent space during generation – an inpainting module and a foreground
decoloring process. In addition to the attached IP-Adaptor and ControlNet, we
adopt an inpainting diffusion model S instead of a standard generator. Specif-
ically, our ControlNet-inpainting procedure takes in four conditions for image
generation:

Igen = S(zM , DI , Iinit, F ), (1)

where zM is the material encoding, DI is the depth map computed for input
image I, Iinit is the initial image to denoise from, and F is the foregound mask
of target object in I which we are editing.

We conduct an ablation on the various versions of Iinit, as shown in Figure 4.
Specifically, we test out the following settings: (1) using the original input image,
(2) initializing the foreground with random noise, and (3) using the foreground
grayscaled image. Intuitively, directly letting Iinit = I (Setting (1)) would be
a preferable option as I encompasses implicit lighting information (from the
object’s shading and the surrounding environment) while conveniently enforces
all other parts of the image other than the object to remain the same. In practice,
however, we found that using the original image inevitably introduces a strong
prior of the base color from the input object (e.g. orange color of pumpkin),
which would be entangled with the material base color from M in the output
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Default Material Lighting Change Rotation Change

Input Image Input Image

Default Material Lighting Change Rotation Change

Material Exemplar

Original Random Noise Grayscale Original Random Noise Grayscale

Material Exemplar

Fig. 4: Ablating input for illumination guidance. To validate our design choice
of the foreground-grayscale image for initializing inpainting, we compare the generated
results against using the original image and random noise as inputs. The original image
presents a strong base color prior that perturbs the generation, while the random image
neglects shading information, leading to wrong lighting in both examples.

image. This artifact is sustained even when we significantly extend the number
of denoising steps. On the other hand, when initializing Iinit with random noise,
the method indeed removes the base color prior but also removes the shading
information causing incorrect illuminations in the synthesized object (e.g., the
left side of the synthesized pumpkin is darker, but light is coming from the left).
In our proposed pipeline, we perform grayscale operations in the pixel space
for the object region (3). This provides a balanced solution of removing the
strong color priors from the input image while keeping the shading cues for the
inpainting diffusion model.

Thus, we propose to initialize Iinit as:

Iinit = F ⊙ Igray + (1− F )⊙ I, (2)

which converts the color of foreground object in the image to grayscale. (1−F )⊙I
implicitly preserves the lighting direction, intensity, and color information, and
F ⊙ Igray preserves the object’s shading information without base color prior.

3.6 Implementation Details

We implement our method using Stable Diffusion XL Inpainting [36] with the
corresponding version of depth-based ControlNet [51] and IP-Adaptor [49]. We
use Dense Prediction Transformers for depth estimation [38] and Rembg1 for
foreground extraction. Our method is implemented in PyTorch and runs on a
single Nvidia A-10 GPU with 24 GB of RAM. For all Dreambooth approaches,
we use the official LoRA-Dreambooth provided by Diffusers.

4 Experiments

We evaluate the efficacy of our method against various baselines. We also present
several examples of downstream applications using our method.
1 https://github.com/danielgatis/rembg

https://github.com/danielgatis/rembg
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Fig. 5: Qualitative results on diverse materials. We present results of material
transfer from a diverse set of material exemplar images. Even when perturbed by
lighting and complex geometry, ZeST can still isolate the material information from the
exemplar image and transfer to various objects while preserving the original geometry
and illumination conditions. Note the change in specular regions as shinier materials
are chosen in the case of the car made of brass and the dinosaur made of shiny steel.

4.1 Datasets

As the first to propose this problem, we create two datasets for comparison and
evaluation. The real-world datasets provide us an understanding of our model’s
robustness, while the synthetic dataset is used for standard quantitative metrics.
Real-World Dataset. We curate a dataset comprising of 30 diverse material
exemplars and 30 input images, collected from copyright-free image sources (i.e.
Unsplash) and images generated by DALLE-3. All of these images are object-
centric, where there exists a main object in the foreground to which we are
extracting the material from or applying the material onto.
Synthetic Dataset. To perform quantitative evaluation, we use Blender to
create a synthesized dataset of 9 materials randomly initialized by adjusting the
base color, metallic, and roughness, and 20 meshes of different categories from
Objaverse [15] rendered at three random viewpoints each, generating 540 ground-
truth renderings. We render spheres assigned with each material individually and
use the rendered image the material exemplar and pre-textured mesh rendering
as input for all methods.

While ZeST is completely training-free, other methods of learning materials
(e.g., Dreambooth) require further fine-tuning for every exemplar given. This
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Dreambooth +
MasaCtrl

Dreambooth +
Instruct-Pix2Pix

Dreambooth +
Geo/Illum Guidance Ours

Material Exemplar /
Input Image

IP-Adaptor +
Instruct-Pix2Pix

IP-Adaptor +
Inpaint w/ Text

Fig. 6: Qualitative comparisons against baselines. Given the material exemplar
and input image in the first column, we compare our method to five different baselines.
Without any geometry guidance, all image editing baselines fail to impose the correct
geometry of the input image. On the other hand, using Dreambooth with our geometry
and illumination guidance often contains albedo shifts, potentially due to information
loss when encoding material properties into a word token.

makes it infeasible to scale up the two datasets. Both our datasets are of com-
parable sizes to previous works on finetuning diffusion models [40,50].

4.2 Qualitative Results

Material transfer results on real images. To demonstrate the application of
ZeST on a wide range of materials and objects, we present examples of material
transfer in Figure 5. The first three rows present results on real-world images,
while the fourth row shows results using PBR materials [1]. Based on the exam-
ples, we observe that the material is properly disentangled from the geometry in
the material exemplar and follows the shape of the object in the input image.
This is particularly evident in the results of the orange, frog, and Groot toy
figure, where the material is completely flat. We also notice accurate shadings in
the bust and table examples when comparing them against their inputs. In the
car and toy dinosaur examples, the reflections from the exemplars are isolated
from the textural patterns and cast reasonably based on the illumination cues.
Qualitative comparisons. Since our work is the first to perform material
transfer in latent space, we modified existing methods to compare against. Specif-
ically, since existing image-guided texture synthesis methods utilize Dreambooth
for their first step to encode the textures from images into word tokens [14,39,50],
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we set Dreambooth as the backbone for learning material properties and combine
with text-guided image editing techniques for comparison, including MasaCtrl
and Instruct-Pix2Pix, and using ZeST but swapping out the IP-Adaptor with
text. While our method is training-free, Dreambooth requires finetuning for ev-
ery material exemplar given. We also explore alternative options to combine
with IP-Adaptor, including text-guided inpainting and Instruct-Pix2Pix with
the prompt “Change the texture of the object”.

We present qualitative comparisons against the baselines on four exemplar
and input images in Figure 6. By using Inpainting with Text prompt instead of
ControlNet, the model ignores the geometry of the original input when casting
the materials. In both cases when using Instruct-Pix2Pix (with IP-Adaptor or
Dreambooth), the geometry of all objects is better preserved, but the model
fails to capture the material property from the material exemplar image. The
combination of Dreambooth and MasaCtrl fails to preserve the geometry of the
object in the input image and misattributes the material. The closest baseline
to ours is Dreambooth with our proposed geometry and illumination guidance;
however, we observe that the word encoding process results in some information
loss as evident in the color shifts of the backpack and the astronaut figure. Fur-
thermore, the method requires additional training for every material exemplar,
whereas ZeST takes roughly 15 seconds to generate the image.

Our method, ZeST , performs the task effectively by retaining the object ge-
ometry, scene illumination, and attributing the material correctly. Additionally,
note that ZeST adapts to more challenging material exemplar images, such as
transparent materials (glass cup in Figure 6 Row 3) and images with other minor
objects (additional hand in Figure 6 Row 4).

4.3 Quantitative Comparisons

We follow previous work [41, 50] and use the synthetic images to compare all
methods in terms of PSNR, LPIPS [52], and CLIP similarity score [37] against
ground truth renderings. We also incorporate another DreamSim [19], a more
recent metric that is more similar to human references. We grab IP-Adaptor +
Instruct-Pix2Pix and Dreambooth + our geometry and illumination guidance as
baselines, as they are the strongest (and only) performers from our qualitative
comparisons that can roughly edit the material based on the geometry.

Table 1 (left) presents our results. We see a dramatic improvement when
shifting from the instruct-pix2pix pipeline to our geometry and illumination
guidance. While using Dreambooth performs similarly to our IP-Adaptor in the
synthetic dataset, it requires a fine-tuned model for each material exemplar,
making it unfeasible to scale up. In addition, we show in the next section that
our method excels in real-world datasets.
User Study. We also create a user study with 16 participants to understand the
capability of our model given real-world materials tested on real images. Each
subject is shown 5 random samples from the 900 combinations generated from
the dataset with our method and against the two strongest baselines: Dream-
booth + ControlNet-Inpainting and IP-Adaptor + Instruct-Pix2Pix. We ask
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Table 1: Quantitative Comparisons and User Study. We grab the strongest
baselines in our qualitative comparisons for additional studies. Left: We measure the
PSNR, LPIPS [52], CLIP similarity score [37], and DreamSim [19] in a quantitative
study on the synthetic dataset of 540 exemplar-input combinations. Right: We perform
a user study to evaluate the material fidelity and photorealism of the edited images from
each method. We randomly sample 5 out of 900 real-world exemplar-input combinations
for each of the 16 participants.

PSNR↑ LPIPS↓ CLIP↑ DreamSim↓

IP-Adaptor + Instruct-Pix2Pix 17.08 0.099 0.740 0.390
DB + Our Geo/Illum. Guidance 25.52 0.058 0.874 0.238
Ours 25.59 0.053 0.883 0.198

Fidelity↑ Photorealism↑

IP-Adaptor + Instruct-Pix2Pix 1.48 3.23
DB + Our Geo/Illum. Guidance 3.25 3.41
Ours 4.05 3.78

Default Material Lighting Change Rotation Change

Input Image

Material Exemplar

Original Random Noise Grayscale Original Random Noise Grayscale

Material Exemplar

Zooming In

(b) Zooming in materials

Input Image

Default Material

(a) Robustness to changing lighting and pose

Fig. 7: Robustness to lighting and object pose. We present two types of robust-
ness testing. (a): Robustness to changing the material exemplar lighting and pose. (b):
Zooming into the material exemplar. Our model yields highly similar results in both,
showing the capability to adapt to these external changes.

each subject to rate each image from 1 to 5 based on (1) material fidelity: how
close the material in the generated image is compared to the original exem-
plar and (2) photorealism: how realistic the generated image is. Our results are
summarized in Table 1 (right).

Our results show significant improvements from the two baselines in both
material fidelity and photorealism of the edited image. The score improvements
are also greater in real-world scenarios compared to synthetic ones. This could be
the result of information loss during finetuning and overfitting to the exemplar
background, which is less significant under controlled synthetic scenarios.

4.4 Robustness of the Model

In addition to the diverse set of results presented in Figure 5, we extensively test
out the behavior of ZeST with special cases of material exemplar images.
Relighting and rotating the object in the material exemplar image. A
good material extractor should be agnostic to small lighting and rotation changes
of the same object used as the material exemplar. To evaluate this, we render a
random material and cast it onto an irregular-shaped pumpkin (another example
is in the Appendix). We then render three samples of the pumpkin, a default
lighting orientation, a change in lighting direction pitch by 120 degrees, and a
random rotation, as shown in 7 (a). The transferred materials onto the dolphin
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Default Material Lighting Change Rotation Change

Input Image Input Image

Default Material Lighting Change Rotation Change

Original Image Original Image

Multiple Material Edits Multiple Material Edits

Fig. 8: Multiple Material Transfers in a Single Image. By replacing the fore-
ground extraction with an open-vocabulary segmentation module (e.g., SAM) to obtain
multiple masks, ZeST can be applied iteratively to cast different material properties
to different objects in a single RGB image.
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Material
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Fig. 9: Lighting-aware Image Editing. Given a rendering of a untextured mesh,
we can alter ZeST slightly to achieve lighting-aware material edit. It can be seen from
both examples where the reflection can be disentangled from the object texture.

remain roughly consistent across all samples, showing that our method is fairly
resistant to these changes at a small scale.
Effect of image scale of material exemplar image. To examine the effect
of the scale of the material exemplar, we first use an image of a woolen cloth
material with a distinctive repeating pattern and apply our method to an image
of a chair. Then, we zoom into the exemplar image manually to the edge only very
few repeated patterns are left. Our results in Figure 7 (b) show that while the
scale of the material is drastically different, the model automatically re-adjusts
the patterns into a reasonable size to be cast onto the input image.

4.5 Applications

Applying multiple materials to multiple objects. By replacing the fore-
ground extraction with a segmentation module (e.g., SAM) to obtain multiple
masks, ZeST can be used to iteratively change multiple materials in a single
image. Figure 8 presents two examples of editing multiple objects in a single
image. As evident in the transparent glass chair where the wooden table behind
is roughly visible, ZeST generalizes to complex scenes with multiple objects.
Lighting-aware Material Transfer. Given a material exemplar image and
an untextured mesh rendered under multiple illumination conditions, ZeST can
also perform lighting-aware material transfer. Specifically, we first generate the
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Fig. 10: Limitations. Our method primarily fails in two modes. (a) The model some-
times picks the most “probable” areas to transfer the material, instead of casting the
material on the entire object. (b) If two textures are present in the exemplar image
(e.g., foreground and background of the tennis ball, the glazed top and bottom logo of
the cup), the model sometimes combine both materials when performing the edit.

materials and textures of the image under Lighting 1 using ZeST . Then, by fixing
the same seed during generation and using the generating image given the first
lighting as the input to the second, we can enforce consistency in the material
and texture generated (details of implementation in Appendix) while changing
the reflections. We show examples of transferring the glazed cup material to
two mesh renders in Figure 9. ZeST successfully disentangles the reflections
while keeping most textural patterns consistent between the two images. This
technique could potentially be applied jointly with other 3D texture synthesis
works [10] and be helpful to applications such as e-commerce design.

4.6 Limitations

Since ZeST operates majorly in the latent space, the model sometimes exhibits
uncontrollable behaviors based on its image understanding. Figure 10 presents
two forms of more frequent failure cases: (a) Partial material transfer: the ma-
terial is only transferred to parts instead of the entirety of the object. We hy-
pothesize that the failure stems from the entanglement of material properties
and the exemplar’s identity, as the material is only applied to where it seems
the most probable (e.g., only apply the jacket material to the statue’s body).
(b) Blending multiple materials: since the current IP-Adaptor does not have a
module to extract regions of an image for material transfer, ZeST sometimes
mixes up multiple materials in the exemplar image during transfer.

5 Conclusion

We present ZeST , a zero-shot, training-free method for exemplar-based material-
editing. ZeST is built completely using readily available pre-trained models and
demonstrates generalizable and robust results on real images. We curate syn-
thetic and real image datasets to evaluate the performance of our approach. We
also demonstrate downstream applications like multiple edits in a single image
and material-aware relighting. ZeST serves as a strong starting point for future
research in image-to-image material transfer, implying opportunities of leverag-
ing pre-trained image diffusion models for complex graphic designing tasks.
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