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1 Additional Qualitative Results

The complete set of input images used for the sculpture dataset from Figure 1
(main text) and the corresponding results are shown in Figure 1. Images come
from a personal photo collection.

2 Implementation Details

Feature Extractors. We use the ViT-G/14 variant of DINO-V2 [6] as the feature
extractor fζ from Sec 3.2 and extract tokens from its final layer for all quantitative
experiments. For qualitative results from Figure 1, following [8], we use features
from the first upsampling block of the UNet from Stable Diffusion 2.1 with
diffusion timestep 261 as fζ , as these features are similar for semantically-similar
regions [3, 8, 9] but are locally smoother compared to DINO, which is consistent
with the observations from [9].

Smoothness Loss. The smoothness loss from Eq. (10) is specified as follows.
Following [5], we define

Lrigidity,∇(T ) := ∥J∇(T )TJ∇(T )∥F + ∥(J∇(T )TJ∇(T ))−1∥F , (1)

where T jointly considers all neighboring coordinates u, instead of only one
coordinate u at once. We define [T ]u = ũ − u, where ũ is the optimization
variable for input u from Eq. (10), and J∇(T ) computes the Jacobian matrix
of T approximated with finite differences with pixel offset ∇. Following [7], we
denote huber loss with Lhuber and define the total variation loss as

LTV(T ) = Lhuber(∇xT ) + Lhuber(∇yT ), (2)

where ∇x and ∇y are partial derivatives w.r.t. x and y coordinates, approximated
with finite differences. The final smoothness loss is defined as

Lsmooth = λrigidity,∇=10 + 0.1Lrigidity,∇=1 + 10LTV. (3)
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3 Feature Visualizations

Matching features independently for each pixel gives noisy similarity heatmaps
(Figure 3 (b)), due to the noise of feature maps (Figure 3 (d-e)), and the lack
of geometric reasoning in the matching process. Our method is robust to such
noises as it seeks to align the input with a posed rendering considering all pixel
locations in the input altogether.

4 Semantic Correspondence Matching

We provide additional quantitative evaluation of our method on the task of
semantic correspondence matching. Given a pair of source and target image
(xsource, xtarget), and given a keypoint in the source image usource, the goal of this
task is to find its most semantically similar keypoint utarget in the target image.

The matching process using our method is specified as follows. We first map
the 2D keypoints being queried to the 3D coordinates in the canonical space,
and then project these 3D coordinates to the 2D image space of the target image.
Formally, given an image pair (xsource, xtarget) and a 2D keypoint usource, the
corresponding keypoint utarget is computed with

utarget = Φrev
xtarget

◦ Φfwd
xsource

(usource), (4)

with notations defined in Sec. 3.3.
For all experiments in this section, for Eq. (10), we set λℓ2 = 10 and for

simplicity set λsmooth = 0.

Dataset. We use SPair-71k [4], a standard benchmark for semantic correspondence
matching for evaluation. We evaluate our method on 9 rigid, non-cylindrical-
symmetric categories from this dataset. The images for each category may contain
a large diversity in object shape, texture, and environmental illumination.

Following prior works [5,7], we report the Percentage of Correct Keypoints
(PCK@α) with α = 0.1, a standard metric that evaluates the percentage of
keypoints correctly transferred from the source image to the target image with
a threshold α. A predicted keypoint is correct if it lies within the radius of
α ·max(Hbbox,Wbbox) of the ground truth keypoint in the object bounding box
in the target image with size Hbbox ×Wbbox.

Baselines. We compare with a 2D-correspondence matching baseline. Formally,
for this baseline, for each querying keypoint uquery, we compute the keypoint
prediction with

utarget = argmin
u

du,uζ (xtarget, xsource), (5)

where the distance metric dζ is defined in Eq. (6) and is induced from a pre-
trained features extractor fζ . We use the same DINO feature extractor for our
method and this baseline.

We further compare with previous congealing methods, GANgealing [7], which
uses pre-trained GAN for supervision, and Neural Congealing [5] and ASIC [1],
which are both self-supervised.
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Aero Bike Boat Bus Car Chair Motor Train TV Mean

GANgealing. [7] - 37.5 - - - - -
Neural Congealing [5] - 29.1 - - - - - - - -
ASIC [1] 57.9 25.2 24.7 28.4 30.9 21.6 26.2 49.0 24.6 32.1
DINOv2-ViT-G/14 [6] 72.5 67.0 45.5 54.6 53.5 40.7 71.8 53.5 36.3 55.0
Ours 70.0 70.3 40.0 65.8 72.1 50.1 77.0 26.1 43.1 57.2

Table 1: Semantic Correspondence Evaluation on SPair-71k [4]. Our method
achieves an overall better keypoint transfer accuracy compared to prior 2D congealing
methods and a 2D-matching baseline using the same semantic feature extractor as ours.

Results. Results are shown in Tab. 1. The performance gain over the DINOv2
baseline, which uses the same semantic feature extractor backbone as ours,
suggests the effectiveness of 3D geometric consistency utilized by our framework.

Qualitative results are shown in Figure 2. Our method is the only one that
performs correspondence matching via reasoning in 3D among all baselines. Such
3D reasoning offers an advantage especially when the relative rotation between
the objects from the source and target image is large. Our method transforms
the 3D coordinate from source to target in the canonical frame, where the 3D
shape guarantees the 3D consistency. In comparison, as shown on the right of
Figure 2, the baseline performs 2D matching and incorrectly matches the front
of a plane with its rear, and incorrectly matches the front wheel of a bicycle with
its back wheel.

5 Other Image Editing Tasks

Given an input image, in Figure 4 we show results on rendering the template
under a novel view, which is the image’s assigned pose shifted by 30◦ in azimuth,
and show texture transfer results below. We use Zero-1-to-3 [2] as the texture
source for novel views, which itself does not guarantee 3D consistency in the view
synthesis result but serves as a proxy source for the pixel values of novel views.

6 Failure Modes

We have identified two failure modes of the proposed method: (1) incorrect shapes
from the generative model distillation process, e.g ., the incorrect placement
of the water gun handle from Figure 5 (a), and (2) incorrect poses due to
feature ambiguity, e.g ., the pumpkin is symmetric and DINO features cannot
disambiguate sides from Figure 5 (b).
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Fig. 1: Results on the Sculpture Dataset.
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Fig. 2: Semantic Correspondence Matching. The figure shows results on 4 example
categories from SPair-71k [4]. To match a given keypoint from the source image, our
method first warps the keypoint to the rendered image space (2D-to-2D), then identifies
the warped coordinate’s location in the canonical frame in 3D (2D-to-3D), then projects
the same 3D location to the rendering corresponding to the target image (3D-to-2D),
and finally warps the obtained coordinate to the target image space (2D-to-2D). The
learned 3D canonical shape serves as an intermediate representation that aligns the
source and target images, and it better handles scenarios when the viewpoint changes
significantly compared to matching features in 2D.
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Fig. 3: Feature Visualizations. Despite that DINO features tend to be noisy, our
approach assigns a plausible pose to the input, as shown in the aligned rendering.

Under 
Input 
Pose

Under 
Novel 
View

Learned 
Template

Edited 
Template

Edited
w/ NN

Texture 
Source

Zero123

Input

Learned 
Template

Edited 
Template

Edited
w/ NN

Texture 
Source

Zero123

Input

Fig. 4: Texture Propagation under Novel Views. Our method can be used in
conjunction with Zero-1-to-3 to render a shape template under a viewpoint different
from the input image with source texture from the input.
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Fig. 5: Failure Modes. Our method inherits the failure from (a) canonical shape
optimization and (b) pre-trained feature extractors.
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