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Abstract. We propose 3D Congealing, a novel problem of 3D-aware
alignment for 2D images capturing semantically similar objects. Given
a collection of unlabeled Internet images, our goal is to associate the
shared semantic parts from the inputs and aggregate the knowledge
from 2D images to a shared 3D canonical space. We introduce a general
framework that tackles the task without assuming shape templates, poses,
or any camera parameters. At its core is a canonical 3D representation
that encapsulates geometric and semantic information. The framework
optimizes for the canonical representation together with the pose for
each input image, and a per-image coordinate map that warps 2D pixel
coordinates to the 3D canonical frame to account for the shape matching.
The optimization procedure fuses prior knowledge from a pre-trained
image generative model and semantic information from input images.
The former provides strong knowledge guidance for this under-constraint
task, while the latter provides the necessary information to mitigate the
training data bias from the pre-trained model. Our framework can be used
for various tasks such as pose estimation and image editing, achieving
strong results on real-world image datasets under challenging illumination
conditions and on in-the-wild online image collections. Project page at
https://ai.stanford.edu/~yzzhang/projects/3d-congealing/.

1 Introduction

We propose the task of 3D Congealing, where the goal is to align a collection of
images containing semantically similar objects into a shared 3D space. Specifically,
we aim to obtain a canonical 3D representation together with the pose and a
dense map of 2D-3D correspondence for each image in the collection. The input
images may contain object instances belonging to a similar category with varying
shapes and textures, and are captured under distinct camera viewpoints and
illumination conditions, which all contribute to the pixel-level difference as shown
in Figure 1. Despite such inter-image differences, humans excel at aligning such
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Fig. 1: Objects with different shapes and appearances, such as these sculptures, may
share similar semantic parts and a similar geometric structure. We study 3D Congealing,
inferring and aligning such a shared structure from an unlabeled image collection.
Such alignment can be used for tasks such as pose estimation and image editing. See
Appendix A for full results.

images with one another in a geometrically and semantically consistent manner
based on their 3D-aware understanding.

Obtaining a canonical 3D representation and grounding input images to the
3D canonical space enable several downstream tasks, such as 6-DoF object pose
estimation, pose-aware image filtering, and image editing. Unlike the task of 2D
congealing [11, 29,31], where the aim is to align the 2D pixels across the images,
3D Congealing requires aggregating the information from the image collection
altogether and forming the association among images in 3D. The task is also
closely related to 3D reconstruction from multiview images, with a key distinction
in the problem setting, as inputs here do not necessarily contain identical objects
but rather semantically similar ones. Such a difference opens up the possibility
of image alignment from readily available image collections on the Internet, e.g .,
online search results, landmark images, and personal photo collections.

3D Congealing represents a challenging problem, particularly for arbitrary
images without camera pose or lighting annotations, even when the input images
contain identical objects [1,4, 20,44], because the solutions for pose and shape
are generally entangled. On the one hand, the definition of poses is specific to
the coordinate frame of the shape; on the other hand, the shape optimization
is typically guided by the pixel-wise supervision of images under the estimated
poses. To overcome the ambiguity in jointly estimating poses and shapes, prior
works mostly start from noisy pose initializations [20], data-specific initial pose
distributions [25,44], or rough pose annotations such as pose quadrants [1]. They
then perform joint optimization for a 3D representation using an objective of
reconstructing input image pixels [1, 20,44] or distribution matching [25].

In this work, instead of relying on initial poses as starting points for shape
reconstruction, we propose to tackle the joint optimization problem from a
different perspective. We first obtain a plausible 3D shape that is compliant with
the input image observations using pre-trained generative models, and then use
semantic-aware visual features, e.g ., pre-trained features from DINO [2,30] and
Stable-Diffusion [36], to register input images to the 3D shape. Compared to
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photometric reconstruction losses, these features are more tolerant of variance in
object identities among image inputs.

We make deliberate design choices to instantiate such a framework that fuses
the knowledge from pre-trained text-to-image (T2I) generative models with real
image inputs. First, to utilize the prior knowledge from generative models, we
opt to apply a T2I personalization method, Textual Inversion [7], which aims
to find the most suitable text embedding to reconstruct the input images via
the pre-trained model. Furthermore, a semantic-aware distance is proposed to
mitigate the appearance discrepancy between the rendered image and the input
photo collection. Finally, a canonical coordinate mapping is learned to find the
correspondence between 3D canonical representation and 2D input images.

To prove the effectiveness of the proposed framework, we compare the proposed
method against several baselines on the task of pose estimation on a dataset
with varying illuminations and show that our method surpasses all the baselines
significantly. We also demonstrate several applications of the proposed method,
including image editing and object alignment on web image data.

In summary, our contributions are:
1. We propose a novel task of 3D Congealing that involves aligning images of

semantically similar objects in a shared 3D space.
2. We develop a framework tackling the proposed task and demonstrate sev-

eral applications using the obtained 2D-3D correspondence, such as pose
estimation and image editing.

3. We show the effectiveness and applicability of the proposed method on a
diverse range of in-the-wild Internet images.

2 Related Works

Image Alignment and Congealing. The task of image alignment for a single
instance, possibly under varying illuminations, has been relatively well-studied [24,
47]. To align images containing different instances from the same category with
small deformations, one line of approach is known as image congealing [12,13,18,
27,29,31]. In particular, Neural Congealing [29] learns atlases to capture common
semantic features from input images and recovers a dense mapping between input
images and the atlases. GANgealing [31] uses a spatial transformer to map a
randomly generated image from a GAN [8] to a jointly aligned space. These
2D-warping-based methods are typically applied to source and target image pairs
with no or small camera rotation, and work best on in-plane transformation,
while our proposed framework handles a larger variation of viewpoints due to
3D reasoning. On the other hand, DIFNet [6] exemplifies an approach of joint
optimization of shape template and deformation, provided with the 3D shape. In
comparison, we propose a template-followed-by-implicit-deformation approach
and assume a single 2D observation for each instance instead of 3D inputs.
The proposed approach exploits the fact that a “good” template, i.e., one that
captures common geometric structure of inputs, is not unique and a solution
can be effectively found before knowing input image poses. Compared to joint
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optimization methods, it reduces task complexity by providing such an anchoring
template to make later image registration easier. Finally, this work provides
qualitative results on aligning images cross instances with large deformation. The
output global alignment of input instances and articulation-free templates can
be useful for downstream reconstruction with image-specific articulation, which
is beyond the scope of this work.

Object Pose Estimation. Object pose estimation aims to estimate the pose
of an object instance with respect to the coordinate frame of its 3D shape.
Classical methods for pose estimation recover poses from multi-view images
using pixel- or feature-level matching to find the alignment between different
images [38]. These methods are less suitable in the in-the-wild setting due to the
increasing appearance variance. Recent methods tackle this task by supervised
learning wht pose annotations [19, 42, 48], but it remains challenging for these
methods to generalize beyond the training distribution. Another class of methods
uses an analysis-by-synthesis framework to estimate pose given category-specific
templates [3] or a pre-trained 3D representation [46]; these assumptions make
it challenging to apply these methods to generic objects in the real world. ID-
Pose [5] leverages Zero-1-to-3 [21], a view synthesis model, and optimizes for the
relative pose given a source and a target image. Goodwin et al . [9] use pre-trained
self-supervised features for matching, instead of doing it at the pixel level, but
require both RGB and depth inputs.

Shape Reconstruction from Image Collections. Neural rendering approaches [26,
43,45] use images with known poses to reconstruct the 3D shape and appearance
from a collection of multiview images. The assumptions of known poses and
consistent illumination prevent these methods from being applied in the wild.
Several works have extended these approaches to relax the pose assumption,
proposing to handle noisy or unknown camera poses of input images through joint
optimization of poses and 3D representation [4, 20, 44]. SAMURAI [1] further
handles scenes under various illuminations, but requires access to coarse initial
poses in the form of pose quadrant annotations.

3D Distillation from 2D Diffusion Models. Recently, text-to-image diffusion
models have shown great advancement in 2D image generation and are used for 3D
asset distillation with conditions such as texts [32,39], single image [21], and image
collections [33]. DreamFusion [32] has proposed to apply gradients computed
from pre-trained text-to-image models to the optimized 3D representations.
DreamBooth3D [33] proposed to utilize fine-tuned diffusion model [37] for the
image-conditioned 3D reconstruction task. These works provide a viable solution
for 3D reconstruction from image collections but without grounding the inputs
to the 3D space as in ours.
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Fig. 2: Pipeline. Given a collection of in-the-wild images capturing similar objects
as inputs, we develop a framework that “congeals” these images in 3D. The core
representation consists of a canonical 3D shape that captures the geometric structure
shared among the inputs, together with a set of coordinate mappings that register the
input images to the canonical shape. The framework utilizes the prior knowledge of
plausible 3D shapes from a generative model, and aligns images in the semantic space
using pre-trained semantic feature extractors.

3 Method

We formulate the problem of 3D Congealing as follows. Given a set of N object-
centric images D = {xn}Nn=1 that captures objects sharing semantic components,
e.g ., objects from one category, we seek to align the object instances in these
images into a canonical 3D representation, e.g ., NeRF [26], parameterized by θ.
We refer to the coordinate frame of this 3D representation as the canonical frame.
We also recover the camera pose of each observation x ∈ D in the canonical frame,
denoted using a pose function π : x 7→ (ξ, κ) where ξ represents the object pose
in SE(3) and κ is the camera intrinsic parameters. We assume access to instance
masks, which can be obtained using an off-the-shelf segmentation method [16].

The 3D representation should be consistent with the physical prior of ob-
jects in the natural world, and with input observations both geometrically and
semantically. These constraints can be translated into an optimization problem:

max
π,θ

pΘ(θ), s.t. x = R(π(x), θ),∀x ∈ D, (1)

where pΘ is a prior distribution for the 3D representation parameter θ that
encourages physically plausible solutions, R is a predefined rendering function
that enforces geometric consistency, and the equality constraint on image recon-
struction enforces compliance with input observations.

We will now describe an instantiation of the 3D prior pΘ (Sec. 3.1), an image
distance function that helps enforce the equality constraint (Sec. 3.2), followed
by the 3D Congealing optimization (Sec. 3.3) to estimate input image poses π.
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3.1 3D Guidance from Generative Models

As illustrated in the left part of Figure 2, we extract the prior knowledge for
3D representations pΘ(·) from a pre-trained text-to-image (T2I) model such as
Stable-Diffusion [36]. DreamFusion [32] proposes to turn a text prompt y into
a 3D representation θ using the following Score Distillation Sampling (SDS)
objective, leveraging a T2I diffusion model with frozen parameters ϕ,

min
θ

Ex∈D(θ)Lϕ
diff(x, y). (2)

Here D(θ) := {R(π, θ) | π ∼ pΠ(·)} contains images rendered from the 3D
representation θ under a prior camera distribution pΠ(·), and Lϕ

diff is the training
objective of image diffusion models specified as follows:

Lϕ
diff(x, y) := Et∼U([0,1]),ϵ∼N (0,I)

[
ω(t)∥ϵϕ(αtx+ σtϵ, y, t)− ϵ∥22

]
, (3)

where ϵϕ is the pre-trained denoising network, ω(·) is the timestep-dependent
weighting function, t is the diffusion timestep and and αt, σt are timestep-
dependent coefficients from the diffusion model schedule.

The above loss can be used to guide the optimization of a 3D representation
θ, whose gradient is approximated by

∇θLϕ
diff(x = R(ξ, κ, θ), y) ≈ Et,ϵ

[
ω(t)(ϵϕ(αtx+ σtϵ, y, t)− ϵ)

∂x

∂θ

]
, (4)

where ξ and κ are the extrinsic and intrinsic camera parameters, respectively. The
derived gradient approximation is adopted by later works such as MVDream [39],
which we use as the backbone.

The original SDS objective is optimizing for a text-conditioned 3D shape
with a user-specified text prompt y and does not consider image inputs. Here,
we use the technique from Textual Inversion [7] to recover the most suitable text
prompt y∗ that explains input images, defined as follows:

y∗ = argmin
y

Ex∈DLϕ
diff(x, y). (5)

Eq. (2) and Eq. (5) differ in that both the sources of the observations x (an
infinite dataset of rendered images D(θ) for the former, and real data D for the
latter) and the parameters being optimized over (θ and y, respectively). In our
framework, we incorporate the real image information to the SDS guidance via
first solving for y∗ (Eq. (5)) and keep it frozen when optimizing for θ (Eq. (2)).
The diffusion model parameter ϕ is frozen throughout the process, requiring
significantly less memory compared to the alternative of integrating input image
information via finetuning ϕ as in DreamBooth3D [33].

3.2 Semantic Consistency from Deep Features

The generative model prior from Sec. 3.1 effectively constrains the search space for
the solutions. However, the objectives from Eqs. (2) and (5) use the input image



3D Congealing: 3D-Aware Image Alignment in the Wild 7

information only indirectly, via a text embedding y∗. To explain the relative
geometric relation among input images, we explicitly recover the pose of each
input image w.r.t. θ, as illustrated in Figure 2 (middle) and as explained below.

To align input images, we use an image distance metric defined by semantic
feature dissimilarity. In particular, pre-trained deep models such as DINO [2,30]
have been shown to be effective semantic feature extractors. Denote such a model
as f parameterized by ζ. The similarity of two pixel locations u1 and u2 from
two images x1 and x2, respectively, can be measured with

du1,u2

ζ (x1, x2) := 1−
⟨[fζ(x1)]u1

, [fζ(x2)]u2
⟩

∥ [fζ(x1)]u1
∥2∥ [fζ(x2)]u2

∥2
, (6)

where [·] is an indexing operator. It thereafter defines an image distance function

∥x1 − x2∥dζ
:=

1

HW

∑
u

du,uζ (x1, x2), (7)

where x1 and x2 have resolution H×W , and the sum is over all image coordinates.
The choice of semantic-aware image distance, instead of photometric differ-

ences as in the classical problem setting of multiview 3D reconstruction [38,43,45],
leads to solutions that maximally align input images to the 3D representation
with more tolerance towards variance in object shape, texture, and environmental
illuminations among input images, which is crucial in our problem setting.

3.3 Optimization

The Canonical Shape and Image Poses. Combining Secs. 3.1 and 3.2, we convert
the original problem in Eq. (1) into

min
π,θ

Ex∈D(θ)Lϕ
diff(x, y

∗)︸ ︷︷ ︸
generative model guidance

+λEx∈D∥R(π(x), θ)− x∥d︸ ︷︷ ︸
data reconstruction

,
(8)

where y∗ come from Eq. (5) and λ is a loss weight. Compared to Eq. (5), here the
first term instantiates the generative modeling prior and the second term is a soft
constraint of reconstructing input observations. Specifically, d = λζdζ + λIoUdIoU,
where dζ is the semantic-space distance metric from Sec. 3.2, and dIoU is the
Intersection-over-Union (IoU) loss for masks, ∥m1 − m2∥dIoU := 1 − (∥m1 ⊙
m2∥1)/(∥m1∥1 + ∥m2∥1 − ∥m1 ⊙ m2∥1), where m1 and m2 are image masks,
which in Eq. (8) are set to be the mask rendering and the instance mask for x.
The use of both dζ and dIoU tolerates shape variance among input instances.

For the shape representation, we follow NeRF [26] and use neural networks
σθ : R3 → R and cθ : R3 → R3 to map a 3D spatial coordinate to a density
and an RGB value, respectively. The rendering operation R is the volumetric
rendering operation specified as follows:

R(r, ξ, θ; cθ) =

∫
T (t)σθ(ξr(t))cθ(ξr(t)) dt, (9)
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where T (t) = exp
(
−
∫
σθ(r(t

′))dt′
)
, r : R → R3 is a ray shooting from the

camera center to the image plane, parameterized by the camera location and
the ray’s direction, and ξ is the relative pose that transforms the ray from the
camera frame to the canonical frame.

Forward Canonical Coordinate Mappings. After the above optimization, each
image x from the input image collection can be “congealed” to the shape θ via a
canonical coordinate mapping, i.e., a forward warping operation Φfwd

x : R2 → R3

that maps a 2D image coordinate to a 3D coordinate in the canonical frame of
reference as illustrated in Figure 2. Φfwd

x consists of the following two operations.
First, we warp a coordinate u from the real image x to the rendering of the

canonical shape under its pose π(x), denoted as x̃ := R(π(x), θ). Specifically,

Φ2D←2D
x̃←x (u) := argmin

ũ
dũ,uζ (x̃, x) + λℓ2∥ũ− u∥22 + λsmoothLsmooth(ũ, u), (10)

where dζ follows Eq. (6), the 2D coordinates u and ũ are normalized into range
[0, 1] before computing the ℓ2 norm, the smoothness term Lsmooth is specified
in Appendix B, and λℓ2 and λsmooth are scalar weights. This objective searches
for a new image coordinate ũ (from the rendering x̃) that shares a semantic
feature similar to u (from the real image x), and ensures that ũ stays in the local
neighborhood of u via a soft constraint of the coordinate distance. Afterward, a
2D-to-3D operation takes in the warped coordinate from above and outputs its
3D location in the normalized object coordinate space (NOCS) [41] of θ:

Φ3D←2D
x (ũ) := [RNOCS(π(x), θ)]ũ , (11)

where RNOCS is identical to R from Eq. (9), but replacing the color field cθ with a
canonical object coordinate field, cNOCS : R3 → R3, p 7→ (p−pmin)/(pmax−pmin),
where pmin and pmax are the two opposite corners of the canonical shape’s
bounding box. These bounding boxes are determined by the mesh extracted from
the density neural field σθ using the Marching Cube [22] algorithm.

Combining the above, given an input image coordinate u, Φfwd
x (u) := Φ3D←2D

x ◦
Φ2D←2D
x̃←x (u) identifies a 3D location in the canonical frame corresponding to u.

Reverse Canonical Coordinate Mappings. Each image can be “uncongealed”
from the canonical shape using Φrev

x : R3 → R2, which is the reverse operation
of Φfwd

x (u) and is approximately computed via nearest-neighbor inversion as
explained below.

Given a 3D location within a unit cube, p ∈ [0, 1]
3, Φrev

x (p) := Φ2D←2D
x←x̃ ◦

Φ2D←3D
x (p). In particular,

Φ2D←3D
x (p) := argmin

ũ
∥p− Φ3D←2D

x (ũ)∥2 (12)

is an operation that takes in a 3D coordinate p in the canonical frame and
searches for a 2D image coordinate whose NOCS value is the closest to p, and
Φ2D←2D
x←x̃ is computed via inverting Φ2D←2D

x̃←x from Eq. (10),

Φ2D←2D
x←x̃ (ũ) := argmin

u
∥ũ− Φ2D←2D

x̃←x (u)∥2. (13)
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Fig. 3: Pose Estimation from Multi-Illumination Captures. The figure shows
4 example scenes from the NAVI dataset, displaying the real image inputs, canonical
shapes under estimated poses, and the canonical coordinate maps.

In summary, the above procedure establishesthe 2D-3D correspondence be-
tween an input image x and the canonical shape via Φfwd

x , and defines the dense
2D-2D correspondences between two images x1, x2 via Φrev

x2
◦ Φfwd

x1
which enables

image editing (Figure 8). The full framework is described in Algorithm 1.

3.4 Implementation Details

1: procedure RUN(D = {xn}Nn=1)
2: y∗ ← Solution to Eq. (5)
3: Optimize θ with Eq. (8)
4: Sample pose candidates {ξi}i
5: for n← 1 to N do ▷ Pose initialization
6: π(xn)← argminξi

∥R(ξ, θ)− xn∥dζ
7: end for
8: Optimize π(xn) with Eq. (8) for all n
9: Determine Φfwd

xn
and Φrev

xn
for all n

10: return θ, π, {Φfwd
xn
}Nn=1,{Φ

rev
xn
}Nn=1

11: end procedure

Algorithm 1: Overview.

Input images are cropped with the
tightest bounding box around the fore-
ground masks. The masks come from
dataset annotations, if available, or
from Grounded-SAM [16, 35], an off-
the-shelf segmentation model.

Across all experiments, we opti-
mize for y∗ (Algorithm 1, line 2) for
1, 000 iterations using an AdamW [23]
optimizer with learning rate 0.02 and
weight decay 0.01. We optimize for θ
(line 3) with λ = 0 for 10, 000 iterations, with AdamW and learning rate 0.001.
The NeRF model θ has 12.6M parameters. It is frozen afterwards and defines
the coordinate frame for poses.

Since directly optimizing poses and camera parameters with gradient descents
easily falls into local minima [20], we initialize π using an analysis-by-synthesis
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Labels Methods Rotation°↓ Translation↓

SC ∼ SC SC ∼ SC

Pose
NeROIC [17] 42.11 - 0.09 -
NeRS [47] 122.41 123.63 0.49 0.52
SAMURAI [1] 26.16 36.59 0.24 0.35

None

GNeRF [25] 93.15 80.22 1.02 1.04
PoseDiffusion [42] 46.79 46.34 0.81 0.90
Ours (3 seeds) 26.97±2.24 32.56±2.90 0.40±0.01 0.41±0.04

Ours (No Pose Init) 53.45 57.87 0.97 0.96
Ours (No IoU Loss) 31.29 31.15 0.87 0.85

Table 1: Pose Estimation from Multi-Illumination Image Captures. Our
method performs better than both GNeRF and PoseDiffusion with the same input
information, and on par with SAMURAI which additionally assumes camera pose
direction as inputs. Different random seeds lead to different canonical shapes, but our
method is robust to such variations. ± denotes means followed by standard deviations.

Methods Bed Bookcase Chair Desk Sofa Table Wardrobe Overall

R°↓ T↓ R°↓ T↓ R°↓ T↓ R°↓ T↓ R°↓ T↓ R°↓ T↓ R°↓ T↓ R°↓ T↓

[42] 45.74 0.99 22.83 0.33 46.80 1.04 23.89 0.49 33.99 0.69 43.53 1.22 31.54 1.80 35.47±10.0 0.94±0.49
Ours 37.00 0.40 36.47 0.45 34.58 0.76 26.53 0.36 26.49 0.27 49.44 0.67 27.41 0.39 33.99±8.26 0.47 ±0.18

Table 2: Pose Estimation from Cross-Instance Image Collections. Our method
achieves overall better performance than PoseDiffusion on Pix3D. “R” stands for rotation
and “T” for translation. ± denotes cross-category means followed by standard deviations.

approach (line 5-7). Specifically, we parameterize the camera intrinsics using a
pinhole camera model with a scalar Field-of-View (FoV) value, and sample the
camera parameter (ξ, κ) from a set of candidates determined by an exhaustive
combination of 3 FoV, 16 azimuth, and 16 elevation values uniformly sampled from
[15◦, 60◦], [−180◦, 180◦], and [−90◦, 90◦], respectively. In this pose initialization
stage, all renderings use a fixed camera radius and are cropped with the tightest
bounding boxes of rendered foreground masks before being compared with the
real image inputs. Line 6 is effectively Eq. (8) with λζ = 1 and λIoU = 0.

After pose initialization, we use the se(3) Lie algebra for camera extrinsics
parameterization following BARF [20], and optimize for the extrinsics and in-
trinsics of each input image (Algorithm 1, line 8), with λζ = 0 and λIoU = 1, for
1, 000 iterations with the Adam [15] optimizer and learning rate 0.001. Since θ is
frozen, the optimization effectively only considers the second term from Eq. (8).
Finally, to optimize for the canonical coordinate mappings (Algorithm 1, line
9), for each input image, we run 4, 000 iterations for Eq. (10) with AdamW and
learning rate 0.01. All experiments are run on a single 24GB A5000 GPU.

4 Experiments

In this section, we first benchmark the pose estimation performance of our method
on in-the-wild image captures (Sec. 4.1), and then show qualitative results on
diverse input data and demonstrate applications such as image editing (Sec. 4.2).
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Fig. 4: Pose Estimation for Tourist Landmarks. This is a challenging problem
setting due to the varying viewpoints and lighting conditions, and the proposed method
can successfully align online tourist photos taken at different times and possibly at
different geographical locations, into one canonical representation. The top rows show
input images and the bottom rows show shape templates under aligned poses.

4.1 Pose Estimation

Dataset. We benchmark pose estimation performance under two settings. First,
for a single-instance, varying illumination setting, we use the in-the-wild split
of the NAVI [14] dataset, which contains 35 object-centric image collections
in its official release. Each image collection contains an average of around 60
casual image captures of an object instance placed under different illumination
conditions, backgrounds, and cameras. Second, for a single-category, cross-instance
setting, we use Pix3D [40], a dataset of natural in-the-wild images grouped into
9 categories, each containing multiple shape models of IKEA objects. We use 20
randomly selected images from each category except for “tool” and “misc” as they
involve shapes visually and semantically far apart.

We use identical hyperparameters for all scenes. We use a generic text prompt,
“a photo of sks object”, for initialization for all scenes. The text embeddings
corresponding to the tokens for “sks object” are being optimized using Eq. (5)
with the rest frozen. For each scene, it takes around 1 hr to optimize for NeRF,
15 min for pose initialization, and 45 min for pose optimization.

Baselines. We compare with several multiview reconstruction baselines. In particu-
lar, NeROIC [17] uses the poses from COLMAP, and NeRS [47] and SAMURAI [1]
require initial camera directions. GNeRF [25] is a pose-free multiview 3D recon-
struction method that is originally designed for single-illumination scenes, and is
adapted as a baseline using the same input assumption as ours. PoseDiffusion [42]
is a learning-based framework that predicts relative object poses, using ground
truth pose annotations as training supervision. The original paper takes a model
pre-trained on CO3D [34] and evaluates the pose prediction performance in the
wild, and we use the same checkpoint for evaluation.



12 Y. Zhang et al.

Millennium Falcon

In
pu
ts

Po
se
s

Ironman

Crocs

In
pu
ts

Po
se
s

In
pu
ts

Po
se
s

Office Chairs

Caps

Donkeys

Fig. 5: Object Alignment from Internet Images. Results of an online image search
may contain various appearances, identities, and articulated poses of the object. Our
method can successfully associate these in-the-wild images with one shared 3D space.

Metrics. The varying illuminations pose challenges to classical pose estimation
methods such as COLMAP [38]. We use the official split of the data which
partitions the 35 scenes into 19 scenes where COLMAP converges (SC in Table 1),
and 16 scenes where COLMAP fails to converge (∼ SC). Following [14], we report
the absolute rotation and translation errors using Procrustes analysis [10], where
for each scene, the predicted camera poses are aligned with the ground truth pose
annotations using a global transformation before computing the pose metrics.

Results. Handling different illumination conditions is challenging for all base-
lines using photometric-reconstruction-based optimization [1,17,47] even with
additional information for pose initialization. As shown in Table 1, our approach
significantly outperforms both GNeRF and PoseDiffusion and works on par with
SAMURAI which requires additional pose initialization. We run our full pipeline
with 3 random seeds and observe a consistent performance across seeds. Quali-
tative results of aligned templates and learned canonical coordinate maps are
shown in Figure 3. Failure modes are discussed in Appendix F. In a cross-instance
setting from Table 2, our method achieves a better overall performance compared
to the best-performing baseline from Table 1.

Ablations. Table 1 also shows ablation for the pose fitting objectives. The
initialization is critical (“No Pose Init”), which is expected as pose optimization
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Fig. 6: Cross-Category Results. The method can associate images from different
categories, such as cats and dogs, by leveraging a learned average shape.

is susceptible to local optima [20]. “No IoU Loss”, which is equivalent to using
the initialized poses as final predictions, also negatively affects the performance.

4.2 Applications

We show qualitative results on various in-the-wild image data. Inputs for Figures 4
and 5 are crawled with standard online image search engines and are CC-licensed,
each consisting of 50 to 100 images. Inputs for Figures 6 and 7 come from the
SPair-71k dataset [28]. We use identical hyperparameters for all datasets, except
for text prompt initialization where we use a generic description of the object,
e.g ., “a photo of sks sculpture”, or “a photo of cats plus dogs” for Figure 6.

Single-Instance. Figure 4 shows the result on Internet photos of tourist landmarks,
which may contain a large diversity in illuminations and styles. The proposed
method can handle the variations and align these photos and art pieces to the
same canonical 3D space and recover the relative camera poses.

Cross-Instance, Single-Category. Internet images from generic objects may con-
tain more shape and texture variations compared to landmarks. Figure 5 shows
results for various objects, where the framework infers a canonical shape from
the inputs to capture the shared semantic components being observed.

Cross-Category. The method leverages semantic features to establish alignment
and does not strictly assume that inputs are of the same category. In Figure 6,
the method infers an average shape as an anchor to further reason about the
relative relation among images from different categories.

Inputs with Deformable Shapes. To test the robustness of the method, we run
the pipeline on images of humans with highly diverse poses. Figures 1 and 7 show
that the method assigns plausible poses to the inputs despite the large diversity
of shapes and articulated poses contained in the inputs.

Image Editing. The proposed method finds image correspondence and can be
applied to image editing, as shown in Figure 8. Figure 8 (c) shows that our
method obtains more visually plausible results compared to the Nearest-Neighbor
(NN) baseline using the same DINO features. The baseline matches features in 2D
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Fig. 7: Results on Deformable Objects. The method can be applied to images
with highly diverse articulated poses and shapes as shown in the examples above.

Input Edited Input Edited Input Edited Input Edited
(a) Texture Propagation
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(c) Baseline Comparisons(b) Editing Propagation

NN NN
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Fig. 8: Image Editing. Our method propagates texture in (a) and (c) and regional
editing in (b) to real images. As shown in (c), it achieves smoother results compared to
the nearest-neighbor (NN) baseline thanks to the 3D geometric reasoning.

for each pixel individually and produces noisy results, as discussed in Appendix
C. Quantitative evaluation of correspondence matching and additional qualitative
results for editing are included in Appendix D and E.

5 Conclusion

We have introduced 3D Congealing, 3D-aware alignment for 2D images capturing
semantically similar objects. Our proposed framework leverages a canonical
3D representation that encapsulates geometric and semantic information and,
through optimization, fuses prior knowledge from a pre-trained image generative
model and semantic information from input images. We show that our model
achieves strong results on real-world image datasets under challenging identity,
illumination, and background conditions.
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