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A Appendix

Video. We provide a supplemental video, which we encourage the reviewer to
watch since motion is critical in our results, and this is hard to convey in a static
document.
Code and Model. The code, trained model, and re-targeted 100STYLE datasets
will be made publicly available upon acceptance.

A.1 Pseudo Code

Algorithm 1 SMooDi’s inference
Require: A motion diffusion model M with parameters θM , a style adaptor model A

with parameters θA, style motion sequence s (if any), content texts c (if any).
1: zT ∼ N (0, I) # Sample from pure Gaussian distribution
2: for all t from T to 1 do
3: {r} ← A(zt, t, c, s; θA) # Style Adaptor model
4: ϵt ←M(xt, t, c, {r}; θM ) # Model diffusion model
5: for all k from 1 to K do # Classifier-based style guidance
6: ϵt = ϵt + τ∇ztG(zt, t, s)
7: end for
8: zt−1 ∼ S (zt, ϵt, t) # S(·, ·, ·) represents the DDIM sampling method [10].
9: end for

10: x0 = D(z0)
11: return x0

A.2 Motion Style Transfer

This task involves taking a content motion sequence along with a style motion
sequence and then generating a stylized motion sequence. We treat motion style
transfer as one of our downstream applications and can enable SMooDi to sup-
port it without additional training. Firstly, we adopt the deterministic DDIM
reverse process [43] to obtain the noised latent code zInv

T for the content motion
sequence. The reverse process can be represented at step t as:

zt+1 =

√
αt+1

αt

(
zt +

(√
1

αt+1
− 1

)
−
(√

1

αt
− 1

))
· εθ(zt; t, c, ∅), (8)

where α represents the noise scale. zInv
T can be obtained at the last reverse

step T . We substitute zT , which is initially from a pure Gaussian distribution,
with the DDIM-reversed latent zInv

T in Alg. 1 and adhere to the same infer-
ence procedure to integrate the style condition into the motion content sequence
throughout the denoising steps. Because there are fewer denoising steps com-
pared to the stylized text2motion process, we slightly increase the weights of
each style guidance. Specifically, the number of denoising steps is 30, ws = 6.5
and τ = −0.4
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A.3 Implementation details

Training details. Our framework is implemented in PyTorch and trained on
a single NVIDIA A5000 GPU. We use a batch size of 64, train for 50 epochs,
and use the AdamW optimizer [26] with a learning rate of 1e-5. Training takes
about 1 hour on a single A5000 GPU, totaling 3700 iterations. During train-
ing, we optimize the style adaptor while keeping the parameters of MLD frozen.
Furthermore, to learn both the unconditioned and conditioned models simul-
taneously during training, we randomly set the content text c = ∅ and mask
out the style motion sequence s in the time dimension by 10%. The number of
diffusion steps is 1K during training while 50 during interfering. The weight of
classifier-free content guidance wc is set to 7.5, classifier-free style guidance ws

is set to 1.5, and classifier-based style guidance τ is set to −0.2.
Model details. We select MLD [6] as our pre-trained motion diffusion model
and use its pre-trained weights to initialize both MLD and our style adaptor. The
style adaptor is composed of 4 Transformer Encoder blocks. The input process,
as shown in Fig. 3, primarily involves a CLIP model [38] to encode the content
text c into text embeddings, and linear layers to project the timestep t into time
embeddings. These text embeddings are then added to the time embeddings and
concatenated with the noisy latent zt, serving as input to the subsequent Trans-
former Encoder in the latent diffusion model. The style encoder, as illustrated in
Fig. 3, primarily consists of a single Transformer Encoder designed to encode the
style motion sequences s into style embeddings. These style embeddings are then
added to the concatenated embeddings from the input process and subsequently
fed into the next Transformer Encoder within the style adaptor.
Style Function details. We opt to first train a style classifier, which consists of
a one-layer Transformer block, on the 100STYLE dataset for 100 epochs, using
ground-truth style labels for supervision. Then, we omit the last fully connected
layer to serve as our style function.
Baseline details. Due to the baselines being trained on a small style motion
dataset and using different skeletons, their released pre-trained weights cannot
be directly utilized. We leverage the source code from Motion Puzzle [19] and
Aberman et al. [1] to implement their methods on the combined dataset, Hu-
manML3D + 100STYLE. For a fair comparison, we replace their 4D rotation
with our 6-D rotation-based feature [65]. Given the requirement for style-labeled
motion data in Aberman et al. [1], we follow the same process from Motion Puz-
zle [19] to allow Aberman et al.’s approach to bypass this constraint. Because
these baselines are trained from scratch, we increased their training iterations
to five times more than ours.
Dataset details. Due to some style labels in the 100STYLE dataset inherently
containing content meanings, like ’jump’ and ’kick’, which may conflict with
the content text in the HumanML3D dataset. For example, style motion about
’kick’ will conflict with content text ’a person walks forward and then backward.’
To fairly compute the SRA metric, we follow [24] to categorize style labels in
the 100STYLE dataset into six groups: character (CHAR), personality (PER),
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emotion (EMO), action (ACT), objective (OBJ), and motivation (MOT). No-
tably, the ’ACT’ group contains content meaning; we exclude the ’ACT’ group
style motion when computing the SRA metric for content text from the Hu-
manML3D dataset. It is worth noting that we use all categories of style motion
during training. Table. 4 is the detailed grouping of style labels in the 100STYLE
dataset.

Table 4: The detailed grouping of style labels in the 100STYLE dataset.

Category Label
CHAR Aeroplane, Cat, Chicken, Dinosaur, Fairy, Monk, Morris, Penguin,

Quail, Roadrunner, Robot, Rocket, Star, Superman, Zombie (15)
PER Balance, Heavyset, Old, Rushed, Stiff (5)
EMO Angry, Depressed, Elated, Proud (4)
ACT kimbo, ArmsAboveHead, ArmsBehindBack, ArmsBySide,

ArmsFolded, BeatChest, BentForward, BentKnees, BigSteps,
BouncyLeft, BouncyRight, CrossOver, FlickLegs, Followed,

GracefulArms, HandsBetweenLegs, HandsInPockets, HighKnees,
KarateChop, Kick, LeanBack, LeanLeft, LeanRight, LeftHop,

LegsApart, LimpLeft, LimpRight, LookUp, Lunge, March, Punch,
RaisedLeftArm, RaisedRightArm, RightHop, Skip, SlideFeet,

SpinAntiClock, SpinClock, StartStop, Strutting, Sweep, Teapot,
Tiptoe, TogetherStep, TwoFootJump, WalkingStickLeft,

WalkingStickRight, Waving, WhirlArms, WideLegs, WiggleHips,
WildArms, WildLegs (58)

MOT CrowdAvoidance, InTheDark, LawnMower, OnHeels, OnPhoneLeft,
OnPhoneRight, OnToesBentForward, OnToesCrouched, Rushed (9)

OBJ DragLeftLeg, DragRightLeg, DuckFoot, Flapping, ShieldedLeft,
ShieldedRight, Swimming, SwingArmsRound, SwingShoulders (9)

A.4 Inference times

To evaluate the inference efficiency of our submodules, full model, and baseline
methods for stylized text2motion tasks, we report the average Inference Time
per Sentence measured in seconds (AITS) [6], in Table 5. The AITS is calculated
by setting the batch size to 1 and excluding the time cost for model and dataset
loading on an NVIDIA A5000 GPU.

A.5 More details on classifier-based style guidance

In our experiments, we observed a phenomenon similar to that described in
Text2Image [59]: In the early denoising stages, the generated motion gradually
transitions from random movement to motion that adheres to the content text.
Once the global motion content is shaped, subsequent denoising stages primarily
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Sub-
Modules

MLD w/o
adaptor

w/o
classifier-based

Methods
Overall

Ours MLD +
Motion Puzzle

MLD +
Aberman et al.

Time (s) 0.2139 2.5081 0.5563 Time (s) 3.1133 0.2420 0.2275

Table 5: Inference time. We report the Average Inference Time per Sentence (AITS)
in seconds for baselines and each submodule of ours on stylized text2motion tasks.

focus on modifying the local details and enhancing the quality of the motion.
Introducing classifier-based style guidance at an early stage not only poses chal-
lenges in steering the motion toward the desired style but also affects the mo-
tion’s adherence to the content text. Therefore, we apply classifier-based style
guidance near the last stage, once the rough outline of the global motion content
has been established and the focus shifts to modifying local details. Moreover,
we can iterate classifier-based guidance multiple times K to improve the steered
accuracy:

K =

{
Ke if Ts < t < T,

Kl if t ≤ Ts.

We use Ke = 0, Kl = 5, and Ts = 300 in our experiments.
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Fig. 8: Visual pipeline of the cycle prior-preservation loss.

A.6 More details on cycle prior-preservation loss

We introduce the cycle prior-preservation loss to ensure that generated motion
retains content-invariant characteristics from the content text. Fig. 8 illustrates
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the cycle prior-preservation loss’s visual pipeline. At timestep t, the process be-
gins with sampling content text c, style motion sequence s, and noisy motion
latent zt from the 100STYLE dataset, alongside their equivalents c′, s′, and z′

t

from the HumanML3D dataset. Following this, we facilitate the transfer of con-
tent and style conditions between these datasets, yielding zsht and zhst . Decoding
zhst into the motion space generates the shs motion sequence. Viewed as a style
motion sequence, shs is combined with the original content text c to reconstruct
the noisy latent z̄t. The cycle prior-preservation loss then operates between the
original noisy latent zt and the reconstructed noisy latent z̄t.

A.7 User study details

To mitigate the potential challenges in participant selection when they are asked
to rank or score various methods, we developed an online questionnaire with pair-
wise A/B tests. We randomly selected 12 sets of stylized motion for the stylized
text-to-motion task and 10 sets for the motion style transfer tasks. We recruited
22 human subjects from various universities, representing a range of academic
backgrounds, to participate in our study. At the start of the user study, we intro-
duced the concept of motion stylization, providing examples of both the content
text/motion and style motion for reference. With the reference style motion and
content text/motion provided, participants were asked to evaluate and choose
the better one based on the dimensions of Realism, Style Reflection, and Con-
tent Preservation, respectively. As shown in Fig. 7, our approach achieves better
performance than the baselines on two tasks across three evaluation dimensions.

A.8 More ablation studies

Varying the weight of Classifier-based style guidance. Due to the flexibil-
ity of the style guidance weights, we explore the effects of varying the classifier-
based style guidance weight in Fig. 9. We observe that increasing the classifier-
based style guidance weight boosts the SRA metric but reduces R Precision,
MM Dist, and FID, which means less content preservation but reflecting style
more accurately. It is observed that when the absolute value of the weight of
classifier-based style guidance τ exceeds 0.2, the rate of increase for SRA met-
rics slows down, yet the other metrics continue to deteriorate rapidly. Therefore,
we set τ = −0.2 as a trade-off.

Varying the weights of the classifier-free style guidance. Similar to how
we can adjust the weights of classifier-based style guidance to balance style re-
flection and content preservation, as discussed in Sec. A.8, adjusting the weights
of classifier-free style guidance also involves a trade-off. Fig. 10 illustrates the ef-
fects of varying the classifier-free style guidance weights ws, while setting τ = 0.
As the weights ws increase, the SRA gradually increases, while the R-precision
and FID metrics deteriorate. It is observed that when ws exceeds 1.5, FID, R
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Fig. 9: Varying the weights of the classifier-based style guidance.
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Fig. 10: Varying the weights of the classifier-free style guidance.

Precision, and MM Dist decrease more rapidly, whereas SRA continues to in-
crease at the same rate. Therefore, we set ws = 1.5 to prevent rapid deterioration
in content preservation metrics while ensuring optimal performance in the SRA
metric.

The alternative approach of prior preservation loss. In Sec. 3.3, we in-
troduce our prior preservation loss, which involves sampling instances from the
HumanML3D dataset as well as from the 100STYLE dataset, and then cal-
culating the loss to prevent ’content-forgetting.’ A straightforward alternative
approach involves simply combining the 100STYLE and HumanML3D datasets
to create a larger dataset, and then only utilizing Lstd to fine-tune the style
adaptor. Given the larger number of samples in the HumanML3D dataset com-
pared to the 100STYLE dataset, this approach struggles to effectively capture
style features from instances in the 100STYLE dataset and maintain learned
content in a single optimization step. We term this alternative method the
combined dataset approach, utilizing it to train the style adaptor across the
same number of training iterations. Compared to the second and third rows
in Table 6, the combined dataset approach shows markedly worse performance
in content preservation metrics, such as FID and MM Dist values, indicating
a failure to preserve content. These results demonstrate that our simple prior
preservation loss can effectively learn style features and simultaneously preserve
the learned content with minimal training steps.
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Table 6: Ablation Studies on HumanML3D Content and 100STYLE Styles.

Method FID↓ Foot skating
ratio↓

MM Dist↓ R-precision↑
(Top-3)

Diversity→ SRA(%)↑

Ours (on all) 1.609 0.124 4.477 0.571 9.235 72.418

combined dataset 3.892 0.332 6.152 0.379 6.833 57.573
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(a) MLD (b) Ours.Style Motion Content Text

A person swings 
a golf club.

Fig. 11: A visual example showing conflicts between content text and style motion in
a specific body part.

A.9 Limitation and future plans

A primary limitation of our approach is its reliance on a pre-trained motion dif-
fusion model, which impacts the realism of the generated motions. Consequently,
our approach may produce motions with foot skating for certain content texts.
We present these failure cases in the supplementary video. Incorporating real-
ism guidance [53] or physical constraints [60] might be a promising direction to
improve the realism of the generated motions.

Another limitation is that, due to the classifier-based style guidance po-
tentially requiring iteration, our approach is more time-consuming than MLD
by nearly 10 times. A potential direction for improvement involves decreasing
the number of denoising steps, inherently reducing the iterations required for
classifier-based guidance. Exploring the integration of a one-step model, such
as the consistency model [44], in the motion generation could be a valuable
direction.
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Fig. 12: Comparing our approach with the variant without separating the
classifier-free style guidance from content guidance.


