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Abstract. We introduce a novel Stylized Motion Diffusion model, dubbed
SMooDi, to generate stylized motion driven by content texts and style
motion sequences. Unlike existing methods that either generate motion
of various content or transfer style from one sequence to another, SMooDi
can rapidly generate motion across a broad range of content and diverse
styles. To this end, we tailor a pre-trained text-to-motion model for styl-
ization. Specifically, we propose style guidance to ensure that the gener-
ated motion closely matches the reference style, alongside a lightweight
style adaptor that directs the motion towards the desired style while
ensuring realism. Experiments across various applications demonstrate
that our proposed framework outperforms existing methods in stylized
motion generation. Project Page: https://neu-vi.github.io/SMooDi/
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1 Introduction

We address the problem of generating stylized motion from a content text and
a style motion sequence, as shown in Fig. 1. Human motion can typically be
characterized by two components: content and style. Motion content represents
the nature of a movement, such as walking and waving, and motion style reflects
individual characteristics, such as personality traits (e.g ., old, childlike) and
emotions (e.g ., happy, angry). Traditional pipelines create stylized motions via
motion capture from actors, and are both labor-intensive and time-consuming.
Therefore, decades of research have focused on developing automatic methods
to assist stylized motion creation [1, 11,19].

Motion style transfer [1, 45] is a practical and popular approach for the cre-
ation of stylized motion. It transfers the style from an existing style motion
sequence to another existing content motion sequence. However, when a broad
array of motion needs to be stylized, the pipeline may be inefficient – it would
first require the collection of a large number of content motion sequences and
then apply a motion style transfer method to process each sequence indepen-
dently. Moreover, motion sequences are not always readily available, especially
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Fig. 1: SMooDi can generate realistic, stylized human motions given a con-
tent text a style motion sequence. It also accepts a motion sequence as content
input. Darker color indicates later frames in the sequence. To better showcase the
stylized motion generation, we place the style label for the each of the style motion
sequence. Note that such style labels are not used as model input and shown here for
visualization purpose only. (Best viewed in color.)

for some customized content, such as running along a specific trajectory. They
may still need to be created first by actors or animators for stylization.

Recent advances of human motion generation with diffusion models [10, 17]
have shown impressive results of creating diverse and realistic human motions.
But most efforts have concentrated on efficiently and accurately translating tex-
tual prompts into human motions, focusing on the content only [6, 31,46]. Inte-
grating the style condition to generate stylized motions remains under-explored.

Combining these two lines of research is a straightforward approach to tackle
stylized motion generation, where a motion style transfer method [1, 45] can be
applied to each motion sequence generated by a text-driven motion diffusion
model [6, 31, 46]. However, in addition to the aforementioned inefficiency issue,
this approach has two more limitations. First, error may accumulate across the
pipeline. As, motion style transfer methods are usually trained with high-quality
real-world motion sequences, we empirically observe that their performance may
significantly degrade for imperfect motions produced by text-to-motion tech-
niques. Second, existing motion style transfer methods rely on specialized style
datasets [1,27,52] with limited motion content, which restricts their applications
to motion diffusion models.

In this paper, we present a novel stylized motion diffusion model, dubbed
SMooDi, that customizes a pre-trained text-to-motion model for stylization.
Built upon the pre-trained motion latent diffusion model (MLD) [6], SMooDi
inherits MLD’s ability to generate diverse motion content. At the same time,
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SMooDi can generate motions in a variety of styles according to different style
reference conditions, as shown in Fig. 1. Our main novelty is the style modulation
module, which consists of a style adaptor and a style guidance module. First of
all, drawing inspiration from controllable image generation [61], the style adaptor
is designed to predict residual features conditioned on style reference motion se-
quence within each attention layer of MLD. It is useful for incorporating the style
condition while ensuring the realism of the generated motion. Second, we design
both classifier-free and classifier-based style guidance to more precisely control
the stylized motion generation. Specifically, the classifier-free style and content
guidance are linearly combined, where we can easily strike a balance between
preserving content and reflecting style within the generated motion. At the same
time, we design an additional classifier-based style guidance mechanism. It is an
analytic function quantifying the disparity between the generated motion and
the style reference motion in a style-centric embedding space, whose gradients
are subsequently employed to guide the generated motion closer to the intended
style. Our style adaptor and guidance module are designed to be complemen-
tary, which lead to high-quality stylized motion generation. The two modules are
jointly optimized in a feature space instead of sequence-wise separate stitching,
thereby avoiding the error accumulation issue.

Although our approach is primarily designed for stylized motion generation
driven by content text, we can utilize DDIM-Inversion [43] to identify the noisy
latent corresponding to the content motion sequence. Following the same pro-
cedure as for text-driven content, SMooDi is capable of facilitating stylized mo-
tion generation based on content motion sequences. In other words, motion style
transfer is a downstream application of our approach should it be desired in
practice, e.g ., to stylize the already created motion sequences.

Experiments on the HumanML3D [16] and 100STYLE [27] datasets demon-
strate that SMooDi surpasses other baseline models in generating stylized motion
driven by content text, excelling in both content preservation and style reflection.
More importantly, unlike previous methods that require individual fine-tuning
for each style [12, 30, 54], SMooDi successfully integrates diverse content from
the HumanML3D dataset and various styles from the 100STYLE dataset into a
single model without requiring additional tuning during inference.

To summarize, our contributions are: (1) To our knowledge, SMooDi is the
first approach that adapts a pre-trained text-to-motion model to generate di-
verse stylized motion. (2) We introduce a novel style modulation module that
utilizes a stylized adaptor and a style classifier guidance to enable stylized mo-
tion generation while ensuring style reflection, content preservation, and realism.
(3) Experiments demonstrate that SMooDi not only sets a new state of the art in
stylized motion generation driven by content text but also achieves performance
comparable to state-of-the-art methods in motion style transfer.
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2 Related Work

2.1 Human Motion Generation

Human motion generation has attracted great attention [4, 5, 7, 9, 14, 16, 20, 32,
34–36, 47, 50, 51, 57, 58, 63]. Inspired by the impressive performance of diffusion
models in image generation, a lot of works [6,8,13,18,22,23,25,29,32,33,39,41,46,
48,53,56,60,62,64] utilize diffusion models to generate human motion. MDM [46]
facilitates high-quality generation and versatile conditioning, providing a solid
baseline for novel motion generation tasks. MLD [6] minimizes computational
overhead during both training and inference by establishing the diffusion process
within the latent space. Driven by the efficacy of diffusion models for control and
conditioning, several studies have leveraged pre-trained motion diffusion models
to generate long-sequence motions [41], enable human-object interactions [29],
and control the joint trajectory of generated motions [23,53]. However, there is no
work exploring how to leverage pre-trained motion diffusion models to generate
diverse stylized motion. While some studies [2,3,37] have enabled stylized motion
generation in their diffusion pipeline, their methods are trained from scratch,
and the supported styles are restricted by their motion content dataset. It is
challenging for them to simultaneously support diverse motion content and style.
In this work, we build upon a pre-trained motion diffusion model, MLD, and
explore how to fine-tune it on a larger motion style dataset, 100STYLE, to learn
diverse motion styles while retaining the ability to support motion generation
across a wide range of content.

2.2 Motion Style Transfer

Recently, motion style transfer has seen quality enhancements through the adop-
tion of various advanced neural architectures and generative models, such as
graph neural networks [28], time-series models [27, 45], normalizing flows [49],
and diffusion models [3,37]. Specifically, Aberman et al. [1] designed a two-branch
generative adversarial network to disentangle motion style from content and fa-
cilitate their re-composition. Their approach effectively breaks the constraint
of requiring a paired motion dataset. Motion Puzzle [19] realizes a framework
that can control the style of individual body parts. Above methods extract both
content and style features from the motion sequence. Moreover, Guo et al. [15]
leverage the latent space of pre-trained motion models to enhance the extrac-
tion and infusion of motion content and style. However, a major limitation of
these models is their reliance on specialized style datasets [1, 52] with limited
motion content, which restricts their applications. In this work, we customize
a pre-trained text-to-motion model for stylization, thus inheriting its ability to
generate diverse motion content.

3 Stylized Motion Diffusion Model

In this section, we introduce our proposed SMooDi for incorporating style con-
ditions from a style motion sequence into a content-oriented pre-trained motion
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Fig. 2: Overview of SMooDi. Our model generates stylized human motions from
content text and a style motion sequence. At the denoising step t, our model takes the
content text c, style motion s, and noisy latent zt as input and predicts ϵt, which is
then transferred to zt−1. This denoising step is repeated T times to obtain the noise-
free motion latent z0, which is fed into a motion decoder D to produce the stylized
motion.

diffusion model (MLD [6]). Fig. 2 presents an overview of SMooDi. Following the
setting in MLD [6], we place the diffusion process in the motion latent space. Let
ϵθ denote the latent denoiser (a UNet parameterized by θ), and {zt}Tt=0 denote
the sequence of noisy latents, where zT is a Gaussian noise. Given a content
prompt c and a style prompt s, we define ϵt = ϵθ(zt, t, c, s) for the denoising at
step t (0 < t ≤ T ). A cleaner noisy latent zt−1 can be obtained by subtract-
ing ϵt from zt. The denoising step is repeated T iterations until a clean latent
z0 is obtained. It can then be decoded by a motion decoder D into a realis-
tic motion sequence x ∈ RN×H that accurately reflects both the content and
style conditions. Here, N represents the length of the motion sequence, and H
is the dimension of human motion representations. We employ the same motion
representations as in HumanML3D [16], where H = 263.

As shown in the Fig. 2, the content prompt is a text description, and the
style prompt is provided by a reference style motion sequence s ∈ RN×H . In
this section, we focus on using a text description as the content prompt c to
explain our proposed stylized motion diffusion model. By employing the DDIM-
Inversion [43] to identify the noisy latent corresponding to a motion content
sequence, we can effectively use motion sequences as content prompts to gen-
erate stylized motions. In other words, motion style transfer is a downstream
application of our proposed approach.

Our proposed stylization module consists of a style adaptor and a style guid-
ance module. We will explain them separately in the rest of this section.

3.1 Style Adaptor

Although LoRA has been successfully used to incorporate “style” into the mod-
els in image domain [21,42], they typically require training a separate LoRA for
each style. In contrast, we focus on fine-tuning the model just once to adapt to
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Fig. 3: Detailed illustration of our proposed style adaptor. The style adaptor
is connected to the motion diffusion model via zero linear layer. The output of the
style adaptor from each Transformer encoder is added to the motion diffusion model
to steer the predicted noise towards the target style.

various motion styles, where adapting ControlNet [61] is more suitable. There-
fore, we design a content-aware style adaptor based on ControlNet. This adaptor
incorporates the motion style condition into the pre-trained MLD [6].

Instead of learning to disentangle motion style from content from scratch on
a large motion dataset, we redirect our focus towards capturing the motion style
while ensuring the preservation of diverse motion content within the pre-trained
MLD framework. Specifically, it consists of a trainable copy of the Transformer
Encoder from the latent diffusion model in MLD. The architecture of the style
adaptor is illustrated in Fig. 3. An independent style encoder is utilized to ex-
tract the style embedding from the style motion sequence s. The style adaptor
takes the same content prompt c, the noised latent zt and timestep t as in
MLD, and the extracted style embedding. Each Transformer layer in the origi-
nal latent diffusion model and the style adaptor is connected via a linear layer,
with both weight and bias initially set to zeros. As training progresses, the style
adaptor learns the style constraints and gradually applies the learned feature
corrections to the corresponding layers in the latent diffusion model, thereby
implicitly steering the output towards the desired style.

3.2 Style Guidance

The style adaptor alone may not be sufficient to successfully incorporate the style
condition. We further leverage both the classifier-free and classifier guidance to
further enhance the stylization of a motion diffusion model. The combination of
two types of guidance effectively ensures that generated motion meets multiple
constraints while maintaining realism, complementing the style adaptor.
Classifier-free Style Guidance. With the introduction of an extra style con-
dition, we can divide the conditioned classifier-free guidance into two parts.

ϵθ(zt, t,c, s) = ϵθ(zt, t, ∅, ∅)+
wc(ϵθ(zt, t, c, ∅)− ϵθ(zt, t, ∅, ∅))︸ ︷︷ ︸

Classifier-free Content Guidance

+ws(ϵθ(zt, t, c, s)− ϵθ(zt, t, c, ∅))︸ ︷︷ ︸
Classifier-free Style Guidance

, (1)
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where wc and ws represent the strengths of the classifier-free guidance for the
condition c and s, respectively. We slightly abuse the notations here by using ∅
to denote a condition is not used. The classifier-free content guidance is the same
as in MLD, which can facilitate the text-to-motion generation process in combi-
nation with the first term’s unconditioned guidance. Our proposed classifier-free
style guidance works in a similar way. Note that ϵθ(zt, t, c, s) is MLD model
with the style adaptor incorporated introduced in the previous section, which
takes both a textual prompt and style motion sequence as input. By contrasting
the text-driven denoising output with and without the style condition, it can
highlight the effectiveness of the style input s and facilitate the generation of
stylized motion driven by content text. Our insight here is that by dividing the
conditioned guidance into content and style components separately, we can eas-
ily strike a balance between preserving content and reflecting style within the
generated motion.

To better understand the classifier-free content and style guidance, we visu-
alize each of them through decoding denoised latent z0 into the motion space.
As illustrated in Fig.4(a), the content guidance ensures the motion generation
is faithful to the textual prompt, while the style guidance, as shown in Fig.4(b),
emphasizes style-related characteristics in the output. Combining both forms of
guidance results in a stylized motion that adheres to both content and style
conditions, as illustrated in Fig. 4(c).
Classifier-based Style Guidance. To further improve the stylization of a mo-
tion diffusion model, we adopt the classifier guidance [10,59] to provide stronger
guidance to the generated motion towards the desired style. The core of our
classifier-based style guidance is a novel analytic function G(zt, t, s), which cal-
culates the L1 distance between the style embedding of the generated clean
motion x̂0 at denoising step t and the reference style motions s. The function’s
gradient is utilized to steer the generated motion towards the desired style.

ϵθ(zt, t, c, s) = ϵθ(zt, t, c, s) + τ∇zt
G(zt, t, s),

G(zt, t, s) = |f(x̂0)− f(s)|, (2)

where τ adjusts the strength of reference-style guidance and f denotes the style
feature extractor. The generated motion x̂0 is obtained by first converting the
denoising output latent zt into the predicted clean latent as shown below:

ẑ0 =
zt −

√
1− αtεθ(zt, t, c, s)√

αt
, (3)

where αt denotes the pre-defined noise scale in the forward process of the diffu-
sion model. The predicted clean latent ẑ0 is then input into the motion decoder
D to obtain the generated motion.

We obtain the style feature extractor by training a style classifier on the
100STYLE dataset [27] and removing its final layer. We refer the readers to
more details in the supplementary materials. The training of the style feature
extractor with ground-truth style labels for supervision enables it to effectively
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Fig. 4: Visual illustrations of the classifier-free and clasifier-based style guid-
ance. (a) and (b) respectively show the classifier-free content and style guidance; (c)
displays the initial stylized motion resulting from the combination of (a) and (b); (d)
illustrates the refined stylized motion modified by the classifier-based style guidance.

capture style-related features. Therefore, style classifier guidance can provide
more guidance to the stylized motion generation.
Combination of the Two Style Guidance. The classifier-free and classifier-
based style guidance are designed to complement each other, each playing a
vital role in accurately reflecting the target style in the generated motions. As
illustrated in Fig. 4, the desired style motion is “arms open wide to the sides
like an airplane”. The classifier-free style guidance (Fig. 4(b)) can capture style-
related characteristic in a reasonably accurate manner. When combined with the
classifier-free content guidance, it depicts the desired style (Fig.4(c)). Refined
further by the classifier-based style guidance, the stylization is more authentic,
where the person’s harms are more open (Fig.4(d)). In addition to such visual
results, quantitative ablation studies also verify the effectiveness of our proposed
both classifer-free and classifer-based style guidance.

At the same time, although classifier-based style guidance offers precise style
control, its effectiveness may be compromised when the content text significantly
diverges from locomotion-related movements. This is because the style feature
function is trained solely on the 100STYLE dataset, which contains only such
movements. Over-reliance on style classifier guidance risks producing motions
that fail to execute the desired actions, leading to unrealistic and physically
implausible movements. Therefore, we leverage a content-aware style adaptor
that establishes the fundamental style direction, while style classifier guidance
refines this base for a more precise outcome. The effectiveness of this design is
verfied in our ablation studies.

3.3 Learning Scheme

Following [61], a straightforward approach to train SMooDi is to freeze the pa-
rameters of MLD and solely train the style adaptor on the 100STYLE dataset
using the following loss function:

Lstd = Eϵ,z

[
∥ϵθ(zt, t, c, s)− ϵ∥22

]
, (4)

where ϵ ∼ N (0, I) represents the ground-truth noise added to z0 . In our ex-
periments, however, we found that this loss function alone leads to an issue of
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“content-forgetting”, where the model progressively looses the MLD’s ability to
generate motions with diverse contents. To address this issue, we design a con-
tent prior preservation loss Lpr. Specifically, we randomly sample motions from
the HumanML3D dataset to compute a prior preservation loss when fine-tuning
SMooDi on the 100STYLE dataset.

Lpr = Eϵ′,z′

[
∥ϵθ(z′

t, t, c
′, s′)− ϵ′∥22

]
, (5)

where z′
t, c′ and s′ represents the motion latent, content prompt and style motion

sequence derived from the HumanML3D dataset. ϵ′ is the noise map added to
z′
0. A similar solution is used in DreamBooth [40] to solve the “language drift”

problem, where images generated from the frozen pretrained image generation
model are utilized to enforce a class-prior preservation loss during model fine-
tuning. Our content preservation loss can effectively mitigate content forgetting
while learning diverse motion styles from the 100STYLE dataset.

To further encourage the style adaptor to focus on motion style, while also
ensuring that the latent diffusion model in MLD handles motion content well, we
introduce an additional cycle prior-preservation loss, inspired by [19,55]. Specif-
ically, we start this process by randomly sampling content text and motion style
sequences from both the 100STYLE and HumanML3D datasets simultaneously.
Then, we intermix the content text and motion style from these sequences with
each other. Finally, we repeat this process to reconstruct the original motion
sequences. The formula is expressed as follows:

Lcyc = Ez,z′,ϵ,ϵ′

[∥∥ϵθ(zsh
t , t, c, shs) + ϵθ(z

hs
t , t, c′, ssh)− ϵ− ϵ′

∥∥2
2

]
, (6)

where shs denotes the motion sequence created by merging content from the
HumanML3D dataset with style from the 100STYLE dataset. Similarly, ssh

represents the sequence where content is sourced from the 100STYLE dataset
and style from the HumanML3D dataset. The noised latent codes zsh

t and zhs
t

correspond to ssh and shs, respectively. Essentially, the cycle prior-preservation
loss exchanges diverse content and style between two datasets, encouraging the
content text to remain invariant in the generated motion under forward and
backward translation. Overall, the training loss function of our framework is
defined as follows:

Lall = Lstd + λprLpr + λcycLcyc (7)

where λpr and λcyc are hyperparameters. We refer readers to the pseudocode
and illustration for training in the supplementary material for more details.

4 Experiments

We conduct experiments on both stylized text2motion and motion style transfer
to demonstrate the effectiveness of our framework. Both tasks use a motion se-
quence as a style prompt, with the primary difference being their content prompt
input: the former utilizes text, while the latter relies on motion sequences.
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Table 1: Comparison with baseline methods on stylized motion generation driven by
content text, using a combination of the 100STYLE (providing style) and HumanML3D
datasets (providing content).

Method FID ↓ Foot skating
ratio ↓

MM Dist ↓ R-precision ↑
(Top-3)

Diversity → SRA ↑

Ours 1.609 0.124 4.477 0.571 9.235 72.418

MLD+Motion Puzzle [19] 6.127 0.185 6.467 0.290 6.4762 63.769
MLD+Aberman et al. [1] 3.309 0.347 5.983 0.406 8.816 54.367

ChatGPT+MLD 0.614 0.131 4.313 0.605 8.836 4.819
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Fig. 5: Qualitative comparisons of our approach and baseline methods on two stylized
motion generation task.

Datasets. We utilize the HumanML3D dataset [16] as our motion content
dataset and the 100STYLE dataset [27] as our motion style dataset. The Hu-
manML3D dataset is the largest motion capture dataset, featuring text anno-
tations and comprising 14,646 motions and 44,970 motion annotations. Follow-
ing the processing approach outlined in [16], we preprocess the HumanML3D
dataset to obtain consistent motion representations. On the other hand, the
100STYLE dataset [27], being the largest motion style dataset, comprises up to
1,125 minutes of motion sequences, showcasing a wide array of 100 diverse lo-
comotion styles. Due to differences in skeletons between the 100STYLE dataset
and HumanML3D, we retarget the motions from 100STYLE to match the Hu-
manML3D (SMPL-H) skeleton. Following this alignment, we apply the same pro-
cessing steps as used for the HumanML3D dataset to preprocess the 100STYLE
dataset. Moreover, as the 100STYLE dataset lacks text descriptions, we leverage
MotionGPT [20] to generate pseudo text descriptions for the motion sequences
in the 100STYLE dataset.
Evaluation metrics are designed to assess three dimensions: Content Preserva-
tion, Style Reflection, and Realism. For content preservation and style reflection
assessment, we employ metrics consistent with those used in [6]: motion-retrieval
precision (R precision), Multi-modal Distance (MM Dist), Diversity, and Frechet
Inception Distance (FID). Additionally, recognizing the common foot skating is-
sues in kinetics-based motion generation methods, we incorporate the foot skat-
ing ratio metric proposed by [23] into our motion quality evaluation. For style
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reflection, we employ Style Recognition Accuracy (SRA) [19]. During evaluation,
we randomly select a content text from the HumanML3D dataset and a motion
style sequence from the 100STYLE dataset to generate the stylized motion. We
then use a pre-trained style classifier to compute the SRA for the generated mo-
tion. It’s noteworthy that some motion style labels in the 100STYLE dataset,
like ’kick’ and ’jump,’ inherently convey motion content, which may conflict
with the content text in HumanML3D dataset. To address this, we categorize
the motion style labels into server groups following the approach by Kim et
al. [24], Specifically excluding the ’ACT’ group ensures that only motion style
labels not conflicting with motion content are considered when computing the
SRA metric. Further details about the evaluation metrics are provided in the
supplementary material.
Baselines. For motion style transfer task, we compare our methods with two
state-of-the-art methods, namely Motion Puzzle [19] and Aberman et al. [1]. To
ensure a fair comparison, we train the compared methods under the same settings
as ours, using a combined dataset comprising HumanML3D and 100STYLE. Due
to the constraints of the multi-class discriminator in Aberman et al., which re-
quires style labels, we adopt the training method outlined in Motion Puzzle
to eliminate the need for style labels. For stylized text2motion task, we com-
pare our method against baselines capable of generating stylized motion from
content text and style motion sequences. The straightforward baselines involve
applying motion style transfer methods to the motion sequences generated by the
text2motion model. To align with our approach that uses a pre-trained motion
diffusion model, the text2motion models in the baselines for stylized motion gen-
eration select MLD, and the motion style transfer methods are consistent with
those used in the motion style transfer task. For the stylized text2motion task,
we compare our method against two kinds of baselines capable of generating
stylized motion from content text and style motion sequences. The first kind of
baseline involves applying motion style transfer methods to the motion sequences
generated by the text2motion model. To align with our approach that uses a pre-
trained motion diffusion model, the text2motion models select MLD [6], and the
motion style transfer methods are consistent with those used in the motion style
transfer task. The second kind of baseline involves using ChatGPT to merge
style labels from 100STYLE with text from HumanML3D into a sentence. For
example, given the content text ’a person walks.’ and the style label ’old,’ we
obtain ’an elderly person walks.’ This merged sentence is then fed to MLD.

4.1 Comparison to Baseline Methods

Quantitative and Qualitative For the task of stylized text2motion, Table 1
reports the comparisons of our method with the three baseline methods.

As shown in the 3rd row of Table 1, ChatGPT+MLD only achieves around
5.29% in terms of SRA, indicating that MLD cannot enable stylized generation
from text alone, even though it contains style descriptions. Notably, our method
outperforms the two baselines that combine MLD with motion style transfer
methods in all metrics.
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Table 2: Comparison with baseline methods on motion style transfer.

(a) Evaluation on HumanML3D dataset

Method Foot skating
ratio ↓

FID ↓ SRA↑(%)

Ours 0.095 1.582 65.147
Motion Puzzle [19] 0.197 6.871 67.233
(Aberman et al [1]) 0.338 3.892 61.006

(b) Evaluation on Xia dataset

Method Foot skating
ratio↓

FID↓ SRA↑(%) CRA↑(%)

Ours 0.0317 4.663 61.111 45.555
Motion Puzzle [19] 0.0316 5.360 67.778 25.556
(Aberman et al [1]) 0.0260 5.681 56.667 34.444

Specifically, our method performs better than MLD+Motion Puzzle in the
SRA metric by 13.56% and significantly outperforms MLD+Aberman et al. in
the FID metric by 51.38% and 0.64% in the R-precision metric. The first row
of Fig. 5 validates our observation, where the motion generated by our method
performs better in adhering to both content and style constraints than baseline
methods. In contrast, MLP+Aberman et al. can successfully perform the action
but fail to reflect the motion style in Fig.5(b), while Motion Puzzle can accurately
reflect the motion style but struggles to effectively perform the action in Fig.5(a).

For the task of motion style transfer, since it does not take content text as
input, text-motion related metrics such as MM Dist, R-precision, and Diver-
sity are not applicable and thus are not reported. Part (a) of Table 2 presents
a comparison between our method and the two baseline methods, using the
HumanML3D dataset as the motion content source and drawing motion styles
from the 100STYLE dataset. Our method delivers competitive results in the
SRA metric and excels in the FID and foot skating ratio metrics. Specifically,
we see a substantial 59.35% improvement in the FID metric over Aberman et
al. [1]. To more effectively compare the generalizability of different methods,
we conduct experiments on the Xia dataset [52], a small, specific motion style
dataset that was unseen by our and the baseline models during training. Be-
cause motion content labels are present in the Xia dataset, we report the Con-
tent Recognition Accuracy (CRA). Part (b) of Table 2 showcases the results.
Our method maintains competitive performance in the SRA metric, with only a
marginal 9.83% decrease in SRA compared to Motion Puzzle. On the contrary,
our method exhibits a significant 32.26% increase in the CAR metric relative to
Aberman et al., and a notable 78.26% enhancement over Motion Puzzle. Our
method achieves a better balance between style reflection and content preserva-
tion. The second row of Fig. 5 validates this observation. It is worth noting that,
unlike other motion style transfer methods, our method does not incorporate ob-
jectives for enabling stylized motion generation using motion content sequences.
Through simple DDIM-Inversion and without any additional optimization or
regularization, our method achieves performance comparable to existing motion
style transfer methods.
User Study. Due to the highly subjective nature of stylized motion, we con-
duct User studies using pairwise comparisons to further evaluate our proposed
method in the tasks of stylized motion generation and motion style transfer. We
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Table 3: Ablation Studies on HumanML3D Content and 100STYLE Styles.

Method FID↓ Foot skating
ratio↓

MM Dist↓ R-precision↑
(Top-3)

Diversity→ SRA(%)↑

Ours (on all) 1.609 0.124 4.477 0.571 9.235 72.418

w/o Lcyc 2.046 0.136 4.465 0.569 8.869 64.866
w/oLpr + Lcyc 5.996 0.166 6.098 0.335 7.456 81.841

w/o classifier-based 1.050 0.111 4.085 0.630 9.445 20.245
w/o adaptor 2.984 0.123 4.526 0.550 8.372 69.952

Style Motion (a) W/o 𝑳𝒑𝒓 + 𝑳𝒄𝒚𝒄 (c) W/o adaptor (d) W/o classifier-based(b) W/o 𝑳𝒄𝒚𝒄 (e) Full model

Text:  A person walks forward and then sits down. 

Fig. 6: Visual comparisons of the ablation designs and our full model.

recruited 22 human subjects to participate in the study. In each test, participants
are presented with two 4-second video clips synthesized by our method and one
comparison method. They are then required to select their preferred clip while
considering Realism, Style Reflection, and Content Preservation dimensions, re-
spectively. As shown in Fig. 7, our method receives more user appreciation com-
pared to two baselines across three dimensions in two tasks. Further user study
details are provided in supplementary.

4.2 Ablation studies

To validate the effectiveness of our framework’s design choices, we have con-
ducted several ablation studies: the first assesses the impact of each loss func-
tion term, while the second evaluates the influence of the style adaptor and style
guidance during sampling.
Loss Components.Firstly, we exclude the cycle-prior term in the loss func-
tion, denoted as w/o Lcyc. Comparing the results in the 1st and 2nd rows in
Table 3, we observe that our full model outperforms in all content preserva-
tion and style reflection metrics. The motion generated by our approach can
still perform the content adhering to the text description but performs worse in
accurately reflecting the motion style, as reflected by the arms not being fully
extended horizontally.

Since the cycle prior-preservation term is built upon the prior-preservation
term, it is meaningless to exclude Lpr while retaining Lcyc. Therefore, we fur-
ther exclude both the prior-preservation and cycle-prior term, denoted as
w/oLpr + Lcyc in the 3rd row. By comparing the results in the 2nd and 3rd

rows of Table 3, we notice that while the number of SRAs is higher in the third
row, other metrics show a significant decline. Specifically, in terms of the FID
metric, performance deteriorates by more than 229%. Indeed, without Lpr, the



14 Zhong et al.

72.00%

64.40%
70.50% 73.50%

78.00% 77.30%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Our vs MLD+Motion Puzzle Our vs MLD+Aberman et al

Style Reflection Content Preservation Realism

68.20% 69.70%
74.20%

81.80%83.30% 80.30%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Our vs Motion Puzzle Our vs Aberman et al

Style Reflection Content Preservation Realism

Stylized Text2Motion Motion Style Transfer

Fig. 7: User Study on two stylized motion generation tasks.

model tends to lose the ability to translate content text into corresponding mo-
tion, a phenomenon named ’content-forgetting’ as described in Sec. 3.3. Fig. 6(a)
validates our observation, showing that the content in the generated motion sig-
nificantly deviates from the text descriptions and closely resembles the style
motion sequence.

Style Adaptor and Style Guidance. Initially, we compare our model to a
variant without the classifier-based guidance, w/o classifier-based, to demon-
strate its effectiveness. The 5th row of Table 3 presents the results. Consistent
with the findings in [19], a reasonable trade-off between content preservation and
style reflection is observed. Although classifier-based style guidance may slightly
affect the content preservation metrics, it significantly boosts the model’s perfor-
mance in the SRA metric, yielding an impressive 208% improvement.Fig. 6(d)
demonstrates that, without classifier-based style guidance, the generated mo-
tions can reflect the motion style, yet they still fall short of fully achieving the
target style. Classifier-based style guidance can effectively bridge this gap.

Subsequently, as shown in Table 3, we evaluate a variant without the style
adaptor, denoted as w/o adaptor (the last row). In cases where the SRA values
are close, the style adaptor improved the FID metric by about 80.46%. Fig. 6(c)
shows that the generated motion can greatly perform the ’walk’ action while
successfully reflecting the style, but fails to perform the ’sit’ action. This indi-
cates that the effectiveness of classifier-based style guidance diminishes when the
content text deviates from locomotion-related movements. Relying solely on it
may even adversely affect action performance.

5 Conclusion

In this work, we introduce the Stylized Motion Diffusion Model, a novel ap-
proach that leverages a pre-trained motion diffusion model to facilitate stylized
motion generation driven by content text. By integrating a style adaptor and
style classifier guidance, our method is capable of producing realistic human mo-
tions that accurately reflect both the content text descriptions and the desired
motion style from motion sequences. Through detailed ablation studies, we have
demonstrated the effectiveness of each component in our framework.
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