
SV3D: Novel Multi-view Synthesis and 3D
Generation from a Single Image using Latent

Video Diffusion

Vikram Voleti∗, Chun-Han Yao∗, Mark Boss∗, Adam Letts, David Pankratz,
Dmitry Tochilkin, Christian Laforte, Robin Rombach, and Varun Jampani

Stability AI

SV3D

3D Optimization Generated MeshesNovel Multi-view Synthesis

Fig. 1: Stable Video 3D (SV3D). From a single image, SV3D generates consistent
novel multi-view images. We then optimize a 3D representation with SV3D-generated
views resulting in high-quality 3D meshes.

Abstract. We present Stable Video 3D (SV3D) — a latent video diffu-
sion model for high-resolution, image-to-multi-view generation of orbital
videos around a 3D object. Recent works propose to adapt 2D generative
models for novel view synthesis (NVS) and 3D optimization. However,
these methods have several disadvantages due to limited views or in-
consistent NVS, affecting the performance of 3D object generation. In
this work, we propose SV3D that adapts image-to-video diffusion model
for novel multi-view synthesis and 3D generation, thereby leveraging the
generalization and multi-view consistency of the video models, while fur-
ther adding explicit camera control for NVS. We also propose improved
3D optimization techniques for image-to-3D generation using SV3D and
its NVS outputs. Extensive experiments on multiple datasets with 2D
and 3D metrics and user study demonstrate SV3D’s state-of-the-art per-
formance on NVS as well as 3D reconstruction compared to prior works.

Keywords: 3D synthesis · Video generation · Novel view synthesis

1 Introduction

Single-image 3D object reconstruction is a long-standing problem in computer
vision with a wide range of applications in game design, AR/VR, e-commerce,
robotics, etc. It is a highly challenging and ill-posed problem as it requires lifting
2D pixels to 3D space while also reasoning about the unseen portions of the
object in 3D.
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Despite being a long-standing vision problem, it is only recently that practi-
cally useful results are being produced by leveraging advances in the generative
AI. This is mainly made possible by the large-scale pretraining of generative mod-
els which enables sufficient generalization to various domains. A typical strategy
is to use image-based 2D generative models (e.g ., Imagen [42], Stable Diffusion
(SD) [40]) to provide a 3D optimization loss function for unseen novel views of a
given object [23,31,37]. In addition, several works repurpose these 2D generative
models to perform novel view synthesis (NVS) from a single image [26,27,30,54],
and then use the synthesized novel views for 3D generation. Conceptually, these
works mimic a typical photogrammetry-based 3D object capture pipeline, i.e.,
first photographing multi-view images of an object, followed by 3D optimization;
except that the explicit multi-view capture is replaced by novel-view synthesis
using a generative model, either via text prompt or camera pose control.

A key issue in these generation-based reconstruction methods is the lack of
multi-view consistency in the underlying generative model, resulting in incon-
sistent novel views. Some works try to address the this by jointly reasoning a
3D representation during NVS [6, 15, 27], but at the cost of high compute and
data, often still resulting in inconsistent geometric and texture details. In this
work, we tackle this issue by adapting a high-resolution, image-conditioned video
diffusion model for NVS followed by 3D generation.
Novel Multi-view Synthesis. We adapt a latent video diffusion model (Stable
Video Diffusion - SVD [2]) to generate multiple novel views of a given object
with explicit camera pose conditioning. SVD demonstrates excellent multi-view
consistency for video generation, and we repurpose it for NVS. In addition, SVD
also has good generalization capabilities as it is trained on large-scale image and
video data that are more readily available than large-scale 3D data. In short, we
adapt the video diffusion model for NVS from a single image with three useful
properties for 3D object generation: pose-controllable, multi-view consistent, and
generalizable. We call our resulting NVS network ‘SV3D’. To our knowledge, this
is the first work that adapts a video diffusion model for explicit pose-controlled
view synthesis. Some contemporary works such as [2, 29] demonstrate this, but
only generate orbital videos without any explicit camera control.
3D Generation. We then utilize our SV3D model for 3D object generation
by optimizing a NeRF and DMTet mesh in a coarse-to-fine manner. Benefiting
from the multi-view consistency in SV3D, we are able to produce high-quality
3D meshes directly from the SV3D novel view images. We also design a masked
score distillation sampling (SDS) [37] loss to further enhance 3D quality in the
regions that are not visible in the SV3D-predicted novel views. In addition, we
propose to jointly optimize a disentangled illumination model along with 3D
shape and texture, effectively reducing the issue of baked-in lighting.

We perform extensive comparisons of both our NVS and 3D generation re-
sults with respective state-of-the-art methods, demonstrating considerably bet-
ter outputs with SV3D. For NVS, SV3D shows high-level of multi-view consis-
tency and generalization to real-world images while being pose controllable. Our
resulting 3D meshes are able to capture intricate geometric and texture details.
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2 Background

2.1 Novel View Synthesis

We organize the related works along three crucial aspects of novel view synthesis
(NVS): generalization, controllability, and multi-view (3D) consistency.
Generalization. Diffusion models [14, 48] have recently shown to be power-
ful generative models that can generate a wide variety of images [3, 40, 41] and
videos [2, 12, 53] by iteratively denoising a noise sample. Among these mod-
els, the publicly available Stable Diffusion (SD) [40] and Stable Video Diffusion
(SVD) [2] demonstrate strong generalization ability by being trained on ex-
tremely large datasets like LAION [43] and LVD [2]. Hence, they are commonly
used as foundation models for various generation tasks, e.g . novel view synthesis.
Controllability. Ideally, a controllable NVS model allows us to generate an
image corresponding to any arbitrary viewpoint. For this, Zero123 [26] repur-
poses an image diffusion model to a novel view synthesizer, conditioned on a
single-view image and the pose difference between the input and target views.
Follow-up works such as Zero123XL [8] and Stable Zero123 [49] advance the
quality of diffusion-based NVS, as well as the trained NeRFs using SDS loss.
However, they only generate one novel view at a time, and thus are not designed
to be multi-view consistent inherently. Recent works such as EscherNet [21] and
Free3D [64] are capable of better multi-view consistency with intelligent camera
position embedding design. However, they only use image-based diffusion mod-
els, and generate images at 256×256 resolution. We finetune a video diffusion
model to generate novel views at 576×576 resolution.
Multi-view Consistency. Multi-view consistency is the most critical require-
ment for high-quality NVS and 3D generation. To address the inconsistency is-
sue, MVDream [46], SyncDreamer [27], HexGen3D [30], and Zero123++ [45] pro-
pose to generate multiple (specific) views of an object simultaneously. However,
they are not controllable: given a conditional image, they only generate specific
views, not arbitrary viewpoints. Moreover, they were finetuned from image-based
diffusion models, i.e. multi-view consistency was imposed by adding interaction
among the multiple generated views through cross-attention layers. Hence, their
output quality is limited to the generalizability of their base image-based model,
and their 3D finetuning dataset. Efficient-3DiM finetunes the SD model with a
stronger vision transformer DINO v2 [36]. Consistent-1-to-3 [59] and SPAD [18]
leverage epipolar geometry. One-2-3-45 [25] and One-2-3-45++ [24] train ad-
ditional 3D network using the 2D generator’s outputs. MVDream [46], Con-
sistent123 [55], and Wonder3D [28] also train multi-view diffusion models, yet
still require post-processing for video rendering. SyncDreamer [27] and Consist-
Net [57] employ 3D representation into the latent diffusion model.
Exploiting Video Diffusion Models. To achieve better generalization and
multi-view consistency, some contemporary works exploit the temporal priors in
video diffusion models for NVS. For instance, Vivid-1-to-3 [22] combines a view-
conditioned diffusion model and video diffusion model to generate consistent
views. SVD-MV [2] and IM-3D [29] finetune a video diffusion model for NVS.
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However, they generate ≤ 360◦ views at the same elevation only. Unlike SV3D,
none of them are capable of rendering any arbitrary view of the 3D object.

We argue that the existing NVS and 3D generation methods do not fully
leverage the superior generalization capability, controllability, and consistency in
video diffusion models. In this paper, we fill this important gap and train SV3D,
a state-of-the-art novel multi-view synthesis video diffusion model at 576×576
resolution, and leverage it for 3D generation.

2.2 3D Generation

Recent advances in 3D representations and diffusion-based generative models
have significantly improved the quality of image-to-3D generation. Here, we
briefly summarize the related works in these two categories.
3D Representation. 3D generation has seen great progress since the advent
of Neural Radiance Fields (NeRFs) [32] and its subsequent variants [1], which
implicitly represents a 3D scene as a volumetric function, typically parameterized
by a neural network. Notably, Instant-NGP [33] introduces a hash grid feature
encoding that can be used as a NeRF backbone for fast inference and ability to
recover complex geometry. On the other hand, several recent works improve from
an explicit representation such as DMTet [44], which is capable of generating
high-resolution 3D shapes due to its hybrid SDF-Mesh representation and high
memory efficiency. Similar to [23, 38], we adopt coarse-to-fine training for 3D
generation, by first learning a rough object with Instant-NGP NeRF and then
refining it using the DMTet representation.
Diffusion-Based 3D Generation. Several recent works [16, 34] train a 3D
diffusion model to to learn these flexible 3D representations, which, however, lack
generalizability due to the scarcity of 3D data. To learn 3D generation without
ground truth 3D data, image/multi-view diffusion models have been used as
guidance. DreamFusion [37] and follow-up works [23,31] leverage a trained image
diffusion model as a ‘scoring’ function and calculate SDS loss for text-to-3D
generation. However, they are prone to artifacts like Janus problem [31,37] and
over-saturated texture. Inspired by Zero123 [26], recent works [21, 24, 25, 27, 29,
38, 45, 49, 51, 64] finetune image/video diffusion models to generate novel view
images as a stronger guidance. Our method shares the same spirit as this line of
work, but produces denser, controllable, and more consistent multi-view images,
thus resulting in better 3D generation quality.

3 SV3D: Novel Multi-view Synthesis

Our main idea is to repurpose temporal consistency in a video diffusion model for
spatial 3D consistency of an object. Specifically, we finetune SVD [2] to generate
an orbital video around a 3D object, conditioned on a single-view image. This
orbital video need not be at the same elevation, or at regularly spaced azimuth
angles. SVD is well-suited for this task since it is trained to generate smooth
and consistent videos on large-scale datasets of real and high-quality videos.
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Fig. 2: SV3D Architecture. We add the sinusoidal embed-
ding of the camera orbit elevation and azimuth angles (e, a)
to that of the noise step t, and feed the sum to the convolu-
tional blocks in the UNet. We feed the single input image’s
CLIP embedding to the attention blocks, and concatenate its
latent embedding to the noisy state zt.

Static

Dynamic

Fig. 3: Static vs.
Dynamic Orbits.
We use two types
of orbits for training
the SV3D models.

The exposure to superior data quantity and quality makes it more generalizable
and multi-view consistent, and the flexibility of the SVD architecture makes it
amenable to be finetuned for camera controllability.

Some prior works attempt to leverage such properties by finetuning image
diffusion models, training video diffusion models from scratch, or finetuning video
diffusion models to generate pre-defined views at the same elevation (static orbit)
around an object [2, 29]. However, we argue that these methods do not fully
exploit the potential of video diffusion models. To the best of our knowledge,
SV3D is the first video diffusion-based framework for controllable multi-view
synthesis at 576×576 resolution (and subsequently for 3D generation).
Problem Setting. Formally, given an image I ∈ R3×H×W of an object, our
goal is to generate an orbital video J ∈ RK×3×H×W around the object of K =
21 multi-view images along a camera trajectory π ∈ RK×2 = {(ei, ai)}Ki=1 as
a sequence of K tuples of elevation e and azimuth a angles. We assume the
camera always looks at the center of an object (origin of world coordinates), so
any viewpoint can be specified by only two parameters: e and a. We generate
this orbital video by iteratively denoising samples from a learned conditional
distribution p(J|I,π), parameterized by a video diffusion model.
SV3D Architecture. As shown in Fig. 2, the architecture of SV3D builds on
that of SVD consisting of a UNet with multiple layers, each layer containing
sequences of one residual block with Conv3D layers, and two transformer blocks
(spatial and temporal) with attention layers. (i) We remove the vector condi-
tionings of ‘fps id’ and ‘motion bucket id’ since they are irrelevant for SV3D.
(ii) The conditioning image is concatenated to the noisy latent state input zt at
noise timestep t to the UNet, after being embedded into latent space by the VAE
encoder of SVD. (iii) The CLIP-embedding [39] matrix of the conditioning image
is provided to the cross-attention layers of each transformer block as its key and
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Fig. 4: Linear vs. Triangle CFG Scaling. Notice
increased oversharping in the penultimate frame in
linear scaling vs. our proposed triangle scaling.
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Fig. 5: LPIPS vs. Frame
Number. SV3D has the best re-
construction metric per frame.

value, the query being the feature at that layer. (iv) The camera trajectory is
fed into the residual blocks along with the diffusion noise timestep. The camera
pose angles ei and ai and the noise timestep t are first embedded into sinusoidal
position embeddings. Then, the camera pose embeddings are concatenated to-
gether, linearly transformed, and added to the noise timestep embedding. This
is fed to every residual block, where they are added to the block’s output feature
(after being linearly transformed again to match the feature size).
Static v.s. Dynamic Orbits. As shown in Fig. 3, we design static and dy-
namic orbits to study the effects of camera pose conditioning. In a static orbit,
the camera circles around an object at regularly-spaced azimuths at the same
elevation angle as that in the conditioning image. The disadvantage with the
static orbit is that we might not get any information about the top or bottom of
the object depending on the conditioning elevation angle. In a dynamic orbit,
the azimuths can be irregularly spaced, and the elevation can vary per view.
To build a dynamic orbit, we sample a static orbit, add small random noise to
the azimuth angles, and add a random weighted combination of sinusoids with
different frequencies to its elevation. This provides temporal smoothness, and
ensures that the camera trajectory loops around to end at the same azimuth
and elevation as those of the conditioning image.

Thus, with this strategy, we are able to tackle all three aspects of generaliza-
tion, controllability, and consistency in novel multi-view synthesis by leveraging
video diffusion models, additionally conditioning on camera trajectory, and re-
purposing temporal consistency for spatial 3D object consistency, respectively.
Triangular CFG Scaling. SVD uses a linearly increasing scale for classifier-
free guidance (CFG) from 1 to 4 across the generated frames. However, this
scaling causes the last few frames in our generated orbits to be over-sharpened,
as shown in Fig. 4 Frame 20. Since we generate videos looping back to the front-
view image, we propose to use a triangle wave CFG scaling during inference:
linearly increase CFG from 1 at the front view to 2.5 at the back view, then
linearly decrease it back to 1 at the front view. Fig. 4 also demonstrates that
our triangle CFG scaling produces more details in the back view (Frame 12).
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Models. We train three image-to-3D-video models finetuned from SVD. First,
we train a pose-unconditioned model, SV3Du, which generates a video of static
orbit around an object while only conditioned on a single-view image. Note
that unlike SVD-MV [2], we do not provide the elevation angle to the pose-
unconditioned model, as we find that the model is able to infer it from the
conditioning image. Our second model, the pose-conditioned SV3Dc is condi-
tioned on the input image as well as a sequence of camera elevation and azimuth
angles in an orbit, trained on dynamic orbits. Following SVD’s [2] intuition
to progressively increase the task difficulty during training, we train our third
model, SV3Dp, by first finetuning SVD to produce static orbits unconditionally,
then further finetuning on dynamic orbits with camera pose condition.
Training Details. We train SV3D on the Objaverse dataset [9], which contains
synthetic 3D objects covering a wide diversity. For each object, we render 21
frames around it on random color background at 576×576 resolution, field-of-
view of 33.8 degrees. We choose to finetune the SVD-xt model to output 21
frames. All three models (SV3Du, SV3Dc, SV3Dp) are trained for 105k iterations
in total (SV3Dp is trained unconditionally for 55k iterations and conditionally
for 50k iterations), with an effective batch size of 64 on 4 nodes of 8 80GB A100
GPUs for around 6 days. For more training details, please see the appendix.

3.1 Experiments and Results

Datasets. We evaluate the SV3D-generated multi-view images on static and
dynamic orbits on the unseen GSO [10] and OmniObject3D [56] datasets. Since
many GSO objects are the same items with slightly different colors, we filter 300
objects from GSO to reduce redundancy and maintain diversity. For each object,
we render ground truth static and dynamic orbit videos and pick the last frame
of each video as the conditioning image. We also conduct a user study on novel
view videos from a dataset of 22 real-world images. (More details in appendix.)
Metrics. We use the SV3D models to generate static and dynamic orbit videos
corresponding to the ground truth camera trajectories in the evaluation datasets.
We compare each generated frame with the corresponding ground truth frames,
in terms of Learned Perceptual Similarity (LPIPS [63]), Peak Signal-to-Noise
Ratio (PSNR), Structural SIMilarity (SSIM), Mean Squared-Error (MSE), and
CLIP-score (CLIP-S). This range of metrics covers both pixel-level as well as se-
mantic aspects. Note that testing on dynamic orbits evaluates the controllability
of SV3D models, and all the metrics evaluate multi-view consistency.
Baselines. We compare SV3D with several recent NVS methods capable of
generating arbitrary views, including Zero123 [26], Zero123-XL [8], SyncDreamer
[27], Stable Zero123 [49], Free3D [64], EscherNet [21].
Results. As shown in Tabs. 1 to 4, our SV3D models achieve state-of-the-art
performance on novel multi-view synthesis. Tabs. 1 and 3 show results on static
orbits, and include all our three models. We see that even our pose-unconditioned
model SV3Du performs better than all prior methods. Tabs. 2 and 4 show results
on dynamic orbits, and include our pose-conditioned models SV3Dc and SV3Dp.
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Fig. 6: Visual Comparison of Novel Multi-view Synthesis. SV3D is able to
generate novel multi-views that are more detailed, faithful to the conditioning image,
and multi-view consistent compared to the prior works.

Ablative Analyses. Interestingly, from Tabs. 1 and 3, we find that both SV3Dc

and SV3Dp outperform SV3Du on generations of static orbits, even though
SV3Du is trained specifically on static orbits. We also observe that SV3Dp

achieves better metrics than SV3Dc on both static and dynamic orbits, mak-
ing it the best performing SV3D model overall. This shows that progressive
finetuning from easier (static) to harder (dynamic) tasks is indeed a favorable
way to finetune a video diffusion model.
Visual Comparisons in Fig. 6 further demonstrate that SV3D-generated im-
ages are more detailed, faithful to the conditioning image, and multi-view con-
sistent compared to the prior works.
Quality Per Frame. We also observe from Fig. 5 that SV3D produces better
quality at every frame. We plot the average LPIPS value for each generated
frame, across generated GSO static orbit videos. The quality is generally worse
around the back view, and better at the beginning and the end (i.e. near the
conditioning image), as expected.
User Study on Real-World Images. We conducted a user survey to study
human preference between static orbital videos generated by SV3D and by other
methods. We asked 30 users to pick one between our SV3D-generated static video
and other method-generated video as the best orbital video for the correspond-
ing image, using 22 real-world images. We noted that users preferred SV3D-
generated videos over Zero123XL, Stable Zero123, EscherNet, and Free3D, 96%,
99%, 96%, and 98% of the time, respectively.
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Table 1: Evaluation of novel multi-view
synthesis on GSO static orbits
Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓

SyncDreamer [27] 0.17 15.78 0.76 0.87 0.03
Zero123 [26] 0.13 17.29 0.79 0.85 0.04
Zero123XL [8] 0.14 17.11 0.78 0.85 0.04
Stable Zero123 [49] 0.13 18.34 0.78 0.85 0.05
Free3D [64] 0.15 16.18 0.79 0.84 0.04
EscherNet [21] 0.13 16.73 0.79 0.85 0.03

SV3Du 0.09 21.14 0.87 0.89 0.02
SV3Dc 0.09 20.56 0.87 0.88 0.02
SV3Dp 0.08 21.26 0.88 0.89 0.02

Table 2: Evaluation of novel multi-view
synthesis on GSO dynamic orbits
Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓

Zero123 [26] 0.14 16.99 0.79 0.84 0.04
Zero123XL [8] 0.14 16.73 0.78 0.84 0.04
Stable Zero123 [49] 0.13 18.04 0.78 0.85 0.05
Free3D [64] 0.18 14.93 0.77 0.83 0.05
EscherNet [21] 0.13 16.47 0.79 0.84 0.03

SV3Dc 0.10 19.99 0.86 0.87 0.02
SV3Dp 0.09 20.38 0.87 0.87 0.02

Table 3: Evaluation of novel multi-view
synthesis on OmniObject3D static orbits
Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓

Zero123 [26] 0.17 15.50 0.76 0.83 0.05
Zero123XL [8] 0.18 15.36 0.75 0.83 0.06
Stable Zero123 [49] 0.15 16.86 0.77 0.84 0.06
Free3D [64] 0.16 15.29 0.78 0.83 0.05
EscherNet [21] 0.17 14.63 0.74 0.83 0.05

SV3Du 0.10 19.68 0.86 0.86 0.02
SV3Dc 0.10 19.50 0.85 0.85 0.02
SV3Dp 0.10 19.91 0.86 0.86 0.02

Table 4: Evaluation of novel multi-view
synthesis on OmniObject3D dynamic orbits
Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓

Zero123 [26] 0.16 15.78 0.77 0.82 0.05
Zero123XL [8] 0.17 15.49 0.76 0.83 0.05
Stable Zero123 [49] 0.14 16.74 0.77 0.83 0.05
Free3D [64] 0.19 14.28 0.76 0.82 0.06
EscherNet [21] 0.16 15.05 0.76 0.83 0.05

SV3Dc 0.10 19.21 0.85 0.84 0.02
SV3Dp 0.10 19.28 0.85 0.85 0.02

4 3D Generation from a Single Image Using SV3D

We then generate 3D meshes of objects from a single image by leveraging SV3D.
One way is to use the generated static/dynamic orbital samples from SV3D as
direct reconstruction targets. Another way is to use SV3D as diffusion guidance
with Score Distillation Sampling (SDS) loss [37].

Since SV3D produces more consistent multi-views compared to existing works,
we already observe higher-quality 3D reconstructions by only using SV3D out-
puts for reconstruction when compared to existing works. However, we observe
that this naive approach often leads to artifacts like baked-in illumination, rough
surfaces, and noisy texture, especially for the unseen regions in the reference or-
bit. Thus, we further propose several techniques to address these issues.
Coarse-to-Fine Training. We adopt a two-stage, coarse-to-fine training scheme
to generate a 3D mesh from input images, similar to [23, 38]. Fig. 7 illustrate
an overview of our 3D optimization pipeline. In the coarse stage, we train an
Instant-NGP [33] NeRF representation to reconstruct the SV3D-generated im-
ages (i.e. without SDS loss) at a lower resolution. In the fine stage, we extract a
mesh from the trained NeRF using marching cubes [7], and adopt a DMTet [44]
representation to finetune the 3D mesh using SDS-based diffusion guidance from
SV3D at full-resolution. Finally, we use xatlas [60] to perform the UV unwrap-
ping and export the output object mesh.
Disentangled Illumination Model. Similar to other recent 3D object gener-
ation methods [23, 31, 37], our output target is a mesh with a diffuse texture.
Typically, such SDS-based optimization techniques use random illuminations at
every iteration. However, our SV3D-generated videos are under consistent illumi-
nation, i.e., the lighting remains static while the camera circles around an object.
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Fig. 7: 3D Optimization Pipeline. We perform a two-stage optimization. In the
short first stage, we extract the general shape, texture and illumination from the SV3D
generated multi-view images. In the second stage, we extract a mesh with marching
cubes and use DMTet to further optimize the shape, texture and illumination. We
not only use the SV3D-generated images but a soft-masked SDS loss for unseen areas.
Dashed red lines represent backpropagation into the differentiable rendering pipeline.

Fig. 8: Influence of Training Or-
bits. We show that using a dynamic
orbit is crucial to 3D generations that
are complete from diverse views.

Fig. 9: Influence of SDS. Using our
masked SDS loss, we are able to fill in un-
seen surfaces in the training orbit, produc-
ing a cleaner result without oversaturation or
blurry artifacts caused by naive SDS.

Hence, to disentangle lighting effects and obtain a cleaner texture, we propose
to fit a simple illumination model of 24 Spherical Gaussians (SG) inspired by
prior decomposition methods [4, 62].

We model white light and hence only use a scalar amplitude for the SGs.
We only consider Lambertian shading, where the cosine shading term is approx-
imated with another SG. We learn the parameters of the illumination SGs using
a reconstruction loss between the rendered images and SV3D-generated images.

Inspired by [13, 37] we reduce baked-in illumination with a loss term that
replicates the HSV-value component of the input image I with the rendered
illumination L: Lillum = |V (I)− L|2, with V (c) = max(cr, cg, cb). Given these
changes, our disentangled illumination model is able to express lighting variation
properly and can severely reduce baked-in illumination. Fig. 10 shows sample
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reconstructions with and without our illumination modelling. From the results,
it is clear that we are able to disentangle the illumination effects from the base
color (e.g., dark side of the school bus).

4.1 3D Optimization Strategies and Losses

Reconstruction via Photometric Losses. Intuitively, we can treat the SV3D-
generated images as multi-view pseudo-ground truth, and apply 2D reconstruc-
tion losses to train the 3D models. In this case, we apply photometric losses
on the rendered images from NeRF or DMTet, including the pixel-level MSE
loss, mask loss, and a perceptual LPIPS [63] loss. These photometric losses also
optimize our illumination model through the differential rendering pipeline.

Constant Illumination SGs Illumination

Fig. 10: Constant vs. SGs Il-
lumination. Our SGs-based re-
constructions do not exhibit dark-
ening on the side of the bus, which
enables easier and more convinc-
ing relighting for downstream ap-
plications.

Training Orbits. For 3D generation, we use
SV3D to generate multi-view images following
a camera orbit πref, referred to as the refer-
ence orbit (also see Fig. 7 for the overview).
Fig. 8 shows sample reconstruction with using
static and dynamic orbital outputs from SV3D.
Using a dynamic orbit for training is crucial
to high-quality 3D outputs when viewed from
various angles, since some top/bottom views
are missing in the static orbit (fixed elevation).
Hence, for SV3Dc and SV3Dp, we render im-
ages on a dynamic orbit whose elevation fol-
lows a sine function to ensure that top and bottom views are covered.
SV3D-Based SDS Loss. In addition to the reconstruction losses, we can also
use SV3D via score-distillation sampling (SDS) [37, 58]. Fig. 9 shows sample
reconstructions with and without using SDS losses. As shown in Fig. 9 (left),
although training with a dynamic orbit improves overall visibility, we observe
that sometimes the output texture is still noisy, perhaps due to partial visibility,
self-occlusions, or inconsistent texture/shape between images. Hence, we handle
those unseen areas using SDS loss [37] with SV3D as a diffusion guidance.

We sample a random camera orbit πrand, and use our 3D NeRF/DMTet pa-
rameterized by θ to render the views Ĵ of the object along πrand. Then, noise ϵ
at level t is added to the latent embedding zt of Ĵ, and the following SDS loss
(taken expectation over t and ϵ) is backpropagated through the differentiable
rendering pipeline: Lsds = w(t)

(
ϵϕ(zt; I,πrand, t)− ϵ

)
∂Ĵ
∂θ , where w is t-dependent

weight, ϵ and ϵϕ are the added and predicted noise, and ϕ and θ are the param-
eters of SV3D and NeRF/DMTet, respectively. See Fig. 7 for an illustration of
these loss functions in the overall pipeline.
Masked SDS Loss. As shown in Fig. 9 (middle), in our experiments we found
that adding the SDS loss naively can cause unstable training and unfaithful tex-
ture to the input images such as oversaturation or blurry artifacts. Therefore, we
design a soft masking mechanism to only apply SDS loss on the unseen/occluded
areas, allowing it to inpaint the missing details while preserving the texture of
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Fig. 11: Visual Comparison of 3D Meshes. For each object, we show the con-
ditioning image (left), and the output meshes rendered in two different views. Our
generated meshes are more detailed, faithful to input images, and consistent in 3D.
This demonstrates the quality of novel multi-view synthesis by our SV3D model.

clearly-visible surfaces in the training orbit (as seen in Fig. 9 (right)). Also, we
only apply the masked SDS loss in the final stage of DMTet optimization, which
greatly increased the convergence speed.

We apply SDS loss on only those pixels in the random orbit views that are not
likely visible in the reference orbit views. For this, we first render the object from
the random camera orbit πrand. For each random camera view, we obtain the
visible surface points p ∈ R3 and their corresponding surface normals n. Then,
for each reference camera i, we calculate the view directions vi of the surface p

towards its position π̄i
ref ∈ R3 (calculated from πi

ref ∈ R2) as vi =
π̄i

ref−p

||π̄i
ref−p|| . We

infer the visibility of this surface from the reference camera based on the dot
product between vi and n i.e. vi · n. Since higher values roughly indicate more
visibility of the surface from the reference camera, we chose that reference camera
c that has maximum likelihood of visibility: c = maxi (vi · n). As we only want
to apply SDS loss to unseen or grazing angle areas from c, we use the smoothstep
function fs to smoothly clip to c’s visibility range vc ·n. In this way, we create a
pseudo visibility mask M = 1−fs (vc · n, 0, 0.5), where fs(x; f0, f1) = x̂2(3−2x),
with x̂ = x−f0

f1−f0
. Thus, M is calculated for each random camera render, and the

combined visibility mask M is applied to SDS loss: Lmask-sds = MLsds.
Geometric Priors. Since our rendering-based optimization operates at the im-
age level, we adopt several geometric priors to regularize the output shapes. We
add a smooth depth loss from RegNeRF [35] and a bilateral normal smoothness
loss [5] to encourage smooth 3D surfaces where the projected image gradients
are low. Moreover, we obtain normal estimates from Omnidata [11] and calcu-
late a mono normal loss similar to MonoSDF [61], which can effectively reduce
noisy surfaces in the output mesh. Further details about the training losses and
optimization process are available in the appendix.

4.2 Experiments and Results

Due to the strong regularization, we only require 600 steps in the coarse stage
and 1000 in the fine stage. Overall, the entire mesh extraction process takes ≈8
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Fig. 12: Real-World 3D Results. Notice the accurate shape and details in our
reconstructions even from the diverse images in-the-wild.

minutes without SDS loss, and ≈20 minutes with SDS loss. The coarse stage
only takes ≈2 minutes and provides a full 3D representation of the object.
Evaluation. We evaluate our 3D generation framework on 50 randomly sam-
pled objects from the GSO dataset as described in Sec. 3.1. We compute image-
based reconstruction metrics (LPIPS, PSNR, SSIM, MSE, and CLIP-S) between
the ground truth (GT) GSO images, and rendered images from the trained 3D
meshes on the same static/dynamic orbits. In addition, we compute 3D recon-
struction metrics of Chamfer distance (CD) and 3D IoU between the GT and pre-
dicted meshes. We compare our SV3D-guided 3D generations with several prior
methods including Point-E [34], Shap-E [16], One-2-3-45++ [24], DreamGaus-
sian [50], SyncDreamer [27], EscherNet [21], Free3D [64], and Stable Zero123 [49].
Visual Comparison. In Fig. 11, we show visual comparison of our results with
those from prior methods. Qualitatively, Point-E [34] and Shap-E [16] often
produce incomplete 3D shapes. DreamGaussian [50], SyncDreamer [27], Esch-
erNet [21], and Free3D [64] outputs tend to contain rough surfaces. One-2-3-
45++ [24] and Stable Zero123 [49] are able to reconstruct meshes with smooth
surface, but lack geometric details. Our mesh outputs are detailed, faithful to
input image, and consistent in 3D (see appendix for more examples). We also
show 3D mesh renders from real-world images in Fig. 12.
Quantitative Comparison. Tabs. 5 and 6 show the 2D and 3D metric compar-
isons respectively. All our 3D models achieve better 2D and 3D metrics compared
to the prior and concurrent methods, showing the high-fidelity texture and geom-
etry of our output meshes. We render all 3D meshes on the same dynamic orbits
and compare them against the GT renders. Our best model, SV3Dp, performs
comparably to using GT renders for reconstruction in terms of the 3D metrics,
which further demonstrates the 3D consistency of our generated images.
Effects of Photometric and (Masked) SDS Loss. As shown in Tabs. 5
and 6, the 3D outputs using both photometric and Masked SDS losses (‘SV3Dp’)
achieves the best results, while training without SDS (‘SV3Dp no SDS’) leads
to marginally lower performance. This demonstrates that the images generated
by SV3D are high-quality reconstruction targets, and are often sufficient for
3D generation without the cumbersome SDS-based optimization. Nevertheless,
adding SDS generally improves quality, as also shown in Fig. 9.
Effects of SV3D Model and Training Orbit. As shown in Tabs. 5 and 6,
SV3Dp achieves the best performance among the three SV3D models, indicating
that its synthesized novel views are most faithful to the input image and consis-
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Table 5: 2D comparison of our 3D outputs against
prior methods on the GSO dataset. Our best per-
forming method uses SV3Dp with dynamic (sine
elevation) orbit and SDS guidance. Note that all our
models achieve better 2D metrics than prior works.

Model LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑

GT renders 0.078 19.508 0.879 0.014 0.897

EscherNet [21] 0.178 14.438 0.804 0.041 0.835
Free3D [64] 0.197 14.202 0.799 0.043 0.809
Stable Zero123 [49] 0.166 14.635 0.813 0.040 0.805

SV3Du 0.133 15.957 0.834 0.031 0.871
SV3Dc 0.132 16.373 0.834 0.027 0.870
SV3Dp static orbit 0.125 16.821 0.848 0.025 0.864
SV3Dp no SDS 0.124 16.864 0.841 0.024 0.875
SV3Dp 0.119 17.405 0.849 0.021 0.877

Table 6: Comparison of 3D
metrics on the GSO dataset.
Our models perform favorably
against prior works.

Model CD↓ 3D IoU↑

GT renders 0.021 0.689

Point-E [34] 0.074 0.162
Shap-E [16] 0.071 0.267
DreamGaussian [50] 0.055 0.411
One-2-3-45++ [24] 0.054 0.406
SyncDreamer [27] 0.053 0.451
EscherNet [21] 0.042 0.466
Free3D [64] 0.047 0.426
Stable Zero123 [49] 0.039 0.550

SV3Du 0.027 0.589
SV3Dc 0.027 0.584
SV3Dp static orbit 0.028 0.610
SV3Dp no SDS 0.024 0.611
SV3Dp 0.024 0.614

tent in 3D. On the other hand, SV3Du shares the same disadvantage as several
prior works in that it can only generate views at the same elevation, which is
insufficient to build a legible 3D object, as shown in Fig. 8. This also leads to
the worse performance of ‘SV3Dp with static orbit’ in Tabs. 5 and 6. Overall,
SV3Dp with dynamic orbit and masked SDS loss performs favorably against all
other configurations since it can leverage more diverse views of the object.
Limitations. Our SV3D model is by design only capable of handling 2 degrees
of freedom: elevation and azimuth; which is usually sufficient for 3D generation
from a single image. One may want to tackle more degrees of freedom in cam-
eras for a generalized NVS system, which forms an interesting future work. We
also notice that SV3D exhibits some view inconsistency for mirror-like reflective
surfaces, which provide a challenge to 3D reconstruction. Lastly, such reflective
surfaces are not representable by our Lambertian reflection-based shading model.
Conditioning SV3D on the full camera matrix, and extending the shading model
are interesting directions for future research.

5 Conclusion

We present SV3D, a latent video diffusion model for novel multi-view synthe-
sis and 3D generation. In addition to leveraging the generalizability and view-
consistent prior in SVD, SV3D enables controllability via camera pose condi-
tioning, and generates orbital videos of an object at high resolution on arbitrary
camera orbits. We further propose several techniques for improved 3D genera-
tion from SV3D, including triangle CFG scaling, disentangled illumination, and
masked SDS loss. We conduct extensive experiments to show that SV3D is con-
trollable, multi-view consistent, and generalizable to the real-world, achieving
state-of-the-art performance on novel multi-view synthesis and 3D generation.
We believe SV3D provides a solid foundation model for further research on 3D
object generation. We plan to publicly release SV3D models.
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In this supplemental document, we include the broader impact in Appendix A,
implementation details in Appendices B to F, ablative analyses in Appendix G,
and additional results in Appendix H. We also attach a teaser video summarizing
the SV3D framework (SV3D_video.mp4), as well as an HTML page (SV3D.html)
for more visual comparisons.

A Broader Impact

The advancement of generative models in different media forms is changing how
we make and use content. These AI-powered models can create images, videos,
3D objects, and more, in ways we’ve never seen before. They offer huge potential
for innovation in media production. But along with this potential, there are also
risks. Before we start using these models widely, it is crucial to make sure we
understand the possible downsides and have plans in place to deal with them
effectively.

In the case of 3D object generation, the input provided by the user plays a
crucial role in constraining the model’s output. By supplying a full front view of
an object, users limit the model’s creative freedom to the visible or unoccluded
regions, thus minimizing the potential for generating problematic imagery. Ad-
ditionally, factors such as predicted depth values and lighting further influence
the fidelity and realism of generated content.

Moreover, ensuring the integrity and appropriateness of training data is crit-
ical in mitigating risks associated with generative models. Platforms like Sketch-
fab, which serve as repositories for 3D models used in training, enforce strict con-
tent policies to prevent the dissemination of “Unacceptable Content” and disal-
lows it on their platform: https://help.sketchfab.com/hc/en-us/articles/214867883-
What-is-Restricted-Content. By adhering to these guidelines and actively mon-
itoring dataset quality, developers can reduce the likelihood of biased or inap-
propriate outputs.

Sketchfab also has a tag for “Restricted Content” which is deemed to be
similar to the PG-13 content rating used in the US (i.e. inappropriate for children
under 13). We have confirmed that none of the objects that we use in training
have this flag set to true. Thus we go the extra step of excluding even tagged
PG-13 content from the training set.

There is a chance that certain content may not have been correctly labeled
on Sketchfab. In cases where the uploader fails to tag an object appropriately,
Sketchfab provides publicly accessible listings of objects and a mechanism for
the community to report any content that may be deemed offensive.

In our regular utilization of Objaverse content, we haven’t observed any sig-
nificant amount of questionable material. Nevertheless, there are occasional in-
stances of doll-like nudity stemming from basic 3D models, which could be crucial
for accurately depicting humanoid anatomy. Additionally, the training dataset
contains some presence of drugs, drug paraphernalia, as well as a certain level of
blood content and weaponry, resembling what might be encountered in a video
game context. Should the model be provided with imagery featuring these cate-
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gories of content, it possesses the capability to generate corresponding 3D models
to some extent.

It is to be noted that SV3D mainly focuses on generating hidden details in
the user’s input image. If the image is unclear or some parts are hidden, the
model guesses what those parts might look like based on its training data. This
means it might create details similar to what it has seen before. The training
data generally follows the standards of 3D modeling and gaming. However, this
could lead to criticisms about the models being too similar to existing trends.
But the user’s input image limits how creative the model can be and reduces the
chance of biases showing up in its creations, especially if the image is clear and
straightforward.

B Data Details

Similar to SVD-MV [2], we render views of a subset of the Objaverse dataset [9]
consisting of 150K curated CC-licensed 3D objects from the original dataset.
Each loaded object is scaled such that the largest world-space XYZ extent of its
bounding box is 1. The object is then repositioned such that this bounding box
is centered around the origin.

For both the static and dynamic orbits, we use Blender’s EEVEE renderer
to render an 84-frame RGBA orbit at 576×576 resolution. During training, any
21-frame orbit can be subsampled from this by picking any frame as the first
frame, and then choosing every 4th frame after that.

We apply two background colors to each of these images: random RGB color,
and white. This results in a doubling of the number of orbit samples for training.
We then encode all of these images into latent space using SVD’s VAE, and using
CLIP. We then store the latent and CLIP embeddings for all of these images
along with the corresponding elevation and azimuth values.

For lighting, we randomly select from a set of 20 curated HDRI envmaps.
Each orbit begins with the camera positioned at azimuth 0. Our camera uses a
field-of-view of 33.8 degrees. For each object, we adaptively position the camera
to a distance sufficient to ensure that the rendered object content makes good
and consistent use of the image extents without being clipped in any view.

For static orbits, the camera is positioned at a randomly sampled elevation
between [-5, 30] degrees. The azimuth steps by a constant 360

84 degree delta be-
tween each frame. For dynamic orbits, the sequence of camera elevations for each
orbit are obtained from a random weighted combination of sinusoids with differ-
ent frequencies. For each sinusoid, the whole number period is sampled from [1,
5], the amplitude is sampled from [0.5, 10], and a random phase shift is applied.
The azimuth angles are sampled regularly, and then a small amount of noise is
added to make them irregular. The elevation values are smoothed using a simple
convolution kernel and then clamped to a maximum elevation of 89 degrees.
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C Training Details

Our approach involves utilizing the widely used EDM [19] framework, incor-
porating a simplified diffusion loss for fine-tuning, as followed in SVD [2]. We
eliminate the conditions of ‘fps_id’, ‘motion_bucket_id’, etc. since they are
irrelevant for SV3D. Furthermore, we adjust the loss function to assign lower
weights to frames closer to the front-view conditioning image, ensuring that
challenging back views receive equal training focus as the easier front views. To
optimize training efficiency and conserve GPU VRAM, we preprocess and store
the precomputed latent and CLIP embeddings for all video frames in advance.
During training, these tensors are directly loaded rather than being computed in
real-time. We choose to finetune the SVD-xt model to output 21 frames instead
of 25 frames. We found that with 21 frames we were able to fit a batch size of
2 on each GPU, instead of 1 with 25 frames at 576×576 resolution. All SV3D
models are trained for 105k iterations with an effective batch size of 64 on 4
nodes of 8 80GB A100 GPUs for around 6 days.

D Inference Details

To generate an orbital video during inference, we use 50 steps of the determin-
istic DDIM sampler [47] with the triangular classifier-free guidance (CFG) scale
described in the main paper. This takes ≈40 seconds for the SV3D model.

E Additional Details on Illumination Model

We base our rendering model on Spherical Gaussians (SG) [4,62]. A SG at query
location x ∈ R3 is defined as G(x;µ, c, a) = aes(µ·x−1), where µ ∈ R3 is the
axis, s ∈ R the sharpness of the lobe, and a ∈ R the amplitude. Here, we point
out that we only model white light and hence only use a scalar amplitude. One
particularly interesting property of SGs is that the inner product of two SGs is
the integral of the product of two SGs. The operation is defined as [52]:

G1(x) ·G2(x) =

∫
Ω

G1(x)G2(x)dx =
1

dm

(
2πa1a2e

dm−λm(1.0− e−2dm)
)

λm = λ1 − λ2 (1)
dm = ||λ1µ1 + λ2µ2||.

In our illumination model we only consider Lambertian shading. Here, the
cosine shading term influences the output the most. This term can be approx-
imated with another SG Gcosine = (x;n, 2.133, 1.17), where n defines the sur-
face normal at x. The lighting evaluation using SGs Gi then becomes: L =∑24

i=1
1
π max(Gi · Gcosine, 0). As defined previously this results in the full inte-

gration of incoming light for each SG and as light is additive evaluating and
summing all SGs results in the complete environment illumination. This L is
also used in the Lillum loss described in the main paper. The rendered textured
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image is then defined as Î = cdL, where cd is the diffuse albedo. We learn
µ, c, a for each SG Gi using reconstruction loss between these rendered images
and SV3D-generated images.

F Losses and Optimization for 3D Generation

In addition to the masked SDS loss Lmask-sds and illumination loss Lillum de-
tailed in the manuscript, we use several other losses for 3D reconstruction.
Our main reconstruction losses are the pixel-level mean squared error Lmse =
∥I − Î∥2, LPIPS [63] loss Llpips, and mask loss Lmask = ∥S − Ŝ∥2, where
S, Ŝ are the predicted and ground-truth masks. We further employ a nor-
mal loss using the estimated mono normal by Omnidata [11], which is de-
fined as the cosine similarity between the rendered normal n and estimated
pseudo ground truths n̄: Lnormal = 1 − (n · n̄). To regularize the output ge-
ometry, we apply a smooth depth loss inspired by RegNeRF [35]: Ldepth(i, j) =

(d(i, j)− d(i, j + 1))
2
+(d(i, j)− (d(i+ 1, j))

2, where i, j indicate the pixel coor-
dinate. For surface normal we instead rely on a bilateral smoothness loss similar
to [5]. We found that this is crucial to getting high-frequency details and avoid-
ing over-smoothed surfaces. For this loss we compute the image gradients of the
input image ∇I with a Sobel filter [17]. We then encourage the gradients of
rendered normal ∇n to be smooth if (and only if) the input image gradients
∇I are smooth. The loss can be written as Lbilateral = e−3∇I

√
1 + ||∇n||. We

also found that adding a spatial smoothness regularization on the albedo is ben-
eficial: Lalbedo = (cd(x)− cd(x+ ϵ))

2, where cd denotes the albedo, x is a 3D
surface point, and ϵ ∈ R3 is a normal distributed offset with a scale of 0.01. The
overall objective is then defined as the weighted sum of these losses. All losses
are applied in both coarse and fine stages, except that we only apply Lmask-sds
in the last 200 iterations of the fine stage. We use an Adam optimizer [20] with
a learning rate of 0.01 for both stages.

G Additional Ablative Analyses

We conduct additional ablative analyses of our 3D generation pipeline in this
section.

G.1 SV3D Models

In Tab. 7, we compare the quantitative results using different SV3D models
and training losses. Both 2D and 3D evaluation shows that SV3Dp is our best
performing model, either for pure photometric reconstruction or SDS-based op-
timization.
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Table 7: Ablative results of different SV3D models and training losses. We
show that our SV3Dp model with Photo+SDS losses achieves the best 2D and 3D
metrics.

Model Training losses LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
SV3Du Photo 0.132 15.951 0.827 0.032 0.873 0.028 0.583
SV3Du Photo+SDS 0.133 15.957 0.834 0.031 0.871 0.027 0.589
SV3Dc Photo 0.135 15.826 0.832 0.033 0.871 0.029 0.579
SV3Dc Photo+SDS 0.132 16.373 0.834 0.027 0.870 0.027 0.584
SV3Dp Photo 0.124 16.864 0.841 0.024 0.875 0.024 0.611
SV3Dp Photo+SDS 0.119 17.405 0.849 0.021 0.877 0.024 0.614
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G.2 Static v.s. Dynamic Orbits

We also compare the results using different camera orbits for 3D training in
Tab. 8. The results show that using a dynamic orbit (sine-30) produces better
3D outputs compared to static orbit since it contains more information of the
top and bottom views of the object. However, higher elevation (sine-50) tends to
increase inconsistency between multi-view images, and thus resulting in worse
3D reconstruction. In our experiments, we find that setting the elevation within
±30 degree generally leads to desirable 3D outputs.

Table 8: Ablative results of different reference orbits for 3D generation. We
show that using a dynamic orbit (sine elevation) with moderate amplitude performs
better than orbits with no or extreme elevation variations.

Training orbit LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
Static 0.125 16.821 0.848 0.025 0.864 0.028 0.610
Sine-30 0.119 17.405 0.849 0.021 0.877 0.024 0.614
Sine-50 0.123 17.057 0.854 0.025 0.873 0.026 0.609

G.3 Masked SDS Loss

Finally, we show the ablative results of our SDS loss in Tab. 9. We compare the
results of 1) pure photometric losses, 2) with naive SDS loss (no masking), 3)
with hard-masked SDS loss by thresholding the dot product of surface normal
and camera viewing angle as visibility masks, and 4) with soft-masked SDS loss
as described in the manuscript. Overall, adding SDS guidance from the SV3D
model can improve the 2D metrics while maintaining similar 3D metrics. Our
novel soft-masked SDS loss generally achieves the best results compared to other
baselines.

Table 9: Ablative analyses of Masked SDS loss. Overall, our soft-masked SDS
loss leads to higher-quality mesh outputs in terms of most 2D and 3D metrics.

Training losses LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
Photo 0.124 16.864 0.841 0.024 0.875 0.024 0.611
Photo+SDS (naive) 0.124 17.007 0.850 0.024 0.867 0.025 0.615
Photo+SDS (hard masked) 0.124 17.335 0.845 0.022 0.877 0.024 0.610
Photo+SDS (soft masked) 0.119 17.405 0.849 0.021 0.877 0.024 0.614
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H Additional Visual Results

In this section, we show more results of novel view synthesis and 3D generation.

H.1 Novel View Synthesis

We show the additional NVS results on OmniObject3D [56] and real-world im-
ages in Fig. 13 and Fig. 14, respectively. The generated novel multi-view images
by SV3D are more detailed and consistent compared to prior state-of-the-arts.

Fig. 13: NVS Results on OmniObject3D [56]. For each object, we show the input
image and generated novel multi-view images by different methods. SV3D is able to
produce images with consistent pose, color, and geometric details, which are closer the
ground-truth renders.
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Fig. 14: NVS Results on Real-World Images. Notice the consistent texture, ge-
ometry, and pose in SV3D NVS outputs compared to prior works.
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H.2 3D Generation

We show the additional 3D generation results on OmniObject3D [56] and real-
world images in Fig. 15 and Fig. 16, respectively. Thanks to the consistent
multi-view images by SV3D and the novel Masked SDS loss, our 3D genera-
tions are detailed, high-fidelity, and generalizable to a wide range of images.
Since Free3D [64] does not include a 3D generation method, we run our 3D
pipeline on its generated multi-view images for fair 3D comparison.

Input image SV3D EscherNet Free3D Stable Zero123

Fig. 15: Mesh Results on OmniObject3D [56]. Thanks to the consistent novel
multi-view images generated by SV3D, our 3D meshes contain higher-fidelity details
while having smooth surfaces.
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Input image SV3D EscherNet Free3D Stable Zero123

Fig. 16: Mesh Results on Real-World Images. Notice the accurate shape and
details in our reconstructions even from the diverse images in-the-wild.
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Fig. 17: NVS and 3D Generation Results on Real-World Images. Visual results
on real-world images from the MVImgNet (Yu et al. CVPR’23) and NAVI (Jampani et
al. NeurIPS’22) datasets. Compared to Stable Zero123, SV3D generates more consis-
tent novel multi-view images, thus resulting in higher-quality 3D meshes with smooth
surface and detailed texture.
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