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1 Training & Implementation Details

Our garment generation framework uses DGCNN [1] as the garment encoder ξ
which takes 20, 000 points sampled on the garment surface as input. The decoders
Dcoarse & Dfine are implemented as MLPs, both having 5 hidden layers of 512
neurons each. We also use conditional Batch Normalization [2] for conditioning
on the garment latent vector while decoding. We train ξ and Dcoarse together
in the coarse training stage for 20 epochs, and Dfine separately in the fine stage
for 10 epochs. The value of hyperparameters λdist, λgrad & λlatent involved in
training objectives is 1.0, 0.3 & 0.2, respectively. The mapping network MLPmap

is modelled using a 10 layer MLP with a skip-connection from the input layer
to 4th hidden layer. All the networks are trained using AdamW [3] optimizer on
an NVIDIA RTX 4090 GPU.

We use OptCuts [4] for mesh parametrization as it eliminates the possibility
of overlap in UV space. For projecting textures, we take a texel of UV map and
identify on which face (triangle) of the mesh it lies. Once we have the triangle,
we take 3D vertex positions of the triangle and calculate the 3D position of the
texel using Barycentric interpolation. This 3D point is then projected on πrgb
and bilinearly interpolated to get the color information which is then stored into
the corresponding texel of the UV map. Doing this process for every texel gives
us the final texture UV map and, eventually, texture 3D garment mesh.

2 Text-driven Garment Editing

In this section, we describe how to enable text-driven editing of garments. Given
a garment latent code ϕ, methods like [5] employ a pretrained latent code clas-
sifier to identify the garment type and to identify which dimension to interpo-
late in order to induce category-specific changes, e.g. manipulate sleeve lengths.
Though this approach works well, it requires explicit manual annotations to en-
able control over interpolation. In our case, we make use of CLIP embeddings to
automatically identify the dimensions to control certain aspects of the 3D gar-
ment. Given a CLIP embedding ψ corresponding to a text-prompt (say, “skirt”),
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Fig. 1: Text-driven manipulation of the latent code.

MLPMap predicts corresponding garment latent code ϕ which is decoded to ob-
tain the initial garment. For a text prompt “longer”, we first compute the CLIP
embedding ψfeature. Then, we perform the following operation:

ψedit = wψ + (1− w)ψfeature (1)

In other words, we perturb the ψ in the direction of ψfeature (w = 0.5), which
results in the modified CLIP embedding ψedit. MLPmap takes this ψedit and
predicts ϕmod, which if decoded results in the 3D garment which resembles “long
skirt”. However, predicting the entire garment’s latent code from scratch dis-
turbs other characteristics of the original garment as well. To retain the other
characteristics as much as possible and change only the length, we first compute
the difference ϕdelta between original latent code ϕ and modified latent code ϕ,
i.e. ϕdelta = ϕ− ϕmod. We then identify top-k values in ϕdelta, which denote the
corresponding dimensions to change in order to achieve the desired modifica-
tion. Thus, perturbing the garment latent code ϕ along only these k dimensions
results in intended modification while maintaining other characteristics of the
garment (choosing the value of k is flexible and is driven by the user prefer-
ence, we use k = 7). In Figure 5 of the main paper, we perform text-driven
editing of “skirt” according to the keyword “long”, and that of a “cardigan"
by introducing “sleeves” and then “hood”. Here, in Figure 1, we demonstrate
similar text-based latent editing on other garment samples. The aforementioned
approach does not require any manual intervention except for the amount of
perturbation the end-user intends to introduce.
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3 Extended Results

In this section, we present additional qualitative results and demonstrate poten-
tial applications of our framework.

3.1 Results on Complex Text Prompts

Though we aim to generate 3D garments with simplistic, user-friendly prompts,
our framework supports detailed and complex prompts as well, as shown in
Figure 2 & Figure 3. In Figure 2, we comprehensively describe the geometry and
appearance of the garment to be modelled. Our framework is able to understand
detailed prompts and decode them correctly to generate expected geometry and
appearance. Similarly, in Figure 3, detailed prompts for separate garments can
be given to generate the final combined clothing (by merging the UDF of each
garment using [6]).

3.2 Sketch-guided 3D Garment Generation & Editing

Our weakly supervised strategy to train the mapping network on CLIP-embeddings
allows us to enable various other interesting applications apart from text-driven
generation and editing. Since CLIP space is joint image & text embedding space,
we can pass any image which represents a garment and generate the correspond-
ing 3D garment geometry. Figure 4 demonstrate the way to generate and edit
the 3D garments by sketching or scribbling the garments. We pass the garment
sketch image to the CLIP and get the corresponding CLIP embedding vector,
which is then further passed to the Mapping Network to predict the associated
garment latent code. This latent code is then decoded by the coarse and fine de-
coders to generate the 3D garment geometry. On modifying a part of the sketch,
only the corresponding 3D garment part undergoes significant change, while we
observe small insignificant changes on the remaining parts of the garments. For
textures, we follow the proposed Texture Synthesis module on the 3D geometry
obtained via sketches, as shown in Figure 5. As can be seen from the figure, the
geometry of the output 3D garments accurately adheres to the input sketch (at
least at a coarser level) in terms of shape and semantics. This feature enables
a more controllable and descriptive way to generate the 3D garments compared
to text prompts.

3.3 3D Garments Extraction from Images

We extend the idea from the previous subsection to demonstrate the 3D garment
recovery from in-the-wild random garment images. Since we have trained the
Mapping Network on data generated by ControlNet, it has seen a wide variety of
garment textures and lighting conditions encoded within the CLIP embedding
vector. This allows us to pass any internet image to CLIP’s image encoder,
obtain the corresponding CLIP embedding, and feed it to the Mapping Network
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Fig. 2: Generating high-quality textured 3D garments with detailed text-prompts.



WordRobe (Supplementary) 5

Fig. 3: Generating composition of garments using detailed text-prompts.

Fig. 4: Sketch-guided editing of the 3D garments.
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Fig. 5: Generating high-quality 3D garments by combining sketch (for geometry) and
text (for texture).

to obtain the garment latent code for 3D garment generation. Figure 6 shows the
results of the aforementioned approach, where we generate 3D garments from
arbitrary garment images whether they contain humans or not.

4 Extended Evaluation

In this section, we demonstrate generalization of our method on a different
dataset and explain the details regarding qualitative user study.

4.1 Generalization on CLOTH3D

We train our encoder-decoder architecture for learning the garment latent space
on unposed 3D garments from [7] dataset. However, CLOTH3D [8] dataset is a
widely popular choice for existing state-of-the-art methods like [5]. Therefore,
we demonstrate generalization pn both topwear and bottomwear classes of
CLOTH3D dataset after training only on [7] dataset and computing the stan-
dard evaluation metrics, namely Point-to-Surface distance (P2S) and Chamfer
Distance (CD) on the test set of CLOTH3D. We define both the metrics below:

– P2S: Point to surface distance is the shortest distance between a point and
a surface. [9]

– CD: It is defined as the sum of squared distances of nearest neighbor
correspondences of the two point clouds. [10]
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Fig. 6: Generating 3D garments using a reference image
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We report both the metrics in Table 1, while comparing with DrapeNet [5],
which has been trained specifically on CLOTH3D. As can be observed from the
table, we perform at par, if not better, than DrapeNet, even without training our
method on CLOTH3D. This justifies that (a) [7] has a more diverse and better
training distribution than widely popular [8] dataset, in terms of garment geom-
etry learning; and (b) our encoder-decoder is not overfitted to the samples in [7]
dataset and can generalize to unseen garment types. However, it is important to
note that both the datasets, CLOTH3D and [7] are synthetically generated, as
it is very challenging to capture 3D real-world garments in canonical pose.

Table 1: Quantitative evaluation of garment encoding-decoding framework on both
topwear and bottomwear garments from CLOTH3D dataset. Please note that for
this experiment, we train our method on [7] dataset and evaluate on CLOTH3D, while
we train and evaluate DrapeNet on CLOTH3D.

Method Evaluation on CLOTH3D

CD(topwear)↓ P2S(topwear)↓
DrapeNet (trained on CLOTH3D) 1.522 0.631

Ours (trained on [7]) 1.491 0.635

CD(bottomwear)↓ P2S(bottomwear)↓
DrapeNet (trained on CLOTH3D) 1.585 0.739

Ours (trained on [7]) 1.568 0.703

4.2 User Study

WordRobe: 63.0 %

ProlificDreamer: 27.0 %

Shap-e: 10.0 %

WordRobe: 65.0 %

ProlificDreamer: 28.0 %

Shap-e: 7.0 %

WordRobe ProlificDreamer Shap-e

Relationship with
text prompt

Quality of
Generated Garments

Fig. 7: Distribution of preferences in the qualitative user study.

For the subjective evaluation of our method, we perform a qualitative user
study among 67 participants. First, the participants were presented with the
results of our method and were asked two questions :

– How would you rate the relationship between the input text prompt
and the generated result on a scale of 1 to 3? [1-not related, 2-
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somewhat related, 3-highly related]

– How would you rate the quality of the results in general, on a scale
of 1 to 5? [1-very bad, 2-bad, 3-acceptable, 4-good, 5-very good]

Our method achieves an average rating of 2.57 on a scale of [1− 3] in terms
of the relationship between the result and the input text prompt and an average
rating of 4.01 on a scale of [1 − 5] in terms of quality of the generated 3D
garment.

All the participants were also asked to select one of the methods among
[11], [12] and WordRobe on two basis − relationship between the result & text-
prompt, and overall quality of the generated garment. About 63% of the par-
ticipants prefer WordRobe, 27% prefer [12], and 10% prefer [11] in terms of the
relationship between the result and text prompt. In terms of quality, 65% of the
participants prefer WordRobe, 28% prefer [12], and 7% prefer [11].

Finally, we also asked participants to choose between Text2Tex [13] and Wor-
dRobe for the text-driven synthesis of textures over existing meshes. About 54%
participants opted for WordRobe when it comes to the relationship between the
result and input text prompt, and about 76% opted for WordRobe when it comes
to the quality of the generated 3D garment.

5 Discussion

5.1 Why unposed?

Unposed simply means garments in canonical T-pose, which is a standard rest
pose defined for human characters. We aim towards generating unposed 3D gar-
ments because it has several advantages. First, the garments are free from any
pose-specific deformations, which is undesirable while defining garment charac-
teristics, as symmetries are important in the garment designing process, which
gets disturbed when garments undergo pose-specific deformations. Second, stan-
dard animation or dynamic character simulation pipelines keep their characters
in the canonical pose for rigging and skinning purposes; therefore, it makes
sense to have garments also defined in the canonical pose. Additionally, recent
learning-based cloth simulation methods [14–16] also require garments to be
in T-pose/canonical pose, thereby making the 3D garments generated by our
framework directly usable in all such scenarios.

5.2 Front-back vs Multiview Projection for Texture Synthesis

As stated in the main paper, we use front-back as a natural choice for partitioning
a 3D garment to reduce the number of visible seams on the mesh. Figure 8 shows
a result with 4 views (instead of just front and back), where prominent seams can
be seen (circled in red) on salient regions of the garment mesh. Additionally, we
demonstrate better global consistency of the proposed front-back projection via
superior CLIP scores (Table.2 main paper), evaluated across multiple random
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(c)(a) (b)

Fig. 8: (a) View-composited image (with 4 views) generated using depth-conditioned
ControlNet [17]. (b) Corresponding UV texture map with multiple seams. (c) Notice-
able seams on the salient parts of the garments.

views, surpassing SOTA method Text2Tex [13] (which uses multiview projec-
tion), while also being optimization-free (13 times faster). This improvement
is also justified through qualitative comparison (Figure.8 main paper) and the
user study.

5.3 Contrast with Recent 3D Generative Methods

Recent advancements in 3D generative deep learning have given rise to zero-shot
text-to-3D or image-to-3D generative models. However, the geometries obtained
from such methods are plausible but nowhere near production-ready, especially
when it comes to modelling complex geometries with openings, e.g. garments.
Since most of these methods model 3D surfaces as SDFs, they fail to handle open
garment surfaces. As shown in Figure 9, we highlight the output quality of a re-
cent state-of-the-art 3D generative method [18], where noisy and poor garment
geometries can be seen. Contrast that with the output of our method in Figure 6
on the same garment images, which generate plausible and ready-to-use 3D gar-
ments. This performance difference is due to the obvious fact that our method is
specialized for 3D garments as compared to generic text-to-3D or image-to-3D
methods, which can model arbitrary objects but with poor geometric quality.

5.4 Text Prompts for Evaluation

Due to the lack of any 3D garment dataset with text annotations, in order to
come up with several diverse text prompts describing the geometry and appear-
ance of the garments, we leverage large language models with powerful language
generation capabilities. We asked ChatGPT-3.5 to generate 300 random text
prompts describing different garment styles while just focusing on the geometry
and & 300 text prompts describing textures only. More specifically, after several
trials and errors, we came up with the following two prompts:

– “Write 300 descriptive text prompts to describe various clothing styles. Don’t
describe color or texture information, just the valid geometrical details, such



WordRobe (Supplementary) 11

Fig. 9: Output from state-of-the-art 3D generative method [18], after giving just gar-
ment images as the input. The geometry from the input view looks plausible (first row)
but is poor and unusable when observed from the side (second row).

as size, shape, curvature and so on (do not include knit-type or material
type). Remove bullet points and put every point in a new line. Make sure
prompts are highly diverse and distinct from each other.”

– “Write 300 descriptive text prompts to describe various textures and patterns
that can be put onto clothing. Be creative and make sure to take inspiration
from famous fashion designers. Remove bullet points and put every point
in a new line. Make sure prompts are highly diverse and distinct from each
other.”

We manually verified the correctness, quality and diversity of the text prompts.
We report the CLIP score and conduct the user study on the prompts generated
using the aforementioned approach. We will release the exact prompts along
with the source code in the public domain.

5.5 Limitations & Future Directions

WordRobe generates high-fidelity 3D garments with high-quality textures at an
unprecedented speed and scale. However, there are certain limitations to our
approach that we wish to overcome in future work. One of the drawbacks of
front-back orthographic rendering is the loss of information around the tangential
regions (see Figure 10). In order to fill in the missing details, we employ an off-
the-shelf inpainting method, which occasionally leaves blurry seams along the
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(a)

(b)

Rendering Texture Map

Fig. 10: (a) Missing tangential information due to orthographic projection. (b) Details
inpainted within the texture map.

boundary of the front & back regions. Another limitation is the lack of fine-grain
geometrical details on garment parts (e.g. pockets, buttons, etc. ) which makes
it challenging to model using implicit representations such as UDF.

In the context of text-driven texture synthesis, one major limitation that
every existing method encounters is the hallucination of shadows, lights, and
edges, which are purely textural and not a part of the surface of the garment.
Though it may enhance the garment’s appearance, but from the rendering point
of view, this limits the applicability of the extracted textures to new lighting
environments. As a part of future work, we wish to explore relighting to get rid of
false shading, retaining the true albedo of the garment geometry. We would also
like to enable support for layered clothing and material property of the garments.
We hope our work paves a path towards high-fidelity production-ready garment
generation from natural language prompts.
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