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Fig. 1: Text-guided generation and editing of 3D textured garments using WordRobe .

Abstract. In this paper, we tackle a new and challenging problem of
text-driven generation of 3D garments with high-quality textures. We
propose, WordRobe , a novel framework for the generation of unposed
& textured 3D garment meshes from user-friendly text prompts. We
achieve this by first learning a latent representation of 3D garments using
a novel coarse-to-fine training strategy and a loss for latent disentangle-
ment, promoting better latent interpolation. Subsequently, we align the
garment latent space to the CLIP embedding space in a weakly super-
vised manner, enabling text-driven 3D garment generation and editing.
For appearance modeling, we leverage the zero-shot generation capabil-
ity of ControlNet to synthesize view-consistent texture maps in a single
feed-forward inference step, thereby drastically decreasing the genera-
tion time as compared to existing methods. We demonstrate superior
performance over current SOTAs for learning 3D garment latent space,
garment interpolation, and text-driven texture synthesis, supported by
quantitative evaluation and qualitative user study. The unposed 3D gar-
ment meshes generated using WordRobe can be directly fed to standard
cloth simulation & animation pipelines without any post-processing.
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1 Introduction

Recent advances in 3D content creation from textual description has large im-
plications for modelling the virtual world. This includes a wide variety of assets
such as objects [1], scenes [2], as well as humans [3]. Automated content creation
has also fueled interest in generating 3D garments for applications in 3D virtual
try-on, clothing for human avatars, gaming & animated characters, and AR/VR
experiences. The 3D garments are typically represented as textured meshes to
model the underlying surface geometry & appearance. However, creating large-
scale 3D garments is prohibitively expensive, primarily due to the huge diversity
in the shape, style, and appearance of the garments. Noise-free, unposed (i.e. in
canonical/T-pose) 3D garment modelling is important for direct integration into
simulation and animation pipelines. To achieve this, traditional approaches ei-
ther employ design tools for manual garment creation (e.g., CLO [4]) or capture
digital replicas of real garments via high-end scanners (e.g., Artec [5]). However,
such approaches require significant design effort, and are expensive and difficult
to scale up. Thus, there is an acute need to develop a scalable learning-based so-
lution for automated 3D garment creation that effectively models shape, style &
appearance of various garments. A variety of deep learning-based methods aim
to digitize/reconstruct 3D garments from images, which can be broadly divided
into two categories based on the garment representation, namely parametric or
non-parametric. Parametric garment reconstruction methods [6,7] are restricted
to tight-fitting and limited clothing designs due to reliance on garment templates
derived from an underlying parametric human model (e.g. SMPL [8]). Neverthe-
less, their parametric nature supports high-quality texture maps and editing of
the pose, size & shape [9]. On the other hand, non-parametric learning-based
methods [10, 11] can model garments of various styles and appearances (within
training distribution). However, they yield posed geometry & low-quality tex-
tures, making the output garment ill-suited for direct integration into standard
graphics pipelines. Furthermore, these methods offer no control over the shape
and pose editing of the 3D garment. An alternate approach for non-parametric
3D garment modeling is effectively demonstrated in DrapeNet [12], highlight-
ing the capability of MLPs to learn the shape distribution of 3D garments by
encoding them in a latent space. This enables shape editing via latent interpo-
lation. However, there is no support for texture which is crucial for modelling
high-quality appearance details. Additionally, the generation from the garment
latent space is uncontrolled and the latent manipulation is also defined by ex-
plicit per-component labels, which require significant annotation effort in case
of a large variety of garments made of different components. Therefore, a con-
trollable way to generate and edit 3D garments via intuitive inputs (e.g. images
or text prompts) is desirable.

Recent text-to-3D methods [1,13–15] allow generation of generic 3D objects
via user-friendly text prompts, eschewing the need for 3D modelling and artis-
tic expertise. However, when employed for generating 3D garments, the surface
quality of the generated garment mesh is subpar as compared to the methods
trained specifically to model garments. While the overall quality of text-to-3D
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methods is expected to improve as research progresses, the inherent 3D rep-
resentations used by these methods have certain limitations in terms of repre-
senting 3D garments with open (non-watertight) surfaces and also lack support
for editing or manipulation. Additionally, the majority of these methods rely
on a multiview optimization process, which is computationally expensive and
slow. To this end, we propose WordRobe , a text-driven textured 3D garment
generation framework. As shown in Figure 1, WordRobe generates high-quality
unposed 3D garment meshes with photorealistic textures from user-friendly text
prompts. We achieve this by first learning a latent space of 3D garments using
a novel two-stage encoder-decoder framework in a coarse-to-fine manner, repre-
senting the 3D garments as unsigned distance fields (UDFs). We also introduce
an additional loss function to further disentangle the latent space, promoting
better interpolation. We devise a new metric to quantitatively study the ef-
fect of the proposed loss function on garment interpolation. Once the garment
latent space is learned, we train a mapping network to predict garment latent
codes from CLIP embeddings. This allows CLIP-guided exploration of the latent
space, enabling text-driven 3D garment generation and editing. For training the
aforementioned mapping network, we develop a novel weakly-supervised train-
ing scheme that eliminates the need for explicit manual text annotations. For
text-guided texture synthesis, we leverage the capabilities of pretrained T2I mod-
els for generating diverse textures. Unlike existing multiview optimization-based
methods [16–18], which are slow and expensive, we render the front & back depth
maps of the 3D garments side-by-side in a single image and pass this image to
ControlNet [19] for a depth-conditioned image generation. This novel approach
enables text-driven texture synthesis in a single feed-forward step, saving time
while outperforming existing SOTA [18] in maintaining view consistency. To the
best of our knowledge, our method is the first one to enable the text-driven
generation of high-fidelity 3D garments with diverse textures. In summary, our
major contributions are as follows:

– A novel framework and training strategy for text-driven 3D garment gener-
ation via a garment latent space.

– A new disentanglement loss for promoting better separation of concepts in
the latent space and a new metric to assess its performance.

– An optimization-free (single feed-forward) text-guided texture synthesis method
that is both superior and efficient as compared to existing SOTA.

We also extend the 3D garments dataset proposed in [20] with diverse high-
quality textures and corresponding text prompts, using the proposed approach.
We plan to publicly release the dataset and code to further accelerate research
in this space.

2 Related Work

3D Garment Digitization: Researchers have proposed several deep-learning
methods [6,10,11,21,22] that attempt to digitize /reconstruct 3D garments from
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images. Methods such as [23–26] use neural implicit representations (e.g. occu-
pancy field, SDF, etc.) to model 3D clothed humans from monocular or sparse
multi-view images, in a supervised learning setup. But, they fail to model gar-
ments separately from the body. ReEF [10] learns explicit boundary curves and
segmentation field to model garments separately, while xCloth [11] proposed to
use an alternate and efficient representation to achieve the same, while also ob-
taining texture maps. However, all these methods rely on high-quality real-world
clothed human datasets [27] which have a limited diversity in terms of style &
appearance since capturing such datasets at a large scale is expensive. Moreover,
the reconstructed garments are posed according to the underlying body and have
a sub-optimal surface quality. Another line of works takes inspiration from real-
world garment creation and proposes both analytical [28] & neural methods [20]
for procedurally generating production-ready unposed 3D garments. However,
such approaches rely on sophisticated sewing patterns which are not intuitive
to design. Some of the recent approaches [7, 9] avoid panel-based generation by
building upon parametric human body templates (e.g., SMPL [8]) to generate
parametric garments, however, they usually model tight-fitted garments with
limited texture support.

Text-to-3D Generation: Recently, various text-to-3D methods have been pro-
posed [1, 13–15, 29–31] which leverage powerful imaginative capabilities of text-
to-image (T2I) diffusion models [32], combined with popular 3D representations
(NeRF [33], DMTet [31], etc.) to generate 3D objects from the text prompts.
However, most of these methods rely on a multiview optimization process which
is computationally expensive. Moreover, NeRF-like representations are not suit-
able for modelling complex open garment surfaces, hence the output geometry
quality is not sufficient to be directly integrated into a standard graphics pipeline.
Additionally, these methods lack support for controllable manipulation or edit-
ing of the generated 3D mesh.

Text-Guided Texture Generation: Recently, Text-to-Image(T2I) Diffusion
Models [34] have garnered significant interest which has led to works like [18,35–
37] for synthesizing 2D UV texture map for a given 3D mesh. The majority of
these methods optimize the CLIP objective between the input text prompt and
multiview images generated from a pretrained denoising diffusion model [32].
However, the output resolution is low, resulting in poor texture quality. Current
SOTA method Text2Tex [18] utilizes a depth-aware image inpainting diffusion
model to progressively fill in a high-resolution texture on a mesh conditioned on a
text prompt. However, the progressive nature of texture filling makes this method
relatively time-consuming. The resultant texture map also suffers from view in-
consistencies because the denoising process across different views generates dif-
ferent images. On the contrary, we propose a texture generation method that
generates view-consistent textures by generating all the views at once in a single
feed-forward step. Note that our approach differs significantly from [37–39] since
these methods explicitly train the Stable Diffusion [32] with orthogonal views
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Fig. 2: Overview of the proposed method for text-guided 3D garment generation.

on 3D datasets with limited textural diversity (e.g. Objaverse [40]), whereas we
leverage the zero-shot generation capabilities and the newly identified property
of the pretrained ControlNet [19], enabling arbitrarily diverse textures.

3 Method

We propose WordRobe, a method to generate different types of 3D garments with
openings (armholes, necklines etc.) and diverse textures via user-friendly text
prompts. To achieve this, we incorporate three novel components in WordRobe −
3D garment latent space (Ω) which encodes unposed 3D garments as latent
codes, (Sec.3.1); Mapping Network (MLPmap) which predicts garment latent
code from input text prompt (Sec.3.2); and Text-guided texture synthesis
to generate high-quality diverse texture maps for the 3D garments (Sec.3.3).
We provide an overview of the proposed method in Figure 2. At inference time,
given an input text prompt, we first obtain its CLIP embedding ψ, which is
subsequently passed to MLPmap to obtain the latent code ϕ ∈ Ω. We further
perform two-step latent decoding of ϕ to generate the 3D garment as UDF,
and extract the UV parametrized mesh representation for the same. Finally, we
perform text-guided texture synthesis in a single feed-forward step by leveraging
ControlNet [19] to obtain the textured 3D garment mesh.

3.1 3D Garment Latent Space

We propose to learn a latent space for the unposed 3D garments using a novel
two-stage encoder-decoder framework. Inspired by DrapeNet [12], we adopt the
Unsigned Distance Function (UDF) to represent the open garment surfaces.
We employ DGCNN [41] as the garment encoder (ξ) to embed a variety of
3D garments into a latent representation by aggregating the multi-scale point
features into a unified global embedding. As shown in Figure 3, given a 3D
garment mesh G, we sample the points on the surface of the mesh and pass them
to the encoder ξ. The output of the encoder is a k = 32 dimensional garment
latent code ϕ ∈ Ω, where Ω is the garment latent space, i.e. ϕ = ξ(Gpoints).
We use coordinate-based MLP [42] as the decoder, which takes ϕ as input and
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decodes it into the UDF representation of the corresponding garment. However,
we observe that a single decoder is not suited for learning both a regularized
latent space and at the same time, modelling high-frequency details, such as
wrinkles and pleats (see Figure 9, Sec.4.4). Therefore, we propose to use two
MLP decoders, Dcoarse and Dfine to focus on two distinct objectives. Given
a set of m query points, χ ∈ Rm×3, defined over a 3D grid, Dcoarse predicts
smooth (coarse) unsigned distance value for every query point according to the
underlying geometry, conditioned on latent code ϕ. WhileDfine predicts residual
change in the output of Dcoarse to capture finer details, i.e.,

σfine = Dcoarse(ϕ) +Dfine(ϕ) = σcoarse + σdelta (1)

We use Mesh-UDF [43] to convert the 3D garment meshes into UDFs, which
acts as ground truth for training Dfine. Similarly, for training Dcoarse we first
decimate the 3D meshes, apply Laplacian Smoothing [?] and pass it to Mesh-
UDF to obtain ground truth coarse UDFs.

As shown in Figure 3, we train the proposed framework in two stages, where
we first jointly train encoder ξ and decoder Dcoarse to learn a rich garment
latent space while decoding the latent codes into coarse UDF representations.
We adopt distance loss (Ldist) and gradient loss (Lgrad) from [12], where Ldist

is formulated as BCE loss between the predicted and ground truth UDF values
(normalized and clipped in the range [0, 1]) and Lgrad is the L2 distance between
the gradients of predicted and ground truth UDFs. During training, we minimize
Ldist and Lgrad for each 3D query point x ∈ χ. In order to have a more organized
and disentangled latent space, we introduce a disentanglement loss Llatent, which
encourages the batch covariance Σb of the individual dimensions of latent vectors
to be an identity matrix and is defined for a batch b as follows:

Llatent = Σb − Ik =


var(l1) covar(l1, l2) · · · covar(l1, lk)

covar(l2, l1) var(l2) · · · covar(l2, lk)
...

...
. . .

...
covar(lk, l1) covar(lk, l2) · · · var(lk)

− Ik (2)

where, li = {ϕ1i , ϕ2i , ..., ϕ
q
i ; 1 ≤ i ≤ k} (q is the batch size), ϕi is the ith dimension

of the latent vector ϕ, and Ik in Equation 2 is k × k identity matrix. In other
words, Llatent enforces dimensions of latent vector ϕ to be as independent of each
other as possible, allowing ξ to encode the most prominent shape characteristics
of the garments across different categories in the latent space Ω. This results in
a more organized latent space, where manipulation of the latent vector along a
single (or very few) dimension(s) might be sufficient to have a desirable shape
change in the 3D garment. The respective loss functions for coarse and fine
training stages are:

Lcoarse = λdistLdist + λgradLgrad + λlatentLlatent

Lfine = λdistLdist + λgradLgrad

(3)

Minimizing the above losses results in a latent space Ω where we can randomly
sample a latent vector ϕ and perform a two-step decoding to generate a 3D
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Fig. 3: The proposed coarse-to-fine training strategy for learning garment latent space.
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Fig. 4: Automated training data generation & weakly supervised training of MLPmap.

garment UDF associated with ϕ. 3D garment mesh is extracted by running a
modified version of Marching Cubes proposed in [12].

3.2 CLIP-Guided 3D Garment Generation

We propose a novel weakly-supervised training scheme to align CLIP’s latent
space to the garment latent space Ω. Given a text prompt, we first pass it
through CLIP’s text encoder to get an embedding ψ. We employ a mapping
network MLPmap that takes ψ as input and predicts a garment latent code ϕ.

In order to train MLPmap, a large set of garment latent codes and corre-
sponding text prompts (to get corresponding CLIP embeddings) are required.
To avoid explicit text annotations, we propose an automated way of generating
training pairs (latent codes and CLIP embeddings). As illustrated in Figure 4,
given a set of 3D garments Gtrain = {Gi|1 ≤ i ≤ N}, we randomly rotate each
garment mesh Gi, render a depth map Iidepth, and pass it to a depth-conditioned
ControlNet [19] to generate a garment image Iirgb, guided by a garment agnostic
template prompt −“a garment made of {MATERIAL}, with {COLOR}
colors” . We pick predefined values for MATERIAL={silk, cotton, wool, leather}
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& COLOR={vibrant, dull, bright, shiny, matte} at random to construct the tem-
plate prompt. We add additional prompts (e.g. high-quality, realistic, photoreal,
etc.) to ensure that ControlNet produces high-quality images which are then
manually verified. The generated image Iirgb is then passed to the CLIP’s im-
age encoder to generate clip embedding ψi. Concurrently, we sample points on
the surface of every garment mesh Gi and feed them to the garment encoder
ξ to get corresponding latent code ϕi. This technique eliminates the need for
explicit manual text annotations for training the mapping network which is a
huge benefit due to the lack of any such dataset.

Once all the corresponding pairs of ψi and ϕi are generated, we trainMLPmap

by minimizing the L1 loss between the MLPmap’s prediction and corresponding
ϕi. During inference, the mapping network MLPmap takes the CLIP embedding
ψ of a text prompt and predicts a latent vector ϕ, on which two-step decoding
is performed to generate the 3D garment (as shown in Figure 2). This novel
strategy enables taming the garment’s latent space via text prompts.

3.3 Texture Synthesis

Once we have the extracted 3D garment mesh, our next aim is to generate high-
quality appearance and store it in the form of a UV texture map guided by
the same input text prompt. Though UV parametrization is suitable for storage
and fast rendering of the mesh, it is not trivial to generate textures directly in
the UV space, as UV parametrization introduces seams, disturbing the spatial
arrangement of the mesh primitives, which are organized differently in UV space
for different meshes and do not carry any semantic meaning to help learning.
Thus, we propose a novel strategy to synthesize textures from text prompts.

Existing SOTA methods [36, 37] adopt Text-to-Image diffusion models in a
multiview optimization framework, with the aim of having similar generations
(in terms of colors, lighting, etc.) across different views while minimizing the
CLIP objective. However, this approach is time-consuming and does not always
guarantee view consistency as shown in Figure 8, as a small change in control
(here, viewpoint) can drastically change the generated image. We, on the other
hand, identify a highly useful property of ControlNet [19], which allows us to
maintain consistency across different viewpoints of 3D garments in a single gener-
ation. More specifically, we empirically observed that if we composite multiview
depth maps of a 3D object in a single image and pass it to ControlNet, the gen-
erated RGB image (guided by an input text prompt) tends to have consistent
color values and lighting information across different views of that object in the
image.

Leveraging the aforementioned property of ControlNet, we devise our text-
driven texture synthesis methodology as follows. We first perform depth ren-
dering of 3D garment mesh in two views − front and back, and combine them
together to obtain a view-composited depth image πdepth as shown in Figure 2.
Though any number of views can be used, We use front-back as a natural choice
for partitioning a 3D garment to reduce the number of visible seams on the mesh
(please refer to supplementary for more details regarding this issue), and also to
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"cardigan"

Fig. 5: Garments generated using WordRobe can be edited using simple text prompts.

maintain resolution. We use orthographic projection for rendering, as perspec-
tive projection leads to more information loss across tangential regions. πdepth is
then passed to ControlNet which generates a 1024×1024 view-composited RGB
image πrgb, conditioned on CLIP embedding ψ of input text prompt. Finally, we
UV parametrize the garment mesh and project texture information from πrgb
onto the UV texture map to obtain high-quality textured garment mesh.

3.4 Garment Editing via Latent Manipulation

WordRobe’s encoding enables editing generated garment’s attributes by manipu-
lating its corresponding latent code ϕ. The learned garment spaceΩ is continuous
and allows meaningful interpolation between different garment latent codes. As
illustrated in Figure 7 (right), a meaningful garment can be obtained by tak-
ing a weighted average of two garment latent codes ϕ1 & ϕ2. For text-guided
editing , we introduce an intuitive approach that uses CLIP arithmetic [?] to
automatically identify which dimensions of latent code to manipulate in order
to achieve the desired change. As shown in Figure 5, we modify the length of
the “skirt”, and add sleeves & hood to the original “cardigan” mesh using text
prompts. Please refer to the supplementary for more details.

4 Experiments & Results

We design several experiments and perform thorough qualitative & quantitative
evaluations of our method, including ablative analysis. Regarding comparison
with SOTA methods, since there is no existing method for direct text-driven
unposed & textured garment generation, we individually compare our two-stage
encoder-decoder framework with DrapeNet [12] and text-guided texture synthe-
sis method with Text2Tex [18], both being SOTA in their respective tasks. Please
refer to the supplementary for implementation and training details.

All the experiments are done on the 3D garment dataset proposed in [20],
which has around 20, 000 unposed (canonicalized) garments spanning over 19
categories. We train our garment encoder-decoder networks on 12 categories
and perform evaluations on the remaining unseen 7 categories, following the
official train-test split provided by the authors of [20]. We are the first one
to demonstrate generalization in learning 3D garment latent space on such a
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relatively large dataset, about 30 times larger than the datasets used by the
current SOTA (DrapeNet authors show learning only on 600 training samples
across 7 categories from CLOTH3D [44]).

4.1 Qualitative Results for Text-Driven Garment Generation

We visualize 3D textured garment meshes generated using WordRobe in Fig-
ure 6. As shown in the figure, WordRobe generalizes to a large variety of gar-
ment styles and textual appearance using user-friendly text prompts (e.g. “blue
denim cargo shorts”, “spiderman jacket with hood” etc.). The text prompts in
the figure are shortened for readability. Please refer to the supplementary
for details reagarding the text prompts used for evaluation, additional
qualitative results of our method, and a qualitative user study with 67
participants.

4.2 Evaluation of Garment Latent Space

Qualitative Evaluation: In Figure 7 (left), we provide a qualitative compari-
son with DrapeNet [12] on random test samples from unseen garment categories
along with the ground truth. It can be observed from the figure that DrapeNet
tends to learn underlying shape, but fails to model garment details. On the
other hand, our coarse-to-fine training strategy outperforms DrapeNet in mod-
eling complex garments. We also demonstrate the interpolation capability of the
latent space learned using the coarse-to-fine strategy in Figure 7 (right). For
each row (a), (b) & (c), we first predict two latent codes ϕ1 & ϕ2 using appropri-
ate text prompts and then generate interpolated garments by taking a weighted
average of ϕ1 & ϕ2. As shown in the figure, the coarse & fine decoders decode
the interpolated latent code into a meaningful garment geometry.

Quantitative Evaluation: We perform a quantitative comparison of our gar-
ment generation method with DrapeNet [12] in Table 1, where we report stan-
dard metrics, Chamfer Distance (CD) and Point-to-Surface (P2S) distance, on
the test set (please refer to supplementary for the definition of these metrics).
We achieve approx. 40% lower value for CD and 42% lower value for P2S, out-
performing DrapeNet by a significant margin. This indicates that the surface
quality of the generated 3D garments using WordRobe is superior to that of
DrapeNet.

4.3 Evaluation of Texture Synthesis

Qualitative Evaluation: We perform texture synthesis on meshes taken from
the test set, governed by the input text prompt from the user and compare with
Text2Tex [18], as shown in Figure 8. Text2Tex [18] uses a multiview-optimization
strategy, which is slow (takes around 5 min for a prompt on a single RTX 4090
GPU) and sometimes converges sub-optimally and results in view inconsistency
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Fig. 6: High-quality unposed 3D garment meshes with diverse textures generated via
user-friendly text prompts using WordRobe.

and patchy artifacts (highlighted in dotted red circles). On the other hand, our
optimization-free view-composited method takes around 22 seconds under the
same settings, while producing high-quality and view-consistent texture details.
Quantitative Evaluation: For quantitative comparison with Text2Tex [18]
for generating text-driven textures for a given garment mesh, we first use the
texture maps obtained from both methods to render the input garment mesh
in 4 random views. We then compute the average CLIP-Score (higher values
are preferred) proposed in [45] between the input text prompt and the rendered
images, and report it in Table 2, where we outperform Text2Tex [18] under three
major variants of the CLIP encoder.
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Table 1: Quantitative evalua-
tion of garment encoding-decoding
framework.

Method CD↓ P2S↓

DrapeNet [12] 1.796 0.573
Ours* (Single Stage) 1.631 0.494

Ours (w/o Lgrad) 1.886 0.612
Ours (w/o Llatent) 1.094 0.331

Ours 1.078 0.329

Table 2: Comparison of text-guided texture synthesis.

Method CLIP Score ↑

ViT-H/14 ViT-L/14 ViT-B/16

Text2Tex [18] 0.263 ± 0.047 0.243 ± 0.041 0.232 ± 0.036
Ours 0.304 ± 0.043 0.265 ± 0.037 0.241 ± 0.034

4.4 Ablation Study

Single-stage vs Two-stage Decoding: We study the importance of two-stage
(coarse-to-fine) decoding of the latent code to produce noise-free garment geom-
etry. As shown in Figure 9, Ours* (proposed framework but with only a single
decoder), results in holes & isolated noise (highlighted in cyan boxes). However,
employing both coarse and fine decoders significantly suppresses the noise. This
improvement in the surface quality is also evident from Table 1, where the two-
stage framework (Ours) achieves lower values for CD and P2S as compared to
single decoder variant (Ours*).

Choice of Loss Functions: We show a qualitative ablative study on the choice
of loss functions used in learning garment latent space in Figure 9 and report
the quantitative numbers (CD & P2S) in Table 1. We observe that Lgrad plays
a significant role in reducing high-frequency surface noise by acting as a regu-
larizer, resulting in lower values of CD and P2S. The use of Llatent provides an

DrapeNet Ours Ground Truth

Fig. 7: Qualitative comparison with DrapeNet [12] (left); and Interpolation of garment
latent codes (right).
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improvement in the quality of the garment (especially around the boundaries),
however, the drop in CD and P2S values is not very significant. At last, we also
perform an ablative study over the choice of losses while training MLPmap, re-

0

"a royal dress"

"a green dress
with brown belt"

"a dress with
rainbow colors"

"a silver leather dress"

Input Mesh &
Text Prompt

Text2Tex 
(~5 min) 

Ours 
(~22 sec) 

Fig. 8: Qualitative comparison of Texture Synthesis. Our method provides better view
consistency as compared to Text2Tex (red dotted circle) while being 13 times faster.

Fig. 9: Qualitative ablation of the proposed encoder-decoder framework.
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Table 3: Quantitative evaluation
of training losses for MLPmap.

Loss MSEtest ↓

L2 0.7433
L1 + Lcosine 0.3773

L1 0.3481

Table 4: Quantitative evaluation
of latent interpolation.

∆area ↓ ∆vol ↓

w/o Llatent 0.028 1.275
with Llatent 0.022 1.206

port Mean Square Error (MSE) over the test set in Table 3, and conclude that
L1 loss alone is a more suitable choice for learning a mapping from CLIP space
to the garment latent space.

Interpolation Study: We conduct a quantitative ablation study in Table 4 to
understand the effect of Llatent in achieving better interpolation in the garment
latent space. Generally, interpolation is assessed qualitatively. Therefore, we for-
mulate two novel metrics for evaluating the interpolation quantitatively, based
on the assumption that while interpolating between two shapes, the surface area
and volume of the resulting interpolated shape should also get interpolated ac-
cordingly [46]. Given two 3D garments G1 & G2 and their respective latent codes
ϕ1 & ϕ2, the interpolated latent code is obtained as ϕavg = αϕ1 + (1 − α)ϕ2,
which is then decoded to obtain garment Gavg. Here, α is the interpolation
weight ranges between 0 and 1. We define interpolated surface area difference
∆area = ||A(Gavg)−{αA(G1)+(1−α)A(G2)}|| and interpolated volume differ-
ence ∆vol = ||V(Gavg)−{αV(G1) + (1−α)V(G2)}||, where A(Gi) is the surface
area and V(Gi) is the volume (after hole-filling) of the garment mesh Gi. We
randomly create pairs from test garment meshes and use random values of α
for each pair to compute ∆area & ∆vol, and report in Table 4. As evident from
the table, the usage of Llatent during training results in lower values of ∆area &
∆vol, promoting better interpolation by providing a more organized latent space.

We propose WordRobe , a novel method for text-driven generation and edit-
ing of textured 3D garments. WordRobe achieves SOTA performance in learning
a 3D garment latent space and in generating view-consistent high-fidelity tex-
ture maps. The carefully designed two-stage decoding strategy helps in generat-
ing high-quality garment geometry, and the new disentanglement loss promotes
better interpolation. Our weakly supervised CLIP-to-latent mapping technique
enables text-driven garment generation without requiring any annotated dataset.
We report superior qualitative & quantitative performance compared to exist-
ing methods and explain our design choices with appropriate ablative analysis.
We believe our work paves the way towards production-ready unposed garment
generation from text prompts.
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