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1 Supplementary Material

1.1 3D Morphable Models (3DMM).
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Fig. S1: 3DMM [2] vs. Leaned Ba-
sis Scaling (LeBS). 3DMM based
method reconstructs 3D facial geome-
try by scaling the the pre-defined ba-
sis Uexp with expression parameters
β ∈ R64. LeBS, on the other hand, uses
the learned basis V = {vi}ni=1 ⊆ Rd

which is scaled by the low-dimensional
coefficients λ = (λi)

n
i=1 ∈ Rn (n ≪ 64).

3D Morphable Models (3DMM) [2] are
statistical models of 3D shape and their
corresponding texture. In this paper, we
only consider the shape representation of
3DMM. To be specific, a face shape S is
initialized with the average shape S̄ and
further shaped by a linear combination of
expression and identity as follows:

S = S̄+ αUid + βUexp, (1)

where Uid ∈ R80×d3dmm , Uexp ∈
R68×d3dmm are the pre-defined bases of
identity and expression subspaces of 3D
face space, respectively. d3dmm is the di-
mension of the 3D face space. The coeffi-
cients α ∈ R80 and β ∈ R64 determine the
facial identity and expression for the face
geometry reconstruction by scaling each
basis vector [1].

In this paper, we term appearance as
the set of geometric features that determine the facial identity of a given face,
such as head size, face contour, face proportion, eyebrows, eye shape, mouth
shape, jaw shape, etc., and expression as the motion of these appearance fea-
tures, such as mouth opening (closing), eye blinking, etc.

1.2 Detailed Model Architectures.

Our model consists of four parts: Learned Basis Scaling (LeBS), Hybrid Tri-
plane Generator G, Light-weight MLP decoder (MLP) for color and density
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Fig. S2: The detailed model architectures. k × k-Conv-C-s-p is the convolution
operator with the kernel size k × k, output channel size C, stride step s, and padding
size p. Linear-C0-C1 is the fully-connected layer of the input channel size C0 and the
output channel size C1.

prediction used in the differentiable volume rendering [17], and Super-resolution
(SR) module. The detailed model architectures are shown in Fig. S1 and Fig. S2.

LeBS consists of two fully-connected layers along with the learned orthonor-
mal basis V ⊆ Rd. We apply QR-decomposition [21] to a learnable weight in
Rd×n to explicitly compute V ⊆ Rn×d. We set the dimension of the expression
space d = h

4 to be same as the dimension of the visual tokens where h = 1024
is the size of the hidden state in the EAdaLN-ViT blocks. We experimentally
choose n = 10 for the number of basis vectors. We observe that increasing n pro-
duces duplicated expression directions. For the contrastive pre-training of LeBS,
we employ ResNetSE18 feature extractor [8] followed by a single fully-connected
layer to output the d-dimensional vector, serving as the image encoder fI(·).
Notably, we do not introduce an orthonormal basis to fI(·).

Inspired by [20], we incorporate ViT blocks [7] into our generator G, specif-
ically utilizing those from SegFormer [22] and DiT [18]. In both EAdaLN-ViT
and ViT, we employ four heads with 1024 hidden dimensions for the multi-head
self-attention. It is worth mentioning that the architectures of EAdaLN-ViT and
ViT illustrated in Fig. S2 are the same, with the exception of EAdaLN integra-
tion for expression transfer. We employ the exponential moving average (EMA)
on the tri-planes for stabilizing the training. More precisely, in the j-th gradient
step, we calculate and update the EMA Tj

EMA and the current tri-plane Tj as
follows:

Tj
EMA ← δ · Tj−1

EMA + (1− δ) · T̄j and Tj ← Tj + Tj−1
EMA (2)
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where T̄j is the average tri-plane calculated within the j-th batch and T0
EMA is

initialized by 0 ∈ R3×32×128×128. We set δ = 0.998 as the weight for the moving
average.

MLP for color and density prediction consists of a stack of fully-connected
layers with soft-plus activation. In contrast to [4], we use two fully-connected
layers to separately predict them.

For SR, we follow the super-resolution module used in [4, 10] except for the
style modulated convolutions.

1.3 Training Objectives

Our model is trained with reconstruction manner that reconstruct a driving
frame D from a source frame S with the driving expression parameters βD and
camera parameters pD where these frames are randomly sampled from the same
video clip. The training consists of two stages. In the first phase, we employ MSE
loss L2 and VGG16 [19] multi-scale perceptual loss Llpips [23] to minimize the
perceptual distance between the generated frame D̂ and the driving frame D.
We also minimize the distance between the raw rendered image D̂raw and raw
driving image Draw using the same loss functions, denoted by Lraw

2 and Lraw
lpips,

respectively:
Lrec = Lraw

2 + L2 + Lraw
lpips + Llpips. (3)

In the second phase, we integrate the conditional discriminator used in [9], us-
ing the camera parameter as additional condition and employing binary cross-
entropy loss to compute adversarial loss Ladv. The total loss function Ltotal is

Ltotal = λrecLrec + λadvLadv, (4)

where λrec and λadv are balancing coefficients.

1.4 More Implementation Details.

Training. Since our model does not rely on pre-trained EG3D [4, 20], it is
trained end-to-end, except for CLeBS. For the contrastive pre-training of LeBS,
we draw 32 negative samples for each positive sample, set the temperature τ to
0.07, and train it for 60,000 steps. Longer pre-training does not lead to significant
performance improvements.

We empirically set the balancing coefficients in Eq. (4) by λrec = 1, and
λadv = 0.01. We train our model for 300,000 steps with the reconstruction loss
Eq. (3) and then incorporate the adversarial loss Eq. (4) for 10,000 steps to
slightly improve the visual quality. For all training, we use Adam [13] optimizer
with the learning rate 10−4 for Export3D, 10−4 for CLeBS, and 10−5 for the
discriminator, respectively. Overall training conducts on a single A100 GPU
about 5 days with batch size 8. In the inference phase, we use randomly sampled
frontal frame as the source frame.
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Table S1: Quantitative comparison of on VFHQ with "background".

Method
Same-identity Cross-identity

PSNR↑ SSIM↑ AKD↓ CSIM↑ AED↓ APD↓ CSIM↑ AED↓ APD↓
ROME 8.309 0.400 11.179 0.592 0.123 0.173 0.495 0.236 0.201
OTAvatar 10.667 0.457 15.236 0.492 0.181 0.182 0.492 0.288 0.237
HiDeNeRF 12.254 0.345 22.136 0.354 0.135 0.252 0.408 0.259 0.230
Ours 23.555 0.704 3.453 0.811 0.082 0.030 0.694 0.208 0.080
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Fig. S3: Linear scaling along the different basis vectors of CLeBS.

1.5 Evaluation.

Evaluation metrics. We provide additional explanations of the evaluation
metrics. Average key-point distance (AKD) is the L1 distance of 68 facial key-
points between the generated image and the driving image, which measures the
facial structure similarity based on the key-points. We use the face-alignment
[3] to extract the key-points. Cosine similarity of identity embedding (CSIM)
is the cosine similarity between the identity embeddings of the source image
and the generated image where the embeddings are extracted from ArcFace [5].
Average expression distance (AED) and average pose distance (APD) are the
L1 distance between the expression parameters (64 dimensions) and the pose
parameters (6 dimensions), respectively extracted from the generated image and
the driving image. We use the 3DMM extractor [6] to extract those parameters.

1.6 Additional Results.

Further comparison without removing the background. In Tab. S1, we
provide additional quantitative comparison with ROME [12], OTAvatar [16], and
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Fig. S4: Novel-view synthesis results with expression transfer.

DrivingSource Source OutputDrivingOutput

Fig. S5: Limitation cases of Export3D. The red arrows indicate the directions of
eye gaze.

HiDe-NeRF [14] to verify that these models have advantage on the evaluation
metrics without background.

Linear scaling along the orthonormal basis. In Fig. S3, we show addi-
tional results of linear scaling along the different basis vectors [21]. For v1, we
scale λ1 from 1 to -7, showing mouth opening and eye closing. For v3, we scale
λ3 from 1 to 20, showing eye closing and lip pursing. For v6, we scale λ6 from
1 to -7, showing eyebrow moving. For v9, we scale λ9 1 from to -10, showing
eye closing and smiling. Since our method does not constrain the range of the
coefficients λ = (λi)

10
i=1, the manipulation can be realized along the negative

scaling. Please refer to video results.

Additional comparison with HiDe-NeRF. In Fig. S4, we exhibit addi-
tional comparison results with HiDe-NeRF [14] for novel-view synthesis with
expression transfer. Please refer to the video results for further details.

1.7 Limitations and Future Work.

We exhibit the limitation cases of Export3D in Fig. S5. Since the tri-plane repre-
sents [4] the foreground and the background as a whole, our model jointly renders
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them, resulting in head pose-aligned distortion. Several prior works [12, 14–16]
address this issue by removing the complex background and providing the vol-
ume rendering with a uniform background. However, they heavily rely on the
performance of the background segmentation model [11], exhibiting the tempo-
ral jitters in the generated videos. Additionally, our model cannot control eye
gazing since the 3DMM parameters do not model eye movement. We leave these
limitations for future research.
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