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Abstract. In this paper, we present Export3D, a one-shot 3D-aware
portrait animation method that is able to control the facial expression
and camera view of a given portrait image. To achieve this, we introduce
a tri-plane generator with an effective expression conditioning method,
which directly generates a tri-plane of 3D prior by transferring the ex-
pression parameter of 3DMM into the source image. The tri-plane is
then decoded into the image of different view through a differentiable
volume rendering. Existing portrait animation methods heavily rely on
image warping to transfer the expression in the motion space, challeng-
ing on disentanglement of appearance and expression. In contrast, we
propose a contrastive pre-training framework for appearance-free expres-
sion parameter, eliminating undesirable appearance swap when transfer-
ring a cross-identity expression. Extensive experiments show that our
pre-training framework can learn the appearance-free expression repre-
sentation hidden in 3DMM, and our model can generate 3D-aware ex-
pression controllable portrait images without appearance swap in the
cross-identity manner.

Keywords: Portrait Image Animation · Facial Expression Control · 3D-
aware Synthesis

1 Introduction

Portrait image animation aims to generate a video of a given source identity
with the driving motion. It has received a lot of attention due to the potential
of virtual human services, such as cross-lingual film dubbing [12, 28], virtual
avatar chatting [37, 64], and video conferencing [51, 53]. In these scenarios, it
is essential to transfer the facial expression (e.g., eye-blinking, lip motion, etc.)
from different person, i.e., cross-identity transfer, while preserving the source
identity. However, it is challenging due to the ambiguity between appearance
and expression [17] and the lack of paired data (e.g., different faces with the
same expression) for disentanglement representation learning [38].
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Most 2D-based methods rely on image warping [23,48,54,60,65], which warps
the source image to the driving image by estimating the motion between them.
To impose a bottleneck for the motion representation, they encode the motion
into the difference between sparse key-points [23, 48, 65] or latent codes [54],
which are trained in an unsupervised manner. However, in this scenario, the
facial expressions are encoded into the motion space as well, in terms of local
motion, which tends to be neglected due to the relatively large head motions.
Furthermore, since the facial expression and the appearance are highly entangled
in the image space, cross-identity expression transfer often involves the source
appearance change. DPE [38] tackles this entanglement issue by proposing a
self-supervised disentanglement learning framework based on cycle-consistency
learning [66]. However, it shows temporal inconsistency in the generated video
due to its instability of cycle-consistency learning.

Another line of works [30, 31, 34, 62] explores facial expression control in 3D
space using the neural radiance fields (NeRFs) [36]. They leverage pre-trained
latent representation of 3D GAN [9] for 3D facial prior where they design the
expression in terms of latent code [34, 62] or predict deformation field [39] to
deform the well-constructed 3D representation, such as tri-plane [30, 31, 34, 62].
However, the latent code cannot faithfully reconstruct the source identity [34],
and the point-wise deformation fields to those 3D representations yield video-
level artifacts, such as flickers [30].

In this paper, we address the appearance-expression entanglement issue by
proposing a contrastive pre-training framework over video datasets that pro-
duces appearance-free facial expressions with an orthogonal structure. Armed
with this representation, we build a one-shot 3D-aware portrait image animation
method, namely Export3D, which controls the facial expression and 3D camera
view of a given source image without appearance swap. To achieve this, we
design a generator architecture consisting of vision transformer (ViT) and con-
volution layers [16, 40, 51] that directly generates the tri-planes from the source
image and driving expression parameters. Instead of predicting the deformation
fields for the expression, we introduce an expression adaptive layer normaliza-
tion (EAdaLN) which can effectively transfer the driving expression to the source
image. The main contributions of this work are summarized as follows:

– We present Export3D, a one-shot 3D-aware portrait image animation
method that can explicitly control the facial expression and camera view
of the source image only using the expression and camera parameters.

– We propose a contrastive pre-training framework for the appearance-
free facial expression distilled from the 3DMM parameters where they
form an orthogonal structure for different facial expressions.

– Extensive experiments demonstrate that our pre-training framework can
learn the appearance-free expression, which enables our method to trans-
fer the cross-identity expression without undesirable appearance swap.
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2 Related Works

2.1 3D-aware Image Synthesis

3D-aware image synthesis aims to generate images with explicit camera pose
control [9, 10, 14, 20, 46, 56]. This is achieved by conditioning the camera pose
parameter into generative features, which are then rendered into an RGB image
through differentiable volume rendering [6, 32, 36, 39]. This rendering technique
has integrated with adversarial learning [9,10,14,19,20,46,56] to learn 3D view
consistency from the unposed dataset. GRAM [14] generates a multi-view con-
sistent image by learning the radiance field on a set of 2D surface manifolds.
AniFaceGAN [55] further learns the deformation fields [39] for the facial ex-
pression on these manifolds [14] for explicit facial expression control. EG3D [9]
introduces a tri-plane representation that provides a strong 3D position encod-
ing with neural volume rendering and become the one of the most prominent
representation in this field. However, these methods generate portrait images
from noise, requiring further process for real image manipulation.

Relying on the generateive power of EG3D, several works [7, 29, 34, 49, 51,
58, 61–63] extend 2D GAN-inversion [1, 2, 44, 50] methods, which is challenging
due to the multi-view consistency for a single-view image. Specifically, based on
facial symmetry, SPI [61] utilizes horizontally flipped images for pseudo super-
vision to the occluded facial region. However, it requires multi-stage latent code
optimizations. GOAE [63] proposes an encoder-based inversion for EG3D which
enhances multi-view consistency via an occlusion-aware tri-plane mixing mod-
ule. Live3DPortrait [51] can reconstruct multi-view consistent portrait images
by leveraging the synthetic data of pre-trained EG3D to provide multi-view su-
pervision. However, these methods cannot explicitly manipulate the expression
of the source image.

We propose a tri-plane generator architecture that can generate the tri-plane
of a given source image with explicit expression control. Inspired by [40,51], we
design this generator with ViT and convolution layers [16], and directly inject
expression parameters into the tri-plane generating process through the expres-
sion adaptive layer normalization (EAdaLN). By leveraging the strong power of
NeRF [9,36,49,51,62], we decode the generated tri-plane into multi-view images
with explicit expression manipulation.

2.2 Portrait Image Animation

Portrait image animation, or face reenactment, is a task that animates a given
source image according to the input driving condition, either audio [21,28,33,37,
41,64] or image [48,53,54,60,65]. Specifically, image-driven methods transfer the
motion of the driving image into the source image by learning the motion between
them. Most works [48, 53, 65] use facial key-points as a pivot representation
to be aware of motion via the key-point displacement. FOMM [48] estimates
facial key-points in an unsupervised manner, approximating the motion through
the first-order Taylor expansion. LIA [54] encodes a motion in terms of latent
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Fig. 1: Training overview of Export3D. We convert a source image S ∈ R3×H×W

into a tri-plane TβD (S) for rich 3D priors, conditioned on an expression parameter
βD ∈ R64 from a driving image D ∈ R3×H×W . A differentiable volume rendering
renders the tri-plane into a raw rendered image D̂raw ∈ R3×H

4
×W

4 using the camera
parameter pD ∈ R25 of D, which is then super-resolved into a final image D̂ ∈ R3×H×W .

codes by introducing an orthonormal basis as a motion dictionary. However, the
local motion (e.g., facial expression) and the global motion (e.g., head motion)
are still entangled in those representations. DPE [38] proposes a bidirectional
cyclic training strategy to decouple the pose and expression within the latent
codes, while it produces video-level artifacts due to the instability of the cycle-
consistency learning.

To explicitly control the facial expression, several works leverage the ex-
pression parameters of 3D morphable models (3DMM) [8] in 2D [18, 60] or 3D
spaces [30, 31, 34]. StyleHEAT [60] uses 3DMM to warp 2D spatial features of
pre-trained StyleGAN2 [25] while yielding texture sticking. OTAvatar [34] pro-
poses a one-shot test-time optimization method that optimizes identity codes of
a single source image and learns expression-aware motion latent codes in the la-
tent space of pre-trained EG3D. HiDe-NeRF [30] and NOFA [62] take a different
way by predicting an expression-aware deformation field [39] that deforms the
tri-plane [9] reconstructed from the source image.

Our method belongs to image-driven approaches, distinguishing itself by not
depending on 2D image warping or 3D deformation fields. Toward this, we pro-
pose the generator architecture that uses a source image and driving expression
parameters to produce an expression-transferred tri-plane, wherein the expres-
sion parameters directly modulate the source visual features through the ex-
pression adaptive layer normalization (EAdaLN). Furthermore, we mitigate the
appearance swap issue inherent in transferring other person’s expression by intro-
ducing a contrastive pre-training method to obtain appearance-free expression
representations.
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3 Methods

First of all, we formulate our portrait animation method, Export3D. Given a
source image S ∈ R3×H×W , our method transfers the facial expression and
camera view of a driving image D ∈ R3×H×W with the expression and camera
parameters, respectively. We employ a tri-plane [9] as the intermediate feature
representation, providing a strong 3D position information for differentiable vol-
ume rendering [32, 36]. We directly generate an expression-transferred tri-plane
from the source image and the driving expression parameter [3, 8] through ex-
pression adaptive layer normalization (EAdaLN) (Sec. 3.2). Based on the obser-
vation that the expression parameter still contains the appearance information,
we propose a pre-training framework using contrastive learning to obtain the
appearance-free expression, which forms an orthogonal structure for different
expressions (Sec. 3.1). The expression-transferred tri-plane is rendered into a
3D-aware image through the differentiable volume rendering, and then super-
resolved into the final output (Sec. 3.3).

3.1 Contrastive Learned Basis Scaling (CLeBS)
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Fig. 2: Contrastive pre-training
framework for LeBS. We sample the
positive and the negative samples from
the same video source so that those
samples share the same appearance.
Using contrastive learning, the encoder
fe(·) learns an appearance-free represen-
tations.

Natural speaking style comes from the
the non-verbal component, such as eye
blinking. To explicitly control the ex-
pression of the generated face, we utilize
the expression parameter β ∈ R64 from
the widely used 3D morphable models
(3DMM) [8] in 3D face reconstruction.
However, simply using those parame-
ters for transferring the other person’s
expression fails to preserve the facial
identity of the source face.
Disentangling Expression and Ap-
pearance. In 3DMM-based face re-
construction, the identity-appearance
has been rarely explored. However, [17]
shows that a 3D face shape can be re-
constructed only using the expression
parameters not using the shape param-
eters, or vice versa. We also observe
that the expression parameter of 3DMM is highly entangled with the appear-
ance (Fig. 8a), resulting in an undesirable appearance swap when transferring
the cross-identity expressions. We assume that the expression parameter needs
to be refined to represent pure facial expressions. To address this issue, we pro-
pose a contrastive learning based pre-training framework [11,22,37,42] on video
dataset to discard the appearance information hidden in the expression parame-
ter. Specifically, given a video sequence {Xi}Ni=1 and its corresponding expression
sequence {βi}Ni=1, we sample an aligned image-expression pair (Xk, βk) for the
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positive and the non-aligned pairs for the negatives as illustrated in Fig. 2. The
images and the expressions are mapped into d-dimensional representations, and
the distance between the positive (or negative) representation pairs is minimized
(or maximized) via the following contrastive objective Lcl:

Lcl = − log

(
exp(cos(fI(Xk), fe(βk))/τ)∑
j ̸=k exp(cos(fI(Xj), fe(βk))/τ)

)
, (1)

where fI(·) is an image encoder, fe(·) is an expression encoder, τ is the tem-
perature, and cos(·, ·) is the cosine similarity, respectively. Since all samples are
from the same video, they share the same appearance, thereby Eq. (1) enforces
the encoders to learn appearance-free expression.

Moreover, for designing the expression encoder fe(·), we focus on the orthog-
onal structure of 3DMM [8] that controls different expressions along different
orthogonal directions. To provide the appearance-free expression with the or-
thogonal structure, we introduce a learned orthonormal basis V :

V = {v1,v2, · · · ,vn} ⊆ Rd and ⟨vi,vj⟩ = δij , ∀i, j, (2)

spanning our new expression sub-space (δij is the Kroneker delta function). More
precisely, we convert the expression β ∈ R64 into the low-dimensional coefficient
λ = (λ1, λ2, · · · , λn) ∈ Rn (n ≪ 64) and then scales the learned orthonormal
basis V ⊆ Rd to produce the appearance-free expression representation β′ ∈ Rd:

β′ = fe(β) = λ1v1 + λ2v2 + · · ·+ λnvn ∈ Rd. (3)

We apply QR-decomposition [54] to a learned weight (∈ Rd×n) to explicitly com-
pute the orthonormal basis V ∈ Rd×n. In this space, an expression is a linear
combination of the basis V = {vi}ni=1 where the coefficient λ = (λ1, λ2, · · · , λn)
is responsible for the intensity of each expression direction. We call our en-
coder fe(·) a learned basis scaling (LeBS) module with contrastive pre-training
(CLeBS). Once CLeBS is pre-trained with Eq. (1), no further training is required
as illustrated in Fig. 1 and Fig. 3, and the image encoder fI(·) is never used after
then.

3.2 Hybrid Tri-plane Generator

We employ the tri-plane as the intermediate feature representation for 3D prior
to volume rendering. Tri-plane T consists of features assigned on the 3 axis-
aligned planes (i.e., xy, yz, zx planes):

T = (Txy,Tyz,Tzx) ∈ R3×32×H
2 ×W

2 , (4)

where Tij ∈ R32×H
2 ×W

2 is the 32-dimensional feature of H
2 × W

2 resolution on
the ij-plane. EG3D [9] utilizes StyleGAN2 [25] to generate the tri-plane from
a noise, forming the style latent space W ⊆ R512. Several works [7, 29, 34, 49,
58, 61, 62] extend the 2D GAN-inversion methods [1, 2, 44, 45, 50] to 3D GAN-
inversion in terms of reconstructing the tri-plane from the style latent code.
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Fig. 3: Hybrid tri-plane generator G
and Expression Adaptive Layer Nor-
malization (EAdaLN). EAdaLN modu-
lates the expression of S using the refined
expression β′ from CLeBS.

However, these methods often face
challenges in preserving facial identity
since the style latent code lacks the
capacity for encoding spatial informa-
tion and person-specific visual details.
We directly generate the expression-
transferred tri-plane TβD

(S) from the
source S and the driving expression
βD ∈ R64 to reconstruct the driv-
ing D. Inspired by Live3DPortrait
[51], we construct the tri-plane gen-
erator with ViT and convolution [16,
57]. Specifically, we convert S ∈
R3×H×W into a visual feature in
R

h
4 ×

H
23

×W
23 through a stack of con-

volutional blocks, and then merge it
into the h-dimensional H·W

28 visual to-
kens through a overlap patch merge
operator [57]. These tokens and driv-
ing expression are processed through
a conditional ViT [16, 40, 57] blocks,
namely EAdaLN-ViT, where the ex-
pression modulates [40] the visual
tokens through expression adaptive
layer normalization (EAdaLN) as il-
lustrated in Fig. 3. EAdaLN is applied right before the multi-head self-attention
(MSA) and the mix feed-forward network (Mix-FFN) [57] of each ViT block to
inject the semantic expression into the visual tokens:

EAdaLN(x, β′
D) = σ(β′

D)× LN(x) + µ(β′
D) ∈ Rh×(H·W

28
), (5)

where x is the input visual token, LN(·) is the layer normalization [5], σ(β′
D)

and µ(β′
D) are the h-dimensional scale and shift factors computed from β′

D =
fe(βD) ∈ Rd, respectively. To efficiently propagate the visual tokens to the higher
resolution, we upsample the visual tokens with pixel shuffle [51] followed by the
Gaussian low-pass filter [24]. We experimentally find that the tokens and the
pixel shuffle produce grid artifacts, challenging to eliminate in the image space.
Employing low-pass filters effectively mitigates these artifacts by smoothing the
borderline artifacts over the coordinate. Lastly, we use ViT and convolutional
blocks to output the tri-plane TβD

(S):

TβD
(S) = G(S, βD) ∈ R3×32×H

2 ×W
2 . (6)

Note that our method does not query the expression parameter to estimate the
motion [18, 38, 60], rather it is used as the multi-dimensional label. To stabilize
the tri-plane generation, we incorporate the online exponential moving average
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(EMA) over tri-plane TEMA which is added to the generated tri-plane. Please
refer to supplementary materials for detailed architectures.

3.3 Volume Rendering and Super-resolution

The tri-plane can be rendered into a 2D RGB image through the differentiable
volume rendering [9,32,36]. The expression-transferred tri-plane TβD

(S) is pro-
jected onto 3 orthogonal planes (xy, yz, zx-planes) and then aggregated through
average [9]:

FβD
(S) =

1

3
(FβD,xy(S) + FβD,yz(S) + FβD,zx(S)), (7)

where FβD,ij(S) are the projected features of TβD
(S) onto the ij planes. A light-

weight MLP assigns a color c and density σ to each point (x, y, z) using the
aggregated feature FβD

(S):

MLP : FβD
(S) −→ (c, σ). (8)

The differentiable volume rendering [9,21,36] composites each color c and density
σ into a RGB value C along the camera ray r:

C =

∫ tf

tn

σ(r(t)) · c(r(t)) · T (t)dt, (9)

where r(t) = o + td, t ∈ [tn, tf ], with camera center o ∈ R3, viewing direction
d ∈ R3, and T (t) is the accumulation measure along the ray r from tn to t:

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (10)

Note that the ray r is determined by the driving camera parameter pD ∈ R25

to render the generated tri-plane TβD
(S) into a image of the same view with

D. As the appearance and the expression are already encoded in the tri-plane
generation, the volume rendering can determine the view-consistent images.

Directly rendering a target high-resolution image requires high computa-
tional cost. One promising approach to address this issue is to incorporate super-
resolution blocks [9,51,56] that upsamples the rendered image of low resolution.
Following this approach, we first render a D̂raw ∈ R3×H

4 ×W
4 and then apply the

super-resolution to obtain the target resolution D̂ ∈ R3×H×W , as illustrated in
Fig. 1. Instead of using style-modulated convolution [9,51], we use plane convo-
lutional blocks for super-resolution, as we do not leverage the style latent code.
Detailed architecture is provided in supplementary materials.

4 Experiments

4.1 Dataset and Pre-processing

We train our model on real video dataset VFHQ [59]. Following the video pre-
processing strategies in [28,48], we convert the original video into 25 fps and crop
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Table 1: Quantitative comparison on VFHQ. The best score for each metric is
in bold. Note that we only measure CSIM [13], AED and APD [15, 43] for the cross-
identity experiment as no ground-truth is available.
†: Evaluated only on the foreground facial region.

Model
Same-identity Cross-identity

PSNR ↑ SSIM ↑ AKD ↓ CSIM ↑ AED ↓ APD ↓ CSIM ↑ AED ↓ APD ↓
StyleHEAT [60] 14.233 0.428 30.406 0.464 0.161 0.139 0.505 0.242 0.136
DPE [38] 23.241 0.750 3.661 0.831 0.083 0.032 0.586 0.253 0.085
ROME† [27] 14.185 0.642 7.281 0.737 0.111 0.051 0.641 0.224 0.074
OTAvatar† [34] 17.441 0.651 11.502 0.662 0.176 0.067 0.610 0.290 0.198
HiDe-NeRF† [30] 21.228 0.728 8.245 0.867 0.106 0.049 0.707 0.255 0.065
Ours 23.555 0.704 3.453 0.811 0.082 0.030 0.694 0.208 0.080

Source Driving StyleHEAT DPE ROME OTAvatar HiDe-NeRF Ours

Fig. 4: Comparison on same-identity experiments. For a fair comparison, we
follow the pre-processing strategy of each method.

the facial regions of resolution 256 × 256, ensuring that the nose is located at
the center of the image. We use a 3DMM extractor [15] to obtain the expression
parameter β ∈ R64. We adopt the pre-preprocesing strategy of EG3D [9] for the
camera parameter p ∈ R25 (the concatenation of the camera intrinsic parameters
in R9 and the inverse extrinsic parameter in R16). After the video pre-processing,
6196 video clips are used for training, and 50 videos are used for test. We also
evaluate our model on the test dataset of TalkingHead-1KH [53]. After the same
pre-processing, remaining 20 videos of different identities are used.

4.2 Evaluation

We compare our model against 2D-based [38,60] and 3D-based [27,30,34] image-
driven portrait animation methods whose official implementations are available.
StyleHEAT [60] warps the 2D spatial features of pre-trained StyleGAN2 using
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Table 2: Quantitative comparison on TalkingHead-1KH. The best score for
each metric is in bold. Note that we only measure CSIM [13], AED and APD [15,43]
for the cross-identity experiment as no ground-truth is available.
†: Evaluated only on the foreground facial region.

Method
Same-identity Cross-identity

PSNR ↑ SSIM ↑ AKD ↓ CSIM ↑ AED ↓ APD ↓ CSIM ↑ AED ↓ APD ↓
StyleHEAT [60] 15.613 0.517 21.198 0.575 0.148 0.095 0.571 0.218 0.102
DPE [38] 23.201 0.786 4.281 0.807 0.093 0.029 0.714 0.216 0.081
ROME† [27] 15.921 0.695 13.444 0.726 0.123 0.062 0.667 0.201 0.084
OTAvatar† [34] 16.952 0.660 11.615 0.668 0.181 0.063 0.682 0.247 0.150
HiDe-NeRF† [30] 19.759 0.729 5.746 0.843 0.112 0.043 0.757 0.232 0.085
Ours 23.239 0.797 3.581 0.764 0.092 0.033 0.772 0.204 0.076

Source Driving StyleHEAT DPE ROME OTAvatar HiDe-NeRF Ours

Fig. 5: Comparison on cross-identity experiments. For a fair comparison, we
follow the pre-processing strategy of each method. Notably, most portrait animation
methods fail to preserve the source identity or transfer driving appearance features,
such as eye shape and facial contour, in cross-identity scenarios.

3DMM parameters, DPE [38] disentangles the pose and the expression in the
motion latent space without using 3DMM parameters. ROME [27] is a mesh-
based method transferring the expression and pose using 3DMM. OTAvatar [34]
leverages pre-trained EG3D [9] by modeling head motion in terms of latent
codes. HiDe-NeRF [30] deforms the source tri-plane by predicting expression-
aware deformation fields. For evaluation, we employ peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) for image quality,
average key-point distance (AKD) [43] for facial structure based on the 68 facial
key-points, cosine similarity of identity embedding (CSIM) [13] for identity
preservation, average expression distance (AED), and average pose distance
(APD) [15, 43] for expression transferring and pose matching. For the cross-
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Table 3: Ablation studies on the expression encoding. Same evaluation setting
with Tab. 1. The best score for each metric is in bold.

Method
Same-identity Cross-identity

PSNR↑ SSIM↑ AKD↓ CSIM↑ AED↓ APD↓ CSIM↑ AED↓ APD↓
Direct 3DMM 23.077 0.688 3.874 0.789 0.105 0.044 0.648 0.209 0.073
E2E LeBS (n = 25) 23.105 0.672 3.775 0.745 0.109 0.040 0.670 0.218 0.071
E2E LeBS (n = 10) 23.235 0.676 3.755 0.751 0.110 0.038 0.672 0.238 0.079
E2E LeBS (n = 5) 22.631 0.646 4.114 0.658 0.140 0.046 0.632 0.246 0.076
Full (CLeBS) 23.555 0.704 3.453 0.811 0.082 0.030 0.694 0.208 0.080

Source Driving Direct 3DMM
E2E LeBS
(𝑛 = 25)

E2E LeBS
(𝑛 = 10)

E2E LeBS
(𝑛 = 5) Full (CLeBS)

Fig. 6: Ablation studies on the expression encoding. Without our contrastive
pre-training, the expression encoders transfer the expression together with the appear-
ance, such as eyelids and the head size.

identity experiments, we only measure CSIM, AED and APD as no ground-truth
image is available.

Same-identity experiments. We report the same-identity transfer experi-
ment results in Tab. 1 and Tab. 2, and illustrate the qualitative results in Fig. 4.
For a fair comparison, ROME [27], OTAvatar [34], and HiDe-NeRF [34] are eval-
uated on the foreground facial region with different field of view. DPE [38] shows
the stable performance in the same-identity experiments with the fine-grained
expression controls. Among the 3D-based methods, HiDe-NeRF [30] scores the
highest in the identity preservation (CSIM). Our method scores the best result in
the majority of evaluation metrics. Especially, it has an advantage in expression
controls (AKD and AED).

Cross-identity experiments. In Tab. 1 and Tab. 2, we also conduct the
cross-identity transfer experiments that transfers the expression and pose of dif-
ferent identity into the source identity. As illustrated in Fig. 5, DPE [38] shows
visual artifacts and appearance swap, such as face contours and eye shape,
due to the insufficient disentanglement of expression and pose in the motion
space. HiDe-NeRF [30] scores the highest identity preservation (CSIM) while
un-predictable light changes are involved due to the point-wise deformation field
on the tri-plane. Our method can transfer the driving expression without ap-
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Fig. 7: Cross-attention vs. EAdaLN.

Table 4: Ablation studies on
EAdaLN. The best score for each metric
is in bold. We replace EAdaLN in G with
cross-attention to verify the effectiveness
of EAdaLN.

Method
Same-identity Cross-identity

CSIM↑ AED↓ APD↓ CSIM↑ AED↓ APD↓
Ours (w. Cross-attention) 0.678 0.125 0.042 0.631 0.271 0.122
Ours (w. EAdaLN) 0.811 0.082 0.030 0.694 0.208 0.080

pearance swap and generates a video without video-level artifacts such as light
changes and flickers. Please refer to our supplementary videos.

4.3 Ablation Studies and Further Results

Ablation studies on the expression encoding. In Tab. 3, we conduct
ablation studies on different expression encoding strategies. In Direct 3DMM,
we replace our CLeBS with fully-connected layers to directly inject the expres-
sion parameters of 3DMM through EAdaLN. As illustrated in Fig. 6, the direct
injection does not change appearance when transferring same-identity expres-
sion however, it changes appearance (e.g., eyebrows and facial contour) when
transferring cross-identity expression. Furthermore, since the raw expression pa-
rameters inherently contain noise, the generated image also exhibits visual arti-
facts. In E2E LeBS, we decrease the the number of basis vectors n in LeBS for
appearance bottleneck to validate the proposed contrastive pre-training. Each
LeBS with n = 25, 10, 5 is jointly trained (i.e., E2E) with entire model without
any pre-training. Due to the entanglement of appearance and expression, both
appearance and expression are changed as a whole as the the number of ba-
sis vector n decreases. LeBS alone is insufficient for extracting appearance-free
expression from the expression parameters.
Ablation studies on EAdaLN. In Tab. 4, we conduct ablation studies
on EAdaLN (w. EAdaLN) by comparing it with cross-attention (w. Cross-
attention), which is a widely used conditioning method in transformer-based
architectures [40,52]. Specifically, we replace all the EAdaLN blocks in G (Fig. 3)
with cross-attention blocks. In both scenarios, CLeBS serves the refined expres-
sion β′. As shown in Tab. 4 and Fig. 7, the cross-attention fails to handle the
expression accurately, which verifies the effectiveness of our EAdaLN for the
expression conditioning.
Visualization of facial expression parameters. In Fig. 8, we sample 10
random frames from 10 different videos of distinct individual in VFHQ [59] and
visualize the low-dimensional t-SNE [35] results of the two expression parame-
ters: β ∈ R64 and β′ ∈ Rd. In Fig. 8a, the 3DMM expression parameters show
strong entanglement with respective to their identities, indicating the hidden
appearance information in them. On the other hand, as shown in Fig. 8b, our
contrastive pre-training mitigates the entanglement, thereby resolving the ap-
pearance swap in the cross-identity expression transfer in Fig. 6.
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Fig. 8: Visualization of the expression parameters. We plot t-SNE [35] of raw
3DMM expression and our appearance-free expression parameter.
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Fig. 9: Linear scaling along the different basis vectors of CLeBS. We visualize
the different expression directions along the basis vectors v4,v8 ∈ V.
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Fig. 10: Novel-view synthesis results with expression transfer. Our method
can generate more multi-view consistent images compaired to HiDe-NeRF [30].

Linear scaling along the orthogonal directions. In Fig. 9, we verify that
β′ ∈ Rd has the orthogonal structure where the learned basis V determines the
different expressions even if trained in unsupervised manner and the coefficients
{λi}ni=1 scale their intensities. Specifically, we visualize two orthogonal directions
v4 and v8 and linearly scale their coefficients λ4 and λ8 from 1 to 10. As shown
in Fig. 9a, v4 controls eye closing and mouth closing, while Fig. 9b illustrates
that v8 controls mouth opening. Notably, the orthogonal basis does not influence
head movements.
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Novel-view synthesis with expression transfer. In Fig. 10, we compare
the results of novel-view synthesis with expression transfer to those of HiDe-
NeRF [30]. Both methods utilize the tri-plane and differentiable volume ren-
dering to generate novel-view images. However, while HiDe-NeRF transfers the
driving expression by deforming the generated tri-plane into a canonical tri-plane
based on driving conditions [39], our method relies on the hybrid generator G
with EAdaLN. In both same-identity and cross-identity transfer scenarios, our
method synthesizes more view-consistent results, highlighting the effectiveness
of our method in expression transfer without relying on deformation. Please refer
to supplementary videos.

5 Conclusion

We presented Export3D, a 3D-aware portrait image animation model that con-
trols the facial expression and the camera view of a source image by leveraging
the driving 3DMM expression and camera parameters. Since the expression pa-
rameters are still entangled with appearance information, we proposed a con-
trastive pre-training framework to extract appearance-free expressions from the
parameters. These refined expressions are injected into our generator through
expression adaptive layer normalization (EAdaLN) that produces a tri-plane of
source identity and driving expression. Finally, differentiable volume rendering
renders the tri-plane into 2D images of different views. Extensive experiments
show that our contrastive pre-training framework removes the appearance infor-
mation from the 3DMM expression parameters, enabling our model to transfer
the cross-identity expressions without undesirable appearance swap.
Limitations and future work. While our method can generate realistic
face videos with driving expressions and views, it still has several limitations.
First, our method cannot separately generate the foreground and background
regions as the tri-plane representation construct them as a whole. Several works
address this limitation by extending the tri-plane representation [4], restricting
rendering points in the ray marching process [47], or leveraging the off-the-shelf
segmentation model [26] to manually separate them [30, 31, 34]. Second, our
method cannot control non-facial body parts (e.g., neck and shoulders) and eye
gazing as they are beyond the capability of the 3DMM parameters. We plan to
address these limitations for future work.
Ethical consideration. Since our method can generate a realistic video us-
ing a single portrait image, it has the potential for misuse, such as fake news
creations. We have planned to attach visible and invisible watermarks to the gen-
erated videos and restrict the source identities for inference in research demon-
stration.
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