
Appendix

This supplementary material contains additional details of the main manuscript
and provides more experiment analysis. In Appendix A, we present the difference
between SimPB and other previous works that utilize 2D results as priors. Next,
we elaborate on the complete architecture and give more implementation details
in Appendix B. Then, we provide more experiment analysis about runtime, en-
coder ablation study, and association accuracy in Appendix C. Finally, more
visualization results are illustrated in D.

A Utilizing 2D Results as Priors
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Fig. S1: Comparison of SimPB with previous approaches utilizing 2D results as priors.
We roughly categorize these previous methods into two categories, (a) query initialization
and (b) feature selection. Instead, SimPB introduces a unified paradigm using novel
cyclic 2D&3D layers as in (c).

We highlight the difference between SimPB and previous approaches that use
2D results as priors in two aspects: architecture and association.

Architecture. In Fig. S1, we categorize the previous methods into two
groups: query initialization and feature selection, as summarized below.

– Query Initialization: In this category, 3D queries are typically initialized from
2D boxes that are detected by a 2D detector (as shown in Fig. S1 (a)).

– Feature Selection: The methods focus on foreground tokens through 2D
supervision and then select them for interaction with 3D queries (as shown
in Fig. S1 (b)).

All these methods employ a 2D detector (or utilize a 2D head) to predict 2D results
as a preliminary step before applying a 3D detector. In contrast, SimPB takes
a distinct approach. It performs simultaneous multi-view 2D and 3D detection
within a single model using cyclic 2D & 3D decoder layers (as illustrated in
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Fig. S1 (c)). SimPB is a one-stage method that does not rely on an off-the-shelf
2D detector.

Association. For association, we refer to the connection between 2D and 3D
results for the same target. A summary of the association of previous methods is
listed as follows.

– Query Initialization: This method employs a heuristic default association,
where a 3D query is linked to a 2D box for its initialization. This association
is referred to as a 2D-to-3D association.

– Feature Selection: In this approach, the association between 3D queries and
selected 2D image tokens, supervised by a 2D detector, is learned through
the transformer. However, it does not explicitly establish a direct association
between 2D and 3D results.

In contrast, our method determines the association by projecting 3D anchors
and matching them with the corresponding 2D results. In this way, our approach
establishes a 3D-to-2D association between 2D and 3D results. The 3D-to-2D
association has the advantage of aggregating 2D information more efficiently and
avoiding the generation of redundant 3D results. We give a detailed analysis
in Appendix C.3 and Appendix D.1.

B More Implementation Details

B.1 Architecture Details
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Fig. S2: Comprehensive architecture of SimPB.
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To maintain clarity, some minor components in Fig. 2 of the main manuscript
have been omitted. We provide the complete architecture of SimPB in Fig. S2
for a comprehensive view. Specifically, we include arrow lines to illustrate the
connections between self-attention and cross-attention in both the multi-view 2D
decoder layer and the 3D decoder layer. Additionally, we visualize the residual
connection from the output of temporal cross-attention to the Adaptive Query
Aggregation module. The aggregated 3D queries are separately shown as the
output of a multi-view 2D decoder layer, which is used as input for the 3D head
for deep supervision. Furthermore, to display the temporal propagation, we add
an arrow line to indicate the updated object queries linking to the temporal 3D
object queries.

B.2 More Allocation Details

In the Dynamic Query Allocation module, a 3D query is allocated to a maximum
of one object center and multiple projection centers across different camera
views by projecting it using camera parameters. The projection center typically
represents a truncated portion of a cross-view target. The total number of 2D
object queries is equal to the combined count of object centers and projection
centers.

During the early stages of training, the presence of inaccurate anchors can lead
to a rapid increase in the number of projection centers, resulting in convergence
challenges. To address it, we introduce two constraint strategies to optimize the
allocation during training.

– The number of projection centers is limited to a maximum of 100 for each
camera group. Consequently, the total number of 2D queries is restricted to
a maximum of N + 100× V , where N represents the number of 3D queries
and V denotes the number of cameras.

– To mitigate the impact of incorrectly projected anchors, we limit the maximum
size {l, w, h} of the anchors to {35, 35, 10}, which is computed from the
training split of Nuscenes dataset.

In our implementation, the number of 3D queries is fixed at N = 900, while the
number of 2D queries M dynamically adjusts based on anchor projection. During
inference, the number of 2D queries M varies around an average of 1100, which
is approximately 200 more than the original number of 3D queries N = 900.
Nevertheless, this increase in the number of queries introduces only a negligible
rise in computational overhead.

C More Experimental Analysis

C.1 Runtime Analysis

We compare the inference speeds of SimPB with state-of-the-art methods using
two different backbones and model input resolutions. The evaluation is conducted
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Table S1: Comparison of inference speeds.

Method Backbone Resolution FPS↑

MV2D [6] ResNet50 704× 256 9.5
StreamPETR [4] ResNet50 704× 256 27.1
Sparse3Dv3 [2] ResNet50 704× 256 19.8
SimPB ResNet50 704× 256 10.9

MV2D [6] ResNet101 1408× 512 3.9
StreamPETR [4] ResNet101 1408× 512 6.4
Sparse3Dv3 [2] ResNet101 1408× 512 8.2
SimPB ResNet101 1408× 512 7.1

on an NVIDIA 3090 GPU. As shown in Tab. S1, SimPB provides inferior per-
formance compared to StreamPETR [4] and Sparse4Dv3 [2] at a resolution of
704× 256. However, at higher resolutions, SimPB achieves comparable inference
speeds to these methods. Notably, SimPB consistently outperforms MV2D [6] in
terms of inference speed.

(a) ResNet50 & 704 × 256 (b) ResNet101 & 1408 × 512

Fig. S3: Run time decomposition on two configurations.

To gain a better understanding of computational complexity, we provide an
analysis of the runtime distribution for each module of SimPB under these two
settings. The percentage of runtime for each module is illustrated in Fig. S3. The
allocation process in SimPB is responsible for a significant portion of the runtime
for the ResNet50 backbone, making it a major bottleneck that affects the overall
inference speed. In the ResNet101 setting, where both the model capacity and
the model input increase, the backbone itself takes up more time and becomes a
significant bottleneck. However, the processing time for the allocation step does
not vary with changes in model size or input. As a result, the model experiences
a relatively smaller negative impact when utilizing a larger backbone and higher
resolution. We plan to optimize the inference speed of the network in our future
work.
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C.2 Impact of Encoder

Table S2: Impact of encoder layer of SimPB.

Encoder layers mAP↑ NDS↑ AP2d ↑ FPS↑ Memory(G) ↓

- 0.412 0.519 0.211 12.9 10.64
1 0.421 0.527 0.217 10.9 14.46
2 0.425 0.529 0.220 9.0 17.89
3 0.432 0.536 0.222 7.9 21.07
4 0.439 0.545 0.224 6.1 23.94

Our objective is to develop a unified architecture capable of simultaneously
output both 2D and 3D results from multiple cameras. To achieve this, we adopt
an encoder-decoder structure following the design of the DETR-like scheme [7]. In
contrast to previous sparse query-based methods such as DETR3D [5], PETR [3],
and Sparse4D [1], which often exclude the encoder for 3D detection, we recognize
the potential benefits of incorporating an encoder.

To explore its effectiveness, we conduct an additional ablation study, as listed
in Tab. S2. The experimental settings align with Sec. 4.4 of the main manuscript.
By incorporating the encoder, the model boosts the performance in mAP, NDS,
and AP2d. Increasing the number of encoder layers further enhances performance
but at the cost of increased computation time and memory consumption. To
achieve a balance between efficiency and effectiveness, we employ a single encoder
layer in SimPB.

C.3 Effect of Association

Fig. S4: AAR (Association Accuracy Rate) and Recall curves.

Two-stage methods usually only provide a default association between 3D and
2D results during query initialization. In contrast, SimPB explicitly constructs
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the association of 2D and 3D detection results. To quantitatively evaluate the
association, we design a metric termed Association Accuracy Rate (AAR) to
measure the accuracy rate of association and also apply Recall as an evaluation
metric as well.

Suppose there are N3d 3D grountruth boxes {Gi
3d}

N3d
i=1 and N2d projected

2D boxes {Gi
2d}

N2d
i=1 on the image views as 2D boxes label in the validation

dataset. We can obtain M3d 3D box prediction {P i
3d}

M3d
i=1 and M2d 2D prediction

{P i
2d}

M2d
i=1 from the network. Typically, a candidate match is established between

a 3D prediction and a 2D groundtruth box. The total number of candidates
matching is denoted as #Matching{3D-pred, 2D-gt}. From these candidate matches,
we select valid associations between 3D predictions and 2D predictions generated
by the network. The valid matching number is #ValidMatching{3D-pred, 2D-pred}.
Therefore, we define the association evaluation metric AAR as follows:

AAR =
#ValidMatching{3D-pred, 2D-pred}

#Matching{3D-pred, 2D-gt}
× 100%, (1)

Recall =
#Matching{3D-pred, 2D-gt}

N2d
× 100%. (2)

For a given 3D prediction P i
3d and j-th 2D groundtruth Gj

2d on v-th image
view. And we denote the associated 3D grountruth of Gj

2d as Gj
3d for simplicity.

P i
3d→2d is the bounding rectangle on v-th view projected from P i

3d. The connection
between P i

3d and Gj
2d is a candidate matching if the following conditions are met:

Φ(P i
3d, G

j
2d) =

{
1 if Dist(P i

3d, G
j
3d) ≤ τdis & IoU(P i

3d→2d, G
j
2d) ≥ τiou & Cls(P i

3d, G
j
3d) = 1

0 otherwise,

(3)
where Dist represents the Euclidean distance between the centers of two 3D
boxes, and Cls indicates whether the labels of the two boxes are the same or not.
Similarly, we denote a valid candidate between the i-th 3D prediction P i

3d and
the k-th 2D prediction P k

2d when the following conditions are met:

Ψ(P i
3d, P

k
2d) =

{
1 if Φ(P i

3d, G
j
2d) = 1 & IoU(Pk

2d, G
j
2d) ≥ τiou & Cls(Pk

2d, G
j
2d) = 1

0 otherwise. (4)

Therefore, AAR can be rewritten as:

AAR =

∑M3d

i=1

∑M2d

k=1 Ψ(P
i
3d, P

k
2d)∑M3d

i=1

∑N2d

j=1 Φ(P
i
3d, G

j
2d)

× 100% (5)

We fix the τdis = 2 and adjust τiou from 0.1 to 0.9 to draw the AAR and
Recall curves. As shown in Fig. S4, the accuracy and recall decrease as the
IOU threshold τiou increases. However, SimPB constantly gains higher AAR
and Recall metrics with a large margin on both settings. The utilization of the
3D-to-2D association in SimPB demonstrates higher accuracy compared to the
2D-to-3D association used in MV2D. This approach not only maintains a larger
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number of matched predictions but also ensures better alignment of 2D and
3D features. As a result, the 2D information to the same target is effectively
leveraged for 3D tasks, leading to improved performance.

D Qualitative Evaluation

(a) The detection results of MV2D. 2D-to-3D association (red arrow) may produce duplicate
3D results or unrelated results from 2D priors for a cross-camera target.

(b) The detection results of SimPB. The process of 3D-to-2D association (green arrow)
effectively yields accurate 3D results along with their corresponding 2D boxes for cross-
camera targets.

Fig. S5: Illustration of association between 2D and 3D results by MV2D and SimPB.

D.1 Qualitative Comparison on Association

To conduct a qualitative analysis of the association establishment between 2D-to-
3D and 3D-to-2D, we compare the detection results of MV2D and SimPB in the
same keyframe. The detection results of several cross-camera targets are shown
in Fig. S5, where the yellow boxes represent the 2D detection results, and the
blue boxes represent the 3D detection results
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In the case of a cross-camera target O, MV2D initially employs a 2D detector
to generate multiple 2D bounding boxes (using two as an example). These 2D
results are used to initialize 3D queries through a 2D-to-3D association method.
However, multiple 3D queries are associated with the target O. Only one of
these 3D queries accurately predicts the target, while the other may produce
a duplicated nearby object (circle 1 in Fig. S5 (a)) or even an unrelated result
(circle 2 in Fig. S5 (a)). This discrepancy arises during the Hungarian matching
step, where only the best candidate query is optimized as the positive sample,
resulting in the suppression of the remaining 3D queries. Consequently, the 2D
information from a specific view of the suppressed 3D query is discarded, despite
it can provide relevant information about the same target.

To address this issue, SimPB adopts a novel approach to establish the associ-
ation between 2D and 3D results using a 3D-to-2D method. For a cross-camera
target, we distribute its 3D queries to different views for 2D detection tasks and
subsequently aggregate the results to form a single 3D query. To this end, for a
cross-camera object, SimPB only produces one 3D detection result along with its
corresponding 2D detection in each relevant camera. Also, our cyclic 3D-2D-3D
interaction ensures there is a single coherent representation of the target across
different views, eliminating redundancy outputs and enhancing the accuracy of
the results (in Fig. S5 (b)).

D.2 Qualitative Comparison with State-of-the-Art Methods

Fig. S6: Visualization results of StreamPETR and SimPB.

SimPB provides improved accuracy in detecting crowd objects such as traffic
cones and pedestrians compared to StreamPETR. For instance, while Stream-
PETR incorrectly identifies two traffic cones as a single entity, SimPB accurately
detects them as separate objects (green circle in Fig. S6 (a)). In Figure S6 (b),
StreamPETR also provides an inaccurate estimation of the locations of pedes-
trians and traffic cones, showing that crowd objects tend to cluster around
their neighboring objects. In contrast, SimPB provides more precise results and
successfully distinguishes crowded and small objects. This improvement can be
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attributed to the novel cyclic 3D-2D-3D scheme of SimPB, where the iterative
and interactive process of 2D and 3D information enhances the refinement of
queries, resulting in more accurate detection results.

SimPB also demonstrates its advantage in detecting distant targets and
performs well even in challenging scenarios. For example, SimPB successfully
detects pedestrians and cars at far distances, whereas StreamPETR fails to
do so (red circle in Fig. S6 (c)). Furthermore, despite encountering difficulties
in predicting small and distant targets within complex environments, such as
rain (as shown in Fig. S6 (d)), SimPB can still provide reliable 2D detections.
These 2D detections can be utilized in subsequent post-processing steps within a
practical autonomous driving perception system.

D.3 More Visualization Results

We present the visualization of the 2D and 3D detection results of SimPB
using the ResNet101 backbone and a model input resolution of 1408× 512. The
visualizations are shown in Fig. S7 and Fig. S8. The number on the detected box
represents its predicted category.
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Fig. S7: Detection results on Nuscenes validation dataset during the daytime. 2D
predict results are visualized in yellow and 3D results are visualized in bule.
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Fig. S8: Detection results on Nuscenes validation dataset during the rain and night.
2D predict results are visualized in yellow and 3D results are visualized in bule.
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