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This supplementary material covers: More Qualitative Results (Sec. A); Un-
conditional Motion Generation (Sec. B); Implementation Details (Sec. C) and
More Experimental Results (Sec. D). Please watch our supplementary video for
a more thorough review.

A More Qualitative Results

Fig.A1: More qualitative results of EMDM on the task of action-to-motion.
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Fig.A2: More qualitative results of EMDM on the task of text-to-motion.

In the following, we provide more qualitative results of action-to-motion and
text-to-motion tasks, which are visualized in Fig. A1 and Fig. A2. The model is
evaluated on the HumanAct12 [3] dataset and HumanML3D dataset [2], respec-
tively. EMDM produces high-quality human motions that faithfully align with
the input conditions. We highly suggest readers watch our supplementary video
for a more thorough review.

B Unconditional Motion Generation

Next, we evaluate unconditional motion generation following [1]. As shown in
Tab. B1, EMDM exhibits higher motion quality and significantly reduced run-
ning time when compared to existing methods.

Table B1: Comparison of unconditional motion generation task on the part of AMASS
dataset following [1].

Methods FID ↓ Diversity→ Running Time (per frame; ms)↓
Real 0.002 9.503 -

VPoser-t [6] 36.65 3.259 -
ACTOR [7] 14.14 5.123 0.523±.009

MDM [9] 8.84 6.429 62.505±.071

MLD [1] † 1.4 8.577 0.886±.007

EMDM (Ours) 3.46 8.759 0.280±.002

Blue and orange indicate the best and the second best result.
† Two-stage and non end-to-end approach.
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C Implementation Details

In the following, we present the network structures and training details of EMDM.
During the training stage, we noise a ground-truth image x0 to xt−1 and xt given
a time step t. We use the xt, as well as conditions (text/action c, time step t)
and latent variable z to generate x̂0 which is then used to sample x̂t−1. The fake
x̂t−1 or real xt−1, together with conditions (text/action c, time step t, and the
real xt), are fed to the conditional discriminator. During inference, conditions
(including text/action c, time step t, and xt) and a latent variable z are fed to
our generator. The denoised output is the generated motion.

Fig. C3: The generator architecture for the text-to-motion tasks. For the action-to-
motion task, the CLIP module, masking module, and the corresponding linear layer
are replaced with a single linear layer for action label embedding. The linear layer for
z consists of 5 layers.

C.1 Conditional Generator Structure

In this paper, we employ a conditional generator for synthesizing motion condi-
tioned on text or action labels, time step t and human motion xt at t-th time
step. The model can be written as Gθ(xt, z, c, t), where xt is the motion to be
denoised, z ∈ R64 is the latent variable for GAN, and c, either a string of text
or an action number ∈ R1, is the input control signal. The network structure of
Gθ is shown as in Fig. C3.

T2M Architecture t and z are mapped to R1024 by 1 and 5 linear layers respec-
tively, while c is encoded by CLIP [8] to R512, randomly masked 10% of the
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Fig. C4: The discriminator architecture for the text-to-motion task. We replace the
CLIP module with one-hot encoding for the action-to-motion task.

values and embedded to R1024 by a linear layer. xt is mapped to Rseq×1024 by a
linear layer, where seq is the length of the motion. All the aforementioned values
are concatenated and fed to the encoder. We discard the first 3 tokens of the
output and map it back to a motion using a linear layer.

We use the PyTorch implementation for Transformers. The model has 12
transformer layers and 32 attention heads. The feed-forward size and latent
dimension are both set to be 1024. The dropout rate is 0.1. We employ selu as
the activation function.

A2M Architecture The overall architecture is the same. The only difference for
action-to-motion tasks is that instead of using CLIP + masking + linear layer
to map a text to R1024, we use a linear layer to map the action number directly
to R1024.

C.2 Conditional Discriminator Structure

In EMDM, we employ a conditional discriminator for assessing the authenticity
of motions, which can be written as Dϕ(xt−1,xt, c, t), where xt−1 is the motion
to be assessed. The input control signals c (either a string of text or an action
number ∈ R1), time step t and xt serve as the conditions for Dϕ. The network
structure is shown in Figure C4.

After training, the discriminator would give a positive value for real motions
xt−1 and a negative value for the fake ones x̂t−1.

T2M Architecture The Discriminator consists of 7 linear layers, each followed by
a selu layer. Group normalization is applied after two of the linear layers as well.
t is embedded to R128 with sinusoidal positional embeddings as similar to [10].
c is embedded to R512 using CLIP . We then concatenate xt, xt−1, embedded t
and embedded c and pass the result to the linear layers.
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A2M Architecture The overall architecture is the same. The only difference for
action-to-motion tasks is that instead of using CLIP to embed the text, we use
one-hot encoding to transform the action number from R1 to RA, where A is the
number of possible action labels.

C.3 Training Details

During network training, we adopt the scheduling scheme following [10]. During
each iteration, we first train the discriminator with objective

min
ϕ

∑
t≥1

(Eq(x0)q(xt−1|x0)q(xt|xt−1)[F(−Dϕ(xt−1,xt, c, t))]

+Eq(xt)Epθ(xt−1|xt)[F(Dϕ(xt−1,xt, c, t))]).

(1)

Then we train the generator with objective

min
θ

∑
t≥1

(Eq(xt)Epθ(xt−1|xt)[F(−Dϕ(xt−1,xt, c, t))]

+R · Lgeo),

(2)

where F(·) denotes the softplus(·) function and Lgeo = Lrecon + λ(Lpos +
Lvel + Lfoot), as stated in the main paper.

Similar to [10] we add an R1 regularization term [5] to the loss term of the
discriminator:

γ

2
Eq(x0)q(xt−1|x0)q(xt|xt−1)[∥∇xt−1Dϕ(xt−1,xt, c, t)∥2]. (3)

In this paper, we use γ = 0.02 for all tasks.
We train our model using the Adam optimizer [4] with cosine learning rate

decay [10]. The exponential moving average (EMA) is used during the training
of the generator. The batch size is 64 for all tasks.

The learning rate of the conditional discriminator is 1.25 × 10−4. For the
generator, we use a learning rate of 3× 10−5 and 2× 10−5 for action-to-motion
and text-to-motion tasks, respectively.

D More Experiments

D.1 Comparisons with DDIM Sampling Methods

Moreover, in Tab. D2, we compare EMDM with other few-step sampling diffusion
models for motion generation [1,9,12]. To be specific, we show that accelerating
sampling by naively reducing the sampling step size using DDIM (10 steps)
leads to quality degradation due to the inaccurate approximation of complex
data distributions as analyzed in Sec. 3 of the main paper. This holds true for
both motion diffusion models [9, 12] or the motion latent diffusion models [1].
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Table D2: Comparison with motion diffusion models with few-step sampling (10 sam-
pling steps) on Text-to-motion. We test on HumanML3D.

Methods R Precision ↑ FID↓ MM Dist↓ Diversity→MModality↑ Running Time
(per frame; ms)↓Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 - -

MotionDiffuse 0.040±.005 0.074±.006 0.108±.008 100.780±.619 12.434±.052 10.943±.106 6.650±.273 1.426±.030

MDM 0.076±.062 0.139±.004 0.194±.007 33.232±.308 7.165±.048 3.440±.060 2.325±.023 0.673±.001

MLD† 0.480±.0030.670±.0030.769±.003 0.397±.009 3.199±.010 9.923±.075 2.488±.094 0.359±.002

EMDM (Ours)0.498±.0070.684±.0060.786±.006 0.112±.019 3.110±.027 9.551±.078 1.641±.078 0.280±.002

Blue and orange indicate the best and the second best result.
† Two-stage and non end-to-end approach.

Table D3: EMDM v.s. DDGAN on HumanML3D.

Methods R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Naive DDGAN 0.072±.003 0.140±.004 0.207±.006 31.085±.256 7.389±.034 5.060±.059 3.155±.092

EMDM (Ours) 0.498±.007 0.684±.006 0.786±.006 0.112±.019 3.110±.027 9.551±.078 1.641±.078

Blue indicates the best result.

D.2 Comparisons with DDGAN [10]

In addition to the DDIM approach, the recent work DDGAN [10] proposes an-
other implementation of a few-step sampling for efficient image generation. Next,
we compare EMDM with a baseline model that directly combines DDGAN [10]
and a representative motion diffusion model MDM [9]. Specifically, the base-
line approach trains without a condition passed to the discriminator with the
weights of geometric loss set to be 0 (R = 0). The experiment is conducted using
HumanML3D datasets for the text-to-motion task. As shown in Tab. D3, Naive
DDGAN produces poor performance in terms of generated motion quality, which
is because motion generation typically requires more specific constraints for each
frame of the movement.

D.3 Ablation Study on Conditioning with Geometric Loss.

As shown in Tab. D4, without providing conditions to the discriminator, the
performance in motion quality is slightly worse. This proves the necessity of
providing text/action conditions to the discriminator, which is different from
naive DDGAN [10].

D.4 Physical Plausibility.

As discussed in the limitation section, kinematics-based motion generation meth-
ods currently focus more on motion semantics and typically suffer from physical
implausibility. We report penetration and skate metrics following [11] in Tab. D5,
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Table D4: Influence of condition on discriminator. Both models are trained to the
same number of epochs.

Diffusion
Steps

R Precision ↑ FID↓ MM Dist↓Diversity→MModality↑
Top 1 Top 2 Top 3

Real 0.424±.0050.649±.0060.779±.0060.031±.004 2.788±.012 11.08±.097 -

Without 0.467±.0060.666±.0060.771±.0060.510±.037 3.209±.021 10.01±.072 2.221±.021

With (Ours)0.476±.0050.674±.0040.779±.0040.506±.031 3.187±.017 10.03±.075 2.235±.039

Table D5: Comparison on Physical Plausibility.

Method Penetration Skate

EMDM 0.094 1.083
MDM 0.064 0.878

T2M-GPT 0.356 2.618

evaluated on 200 motions, where our motion quality is better than T2M-GPT
and comparable with MDM. We agree that injecting physics information can be
a promising future direction.

E Limitations and Future Works

Fig. E5: Motion artifacts: (a) floating and (b) ground penetration in the generated
human motion.

While EMDM demonstrates promising performance in efficient human motion
generation, it lacks physical considerations, leading to issues such as floating
and ground penetration; See Fig. E5. Integrating physics-based characters shows
potential for future improvements. Additionally, although EMDM currently pri-
marily accepts textual inputs, it has the potential to incorporate visual inputs or
music sources for online motion synthesis, offering exciting research directions.
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