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Abstract. We introduce Efficient Motion Diffusion Model (EMDM) for
fast and high-quality human motion generation. Current state-of-the-art
generative diffusion models have produced impressive results but struggle
to achieve fast generation without sacrificing quality. On the one hand,
previous works, like motion latent diffusion, conduct diffusion within a
latent space for efficiency, but learning such a latent space can be a non-
trivial effort. On the other hand, accelerating generation by naively in-
creasing the sampling step size, e.g., DDIM, often leads to quality degra-
dation as it fails to approximate the complex denoising distribution. To
address these issues, we propose EMDM, which captures the complex dis-
tribution during multiple sampling steps in the diffusion model, allowing
for much fewer sampling steps and significant acceleration in generation.
This is achieved by a conditional denoising diffusion GAN to capture
multimodal data distributions among arbitrary (and potentially larger)
step sizes conditioned on control signals, enabling fewer-step motion sam-
pling with high fidelity and diversity. To minimize undesired motion arti-
facts, geometric losses are imposed during network learning. As a result,
EMDM achieves real-time motion generation and significantly improves
the efficiency of motion diffusion models compared to existing methods
while achieving high-quality motion generation. Our code is available at
https://github.com/Frank-ZY-Dou/EMDM.
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1 Introduction

Tremendous efforts have been made for human motion generation with different
modalities, including action labels [16, 21, 35, 53, 87], textual descriptions [1, 15,
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Fig. 1: EMDM produces high-quality human motion aligned with input conditions
in a short runtime. The average run time of EMDM in (a) action-to-motion and (b)
text-to-motion tasks is 0.02s and 0.05s per sequence, respectively. For reference, the
corresponding times for MDM [76] are 2.5s and 12.3s. We deepen the color of the
character with respect to the time step of the sequence. (c) Overall comparison of the
inference time costs on the HumanML3D, KIT, and HumanAct12 datasets. For ease
of illustration, the Running Time is plotted with a log scale. We compare the running
time per frame vs. the FID of SOTA methods.

19, 20, 28, 31, 32, 54, 76, 95, 96, 99], and audio [2, 33, 36, 38], etc. The diffusion
model [25, 58, 69] has been at the forefront of these advances [7, 30, 66, 76, 98],
due to its promise of effectively capturing the target distribution of diverse body
motions. However, these models struggle to achieve fast motion generation while
maintaining high motion quality. For instance, MDM [76] takes around 12s to
produce a motion sequence given a textual description. Such low efficiency limits
their effectiveness in real-world applications, e.g., online motion synthesis.

Existing efforts to improve the generation efficiency of the motion diffusion
model can be mainly categorized into two types: 1) motion latent diffusion pro-
posed by MLD [7]. This involves first learning a latent space of body motion and
then conducting latent diffusion. However, such a two-stage approach relies on
effectively embedding the motion in the first stage—it is challenging to learn a
good embedding space for the subsequent latent diffusion model. The expression
of the latent space typically limits the performance of downstream motion gen-
eration, as evidenced by both quantitative (Sec. 4.3 and Sec. 4.4) and qualitative
comparisons. 2) The DDIM sampling strategy [69] can be adopted to acceler-
ate generation by reducing the number of denoising steps (using a larger step
size), given that the standard number of denoising steps is typically 1000 [76,98].
Additionally, the Gaussian assumption on the denoising distribution holds only
for small step sizes. Therefore, directly using a larger step size during motion
sampling skips numerous reverse steps and leads to much more complex data
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Fig. 2: Pipeline of EMDM. We develop condition denoising diffusion GAN to capture
the complex denoising distribution of human body motion, allowing a larger sampling
step size (Sec. 3.1). During inference, we use a larger sampling step for fast sampling
of high-quality motion w.r.t. input condition. The detailed sampling algorithm is given
in Alg. 1. Note that we ignore the time step t for simplicity.

distributions than Gaussians. As the complex data distributions cannot be ap-
proximated with fewer sampling steps, the performance of this approach drops,
as shown in Tab. D2 in Appendix D. Thus, it is critical to capture the complex
data distributions when a few-step sampling is involved; see Fig. 3.

Fig. 3: Denoising distribution
becomes complex (non-Gaussian)
when increasing sampling step
sizes for few-step sampling.

In this paper, we present Efficient Motion
Diffusion Model (EMDM) for fast and high-
quality human motion generation. We seek to
reduce the number of sampling steps while
achieving fast motion generation. The key to
allowing a larger sampling step size is to effec-
tively capture the complex data distributions
during a few-step sampling. Inspired by recent
advances in efficient image synthesis [85], we
develop a sampling strategy for fast motion
generation while maintaining high motion qual-
ity. Specifically, we employ a conditional de-
noising diffusion GAN, incorporating a condi-
tional generator and conditional discriminator that consider both the time step
t and input control signals (e.g., text); See Fig. 2. The generator (denoiser) is
trained to generate the motion x̂0 conditioning on input control signals, time
step t, given the random variables. Then posterior sampling (Alg. 2) is applied
to produce x̂t−1 at the t− 1-th time step using x̂0. A discriminator is trained to
distinguish whether a data sample x̂t−1 is a plausible denoised result of xt. As t
varies during diffusion model training, the generator learns to capture the com-
plex denoising distribution introduced by an arbitrary (and potentially larger)
sampling step size. As a result, during sampling, one could use a larger sampling
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step size (fewer steps) to sample a motion given the conditions, significantly im-
proving runtime performance. As a condition of the model, the control signals
make the capture of the complex motion distribution more efficient by learning
the conditional denoising distribution. Finally, to reduce unwanted artifacts, we
further integrate geometric motion losses during model training to stabilize the
training process and enhance motion quality. Our model is trained end-to-end,
simplifying the training process and significantly reducing the overall training
effort, which is a noteworthy advantage in practical applications.

As a result, EMDM effectively captures the complex motion distribution,
enabling much fewer sampling steps during motion generation while maintaining
high-quality motion; See Fig. 1 for some examples of generated motion and
overall running time statistics. Our contribution is three-fold:

– We reveal the efficiency issues with existing motion diffusion models and the
challenges in accelerating the models.

– We present EMDM for fast and high-quality motion generation by employing
a conditional denoising diffusion GAN to effectively model complex denoising
distributions for the few-step motion generation with high quality.

– We perform extensive experiments on EMDM to demonstrate its remark-
able speed-up for diffusion-based approaches with competitive or even higher
quality and diversity of the generated motions compared with SOTAs.

2 Related Work

Human Motion Generation Human motion generation is an important re-
search problem in computer vision and computer animation. The ability to gen-
erate realistic and natural human motions has wide applications including virtual
reality [34,84,91], game development [27,70–72,74], human behavior analysis [9,
14,22, 43, 90, 100,101] and robotics [11, 40, 67, 81,88]. The generated motion can
condition on abundant, multi-modal inputs such as action labels [16,21,35,53,87],
textual description [1,4,6,15,19,20,31,32,55,76,78,95,96,99,104], incomplete pose
sequences [18,23,76,82], control signals [13,27,39,42,52,56,65,70,71,79,80,86,97],
music or audio [3, 33, 36, 38, 48, 106], and so on. For Unconditional Motion Gen-
eration [59, 62, 76, 89, 102, 105], the goal is to model the entire motion space
based on motion data. For instance, VPoser [49] introduces a variational hu-
man pose prior primarily for image-based pose fitting, while ACTOR [53, 54]
presents a class-agnostic transformer VAE as a baseline. Humor [62] employs
a conditional VAE for learning motion prior in an auto-regressive manner. The
recent study [65] learns phase-conditioned motion prior in the frequency domain.
Action-to-Motion [16,21,35,53,87] can be viewed as the inverse task of the classi-
cal action recognition task, where the goal is to produce human motion given the
input action labels. Specifically, ACTOR [53] introduces learnable biases within
a transformer VAE to encapsulate action for motion generation. Nowadays, Text-
to-Motion [1,4,19,31,32,54,76,95,98,99] has become popular, primarily because
of the user-friendly and accessible nature of language descriptors. Specifically,
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T2M-GPT [95] proposes a classic framework based on VQ-VAE and GPT to syn-
thesize human motion from textual descriptions. [76,98] employ diffusion models
for high quality text-to-motion. Recently, [28,104] propose motion language pre-
training using LLMs [12,61,77] for text-driven motion synthesis.
Motion Diffusion Models. Diffusion Generative Models [68] have shown im-
pressive results in wide fields [10, 24, 44, 45, 47, 58, 63, 76, 92, 98] and Diffusion
models have been employed for human motion generation [7,30,31,66,76,86,98].
Specifically, MotionDiffuse [98] stands as the first text-based motion diffusion
model using fine-grained instructions for body part-level control. MDM [76] con-
ducts motion diffusion that operates on raw motion data, learning the relation-
ship between motion and input conditions. ReMoDiffuse [99] presents a retrieval-
augmented motion diffusion model, where extra knowledge from the retrieved
samples is used for motion synthesis. Recent efforts [30, 86] have concentrated
on controllable human motion generation, leveraging either pelvis location [30]
or specific body joints [86]. That being said, applying the diffusion model to the
motion data [76, 98] as a sequential motion generation framework incurs high
computational overheads and typically results in low inference speeds due to
model size and their iterative sampling nature. To tackle the problem, MLD [7]
introduces a motion latent-based diffusion model by first training a VAE for mo-
tion embedding, followed by the application of latent diffusion within the learned
latent space. However, this is a two-stage method and requires non-end-to-end
training: effectively capturing the motion distribution during motion embedding
can be challenging, yet it is crucial for the success of the second stage. In con-
trast, our approach aims to boost efficiency by accelerating the sampling process
and is end-to-end trainable. Retrieval-based method [99] could achieve relatively
fast motion generation. As of yet, it relies on reference motion datasets and suf-
fers from relatively low motion diversity. EMDM allows for much fewer sampling
steps during the denoising process without the reliance on the reference motion
for sequential motion generation with high quality.

3 Method

Our goal is to efficiently generate high-quality and diverse human motion given
conditional inputs in real time. We propose an Efficient Motion Diffusion Model
utilizing a conditional denoising diffusion GAN for fast motion generation, which
will be elaborated in the following.

3.1 Efficient Motion Diffusion Model

In this task, the motion of humans, denoted as x1:N , is associated with a cor-
responding condition c, e.g., action [21, 53, 76] or text [19, 75, 76, 98]. N is the
number of frames in a motion sequence. Note that unconditioned motion gen-
eration is available by c = ∅ similar to [7, 76]. We use probabilistic diffusion
models [68] for motion generation. The forward process of the diffusion model is
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given by

q(x1:N
1:T |x1:N

0 ) =
∏
t≥1

q(x1:N
t |x1:N

t−1), q(x1:N
t |x1:N

t−1) = N (
√
αtx

1:N
t−1, (1− αt)I), (1)

where αt ∈ (0, 1) are constant hyper-parameters. When αt is small enough, we
can approximate x1:N

T ∼ N (0, I) [68]. The reverse process is given by

pθ(x
1:N
0:T ) = p(x1:N

T )
∏
t≥1

pθ(x
1:N
t−1|x1:N

t ), pθ(x
1:N
t−1|x1:N

t ) = N (x1:N
t−1;µθ(x

1:N
t , t), σ2

t I),

(2)

where θ is the learnable parameters of the diffusion model which gradually an-
neals the noise from a Gaussian distribution to the data distribution.

When training a motion diffusion model, a denoiser ϵθ (xt, t) learns to iter-
atively anneal the random noise to the motion sequence {x̂1:N

t }Tt=1, where the
human pose xi ∈ RJ×D at the i-th frame is represented by either joint rotations
or positions, where J is the number of joints and D is the dimension of the
joint representation. When αt is large, the denoising distribution q(xt−1|xt) and
q(xt|xt−1) can be both regarded as Gaussian. With this assumption, diffusion
models often have thousands of steps with a large αt, e.g., MDM [76] and Mo-
tionDiffuse [98] need 1000 steps for denoising, leading to a rather slow motion
generation process. Obviously, when the denoising step size is naively increased
(fewer sampling steps), i.e. in the case of DDIM sampling, the distribution is
non-Gaussian; there is thus no guarantee that the Gaussian assumption on the
denoising distribution holds (see Fig. 3). Consequently, the quality of generated
motions drops.

Inspired by the recent progress [85] in image generation, we propose to
model the expressive multimodal denoising distribution with a larger step size
q(xt−1|xt) by conditioning on the control signals and time step t. The train-
ing process is formulated by matching pθ(xt−1|xt) and q(xt−1|xt) when each
diffusion step has smaller αt, which allows T to be small (T ≤ 10).

Conditional Generator. As pθ(xt−1|xt) := q(xt−1|xt,x0 = gθ(xθ, t)) [25], one
can first predict x0 using the diffusion model gθ(xθ, t) and then sample xt−1

using the posterior distribution q(xt−1|xt,x0) [85]. In this paper, we employ a
conditional denoising diffusion GAN, which integrates a conditional generator
and conditional discriminator, considering both the time step t and input control
signals c, for example text. To achieve motion denoising, the gθ is modeled by
a conditional generator Gθ(xt, z, c, t) that outputs x̂0, given xt, control signal
c and an L-dimensional latent variable z ∼ p(z) := N (z;0, I). Mathematically,
with Gθ(xt, z, c, t), pθ(xt−1|xt) is obtained by

pθ(xt−1|xt) =

∫
pθ(x0|xt)q(xt−1|xt,x0)dx0

=

∫
p(z)q(xt−1|xt,x0=Gθ(xt, z, c, t))dz.

(3)
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We further use posterior distribution q(xt−1|xt,x0) to sample x̂t−1 for discrim-
ination based on the predicted x̂0 in the following.

Conditional Discriminator. We employ a time step-dependent and control signal-
conditioned discriminator as Dϕ(xt−1,xt, c, t). The N -dimensional xt−1, xt are
two inputs at time step t − 1 and t, and c is the control signal such as textual
descriptions. It is trained to distinguish whether xt−1 is a plausible denoised
result of xt. The discriminator is trained by

min
ϕ

∑
t≥1

Eq(xt) [Eq(xt−1|xt)[F(−Dϕ(xt−1,xt, c, t))]+

Epθ(xt−1|xt)[F(Dϕ(xt−1,xt, c, t))],

(4)

where F(·) denotes the softplus(·) function and fake samples from pθ(xt−1|xt)
are contrasted against real samples from q(xt−1|xt). By using the identity q(xt,xt−1) =∫
dx0q(x0)q(xt,xt−1|x0) =

∫
dx0q(x0)q(xt−1|x0)q(xt|xt−1), we have

min
ϕ

∑
t≥1

(Eq(x0)q(xt−1|x0)q(xt|xt−1)[F(−Dϕ(xt−1,xt, c, t))]

+Eq(xt)Epθ(xt−1|xt)[F(Dϕ(xt−1,xt, c, t))]]).

(5)

Given the training goal of the condition discriminator in Eq. 5, we can train
the conditional generator Gθ(xt, z, c, t) by maxθ Ldisc, where Ldisc is defined by

Ldisc = Et∼[1,T ],q(xt)Epθ(xt−1|xt)[F(−Dϕ(xt−1,xt, c, t))]. (6)

The overall pipeline is shown in Fig. 2. Our method can be taken for conditional
generation, where the condition of the control signal (text) provides a strong clue
for capturing the complex data distribution, thus effectively enhancing the over-
all model’s performance compared with naively applying model [85], as shown in
Sec. 5. After training, the conditional generator is used to sample motion with
a few denoising steps, which we discuss in Sec. 3.2.

Geometric Loss Functions. Moreover, during training, we found the training
scheme of the conditional denoising diffusion GAN to be inefficient, resulting
in low-quality human motion results (see comparisons in Sec. 5.2). We deem
this is because motion generation requires more detailed constraints specifically
tailored for the motion generation task, which cannot be effectively provided
solely by the discrimination loss (Eq. 6). We thus employ geometric losses [76] in
addition to discrimination loss during model training to enhance motion quality.
Specifically, for generator (denoiser), we follow [7, 76] and predict the denoised
motion itself, i.e., x̂0 = G(xt, z, c, t) with the following losses on reconstruction,
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joint positions, foot contact, and joint velocities:

Lrecon = Ex0∼q(x0|c),t∼[1,T ][∥x0 −Gθ(xt, z, c, t)∥22], (7)

Lpos =
1

N

N∑
i=1

∥FK(xi
0)− FK(x̂i

0)∥22, (8)

Lfoot =
1

N − 1

N−1∑
i=1

∥(FK(x̂i+1
0 )− FK(x̂i

0)) · fi∥22, (9)

Lvel =
1

N − 1

N−1∑
i=1

∥(xi+1
0 − xi

0)− (x̂i+1
0 − x̂i

0)∥22 (10)

The geometric loss is thus given by

Lgeo = Lrecon + λ(Lpos + Lvel + Lfoot). (11)

Here, FK(·) denotes the forward kinematics converting joint rotations into joint
positions. fi ∈ {0, 1}J is the binary foot contact mask for each frame i. Note
that we use λ as a binary indicator variable; in this paper, we set λ to 1 and 0 for
action-to-motion and text-to-motion tasks, respectively. We further investigate
the effectiveness of the geometric loss functions in Sec. 5.2. Finally, we train the
generator using the overall objective with a balancing term R:

min
θ

(Ldisc +R · Lgeo). (12)

3.2 Motion Sampling

We adopt classifier-free guidance [26] in EMDM. Following [7], our generator
G learns both the conditioned and the unconditioned motion generation task
by randomly setting c = ∅ for 10% of the samples, such that G(xt, z, t, ∅) ap-
proximates p(x0). When sampling from G, we trade off diversity and fidelity by
interpolating or even extrapolating the two variants using s:

Gs(xt, z, c, t) = G(xt, z, ∅, t) + s · (G(xt, z, c, t)−G(xt, z, ∅, t)) (13)

Given an input condition c which can be a sentence w1:N = {wi}Ni=1, a action
label a from the predefined action categories set a ∈ A [53] or even a empty con-
dition c = ∅ [49,103], EMDM aims to generate a human motion x̂1:N = {x̂i}Ni=1

in a non-deterministic way, where N denotes the motion length or frame number.
Note that for the text-to-motion task, we employ the motion representation in
[7, 19,76,98]: a combination of 3D joint rotations, positions, velocities, and foot
contact. The sampling algorithm is specified in Alg. 1.

4 Experiments

We conduct extensive experiments to evaluate our models on motion quality and
model efficiency. We test our model on multiple datasets for different motion syn-
thesis tasks, including text-to-motion (Sec. 4.3) and action-to-motion (Sec. 4.4),
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Algorithm 1 Sample from Model
1: function SAMPLE(c)

xT ← random noise
T ← the number of time steps
G← generator model
c← the label (text or action number)

2: xt ← xT

3: for t← T − 1 to 0 do
4: z← randn(zdim)
5: ▷ dimension of z is 64 in our paper.
6: x0 ← generator(xt, t, z, c)
7: xt ←

sample_posterior(Alg. 2)(x0,xt, t)
8: end for
9: return xt

10: end function

Algorithm 2 Sample Posterior
1: function sample_posterior(x0,

xt, t)
coef1← posterior coefficient 1
coef2← posterior coefficient 2

2: mean← coef1[t]×x0+coef2[t]×xt

3: log_var ←
posterior_log_variance[t]

4: noise← randn_like(xt)
5: m← 0 if t = 0 else 1
6: return mean + m × exp(0.5 ×

log_var)× noise
7: end function

qualitatively and quantitatively. The comparison with other few-step sampling
methods for efficient motion generation is given in Appendix D1. We evaluate
unconditional motion generation in Appendix B. More qualitative results can be
found in Appendix A and the supplementary video. We also conduct compar-
isons with the original DDGAN [85] in Appendix D2.
Datasets. We use the following datasets for training and evaluating EMDM.
HumanML3D [19] has 14616 sequences from AMASS [46] with 44970 textual
description.
KIT [57] collects 3911 motions with 6353 descriptions.
HumanAct12 [21] provides 1191 motion sequences and 12 action categories.
We use HumanML3D and KIT for the text-to-motion task while adopting Hu-
manAct12 for the action-to-motion task. Refer to Appendix B for unconditional
motion generation.
Metrics. We use the following metrics for evaluation.
Motion quality. We use Frechet Inception Distance (FID) as a principal metric
to evaluate the feature distributions between the generated and real motions.
The feature used is extracted following the previous approach in [19].
Motion diversity. Motion Diversity (DIV) calculates variance through features,
and MultiModality (MM) measures the diversity using the same condition.
Condition matching. Following [19], we compute motion-retrieval precision (R
Precision) and report the text and motion Top 1/2/3 matching accuracy, and
multi-modal distance (MM Dist) is used to calculate the distance between mo-
tions and texts. For action-to-motion, we use the corresponding action recogni-
tion models [21,53] to calculate Accuracy (ACC) for action categories.
Run-time Performance. We present the running time of various methods in mil-
liseconds per frame as a metric to assess the inference efficiency of the models.
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Fig. 4: Qualitative comparison on text-to-motion task. We visualize the generated
motions and real references from six text prompts. EMDM achieves the fastest motion
generation while delivering high-quality movements that align with the text input.

4.1 Implementation Details

We use a transformer-based denoiser ϵθ consisting of 12 layers and 32 heads
with skip connections by default. The conditional discriminator is a 7-layer MLP
network. The detailed architectures are given in Appendix C. We employ a frozen
CLIP-ViT-L-14 [60] model as the text encoder τwθ for the text condition and
a learnable embedding for action condition. All models are trained with the
AdamW optimizer using a fixed learning rate of 3 × 10−5 and 2 × 10−5 for
action-to-motion and text-to-motion, respectively. We use EMA decay on the
optimizer during training. Our batch size is 64 during the training stage. The
model is trained on an Nvidia RTX 4090 GPU with an AMD 16-core CPU.
For inference, we use an RTX 4090 GPU with an Intel 8-core CPU to run all
experiments under identical settings for ten passes.

4.2 Inference Time Costs

We first present the overall comparison of inference time cost on both text-
to-motion and action-to-motion tasks. As demonstrated in Fig. 1 (c), on both
tasks, EMDM demonstrates the best or second-best performance in FID, simul-
taneously achieving superior efficiency in motion generation. Notably, although
MLD [7] and ReMoDiffuse [99] achieve competitive efficiency, these are two-
stage methods that are non-end-to-end trainable. In contrast, EMDM exhibits
a competitive or even better performance with reduced running time.
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Table 1: Comparison of text-to-motion task on HumanML3D [19]. The right arrow
→ means the closer to real motion, the better.

Methods R Precision ↑ FID↓ MM Dist↓ Diversity→MModality↑ Running Time
(per frame; ms)↓Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 - -

TEMOS [54] 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018 -
T2M [19] 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083 -
MotionDiffuse [98] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042 38.235±2.495

MDM [76] 0.418±.005 0.605±.005 0.708±.005 0.508±.034 3.630±.023 9.373±.094 2.880±.088 62.505±.071

MLD [7]† 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079 0.598±.004

T2M-GPT [95]† 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048 0.886±.007

MoFusion [15] 0.492±.000 − − − − 8.820±.000 2.521±.000 Not open source
M2DM [32]† 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072 Not open source
ReMoDiffuse [99]†‡0.510±.0050.698±.0060.795±.0040.103±.0042.974±.016 9.018±.075 1.795±.043 0.959±.002

EMDM (Ours) 0.498±.0070.684±.0060.786±.0060.112±.0193.110±.0279.551±.078 1.641±.078 0.280±.002

Blue and orange indicate the best and the second best result.
† Two-stage and non end-to-end approach.
‡ Reference dataset required at the inference stage.

Table 2: Comparison of text-conditional motion generation on KIT [57].

Methods R Precision ↑ FID↓ MM Dist↓ Diversity→MModality↑ Running Time
(per frame; ms)↓Top 1 Top 2 Top 3

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 - -

TEMOS 0.353±.006 0.561±.007 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034 -
T2M 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065 -
MotionDiffuse 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013 68.403±6.982

MDM 0.405±.007 0.610±.007 0.732±.007 0.508±.030 3.085±.022 10.74±.096 1.834±.052 64.636±.463

MLD [7]† 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071 0.673±.008

T2M-GPT [95]† 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039 0.905±.011

M2DM [32]† 0.416±.004 0.628±.004 0.743±.004 0.515±.029 3.015±.017 11.42±.970 3.325±.37 Not open source
ReMoDiffuse [99]†‡0.427±.0140.641±.0040.765±.0550.155±.0062.814±.012 10.80±.105 1.239±.028 1.002±.007

EMDM (Ours) 0.443±.0060.660±.0060.780±.0050.261±.0142.874±.01510.96±.093 1.343±.089 0.284±.002

4.3 Comparisons on Text-to-motion

We evaluate EMDM on the text-to-motion task. We use the frozen CLIP [60]
model as τwθ to encode the text, giving w1

clip ∈ R1,024. The motion is then syn-
thesized by conditioning on text input c = {w1:N}. We compare our model with
SOTA methods on HumanML3D and KIT with the metrics proposed by [19].
Tab. 1 and Tab. 2 summarize the comparison results on HumanML3D [19] and
KIT dataset [57], respectively. In Tab. 1, EMDM demonstrates the highest mo-
tion generation speed and highly competitive performance compared with the
very recent reference-based [99] approach across all metrics, which validates
its effectiveness and efficiency. In Tab. 2, EMDM consistently outperforms all
existing methods in motion generation speed and Top1/2/3 matching accu-
racy. It produces competitive results on the remaining metrics. To summarize,
EMDM demonstrates significant advantages compared to other methods, includ-
ing multi-stage ones. Note that EMDM is single-stage and end-to-end trainable.
Although ReMoDiffuse [99] attains competitive speeds in motion generation with
relatively high quality, it employs a retrieval-based approach that relies on refer-
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Table 3: Comparison of action-to-motion task on HumanAct12 [21]: FIDtrain indicat-
ing the evaluated splits. Accuracy (ACC) for action recognition. Diversity (DIV) and
MModality (MM) for generated motion diversity w.r.t each action label.

Methods FIDtrain ↓ ACC ↑ DIV→ MM→ Running Time
(per frame; ms)↓

Real 0.020±.010 0.997±.001 6.850±.050 2.450±.040 -

ACTOR [53] 0.120±.000 0.955±.008 6.840±.030 2.530±.020 0.523±.009

INR [5] 0.088±.004 0.973±.001 6.881±.048 2.569±.040 -
MDM [76] 0.100±.000 0.990±.000 6.860±.050 2.520±.010 41.154±.162

MLD [7]† 0.077±0.004 0.964±.002 6.831±0.050 2.824±.038 1.998±.001

EMDM (Ours) 0.084±.004 0.991±.003 6.876±.148 2.417±1.009 0.337±.005

Blue and orange indicate the best and the second best result.
† Two-stage and non end-to-end approach.

ence motion datasets for generating motions at the inference stage. ReMoDiffuse
is also a two-stage method that is non-end-to-end trainable. We provide qualita-
tive results in Fig. 4, where EMDM achieves the fastest motion generation while
maintaining competitive motion quality.

4.4 Comparisons on Action-to-motion

Fig. 5: Qualitative comparisons on
action-to-motion task.

The action-conditioned task is to generate
human motion given an action label. Fol-
lowing [7, 76], we report the FID, ACC,
DIV, MM and Running Time of the afore-
mentioned methods. The comparison on Hu-
manAct12 [21] is shown in Tab. 3. EMDM
achieves competitive results on HumanAct12
while achieving superior run-time perfor-
mance. Notably, although MLD also uses
less time for motion sampling, it is a two-
stage method. The qualitative comparison of
action-to-motion is visualized in Fig. 5, where EMDM achieves efficient motion
generation performance while aligning with the semantics of the action label,
while others have improper motion semantics, such as the “sit” motion of MDM
and stiff "turn steering wheel" motion of MLD. See More results in the supple-
mentary video.

5 Ablation Study

We validate the effectiveness of our key design choices in the following, with all
experiments tested on HumanML3D [19] as text-to-motion is a more challenging
task, compared to action-to-motion. The number of frames of the generated
motion is 196. All models are trained with the same training settings. We also
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Fig. 6: Ablation studies on different sample steps (a) and weights of geometric loss (b)
of generated motions. We use a classic textual description, "sit", as the input condition.

Table 4: Influence of sampling steps on motion generation using HumanML3D.

#Steps R Precision ↑ FID↓ MM Dist↓ Diversity→MModality↑ Running Time
(per frame; ms)↓Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 - -

1 0.345±.005 0.525±.007 0.645±.007 5.640±.127 4.278±.021 7.639±.071 0.622±.016 0.004±.000

5 0.368±.005 0.547±.006 0.655±.006 1.306±.052 4.047±.025 9.168±.074 2.285±.065 0.152±.000

10 0.498±.0070.684±.0060.786±.0060.112±.0193.110±.027 9.551±.078 1.641±.078 0.280±.002

20 0.490±.006 0.679±.005 0.780±.005 0.191±.028 3.142±.023 9.531±.074 1.688±.057 0.555±.002

50 0.479±.007 0.671±.007 0.770±.005 0.216±.027 3.168±.028 9.482±.083 1.788±.046 1.356±.000

study the performance of the model when trained without providing conditions
to the discriminator with geometric loss in Appendix D3.

5.1 Influence of the Number of Sampling Steps

We investigate the influence of different sampling steps on the performance.
We train and test our model with sampling step numbers 1, 5, 10, 20 and 50.
Notably, when the step number is set to 1, the whole model can be regarded as
a GAN model. As shown in Tab. 4, when increasing the step size, the sampling
speed is improved significantly. However, when the step size is too large, the
motion quality indicated by FID, DIV, and MM drops. This is also witnessed
by the qualitative results in Fig. 6 (a), where increasing sampling steps promote
motion semantics, i.e., "sit". We consistently set the sampling step size to 10 in
the experiments.

5.2 Influence of Geometric Loss

We study the influence of geometric loss during EMDM training. Recall the over-
all loss for our condition generator is denoted as L = Ldisc + R · Lgeo (Eq. 12),
where Ldisc and Lgeo represent the generator loss and geometric losses, respec-
tively. Here, R serves as a balancing term. We evaluate the motion quality and
running time by setting R to be 0.0, 1.0, 10.0, 100.0 in Eq. 12. As shown in Tab. 5,
when no geometric loss is applied, the motion quality significantly drops, e.g.,
FID = 9.308. Meanwhile, imposing geometric loss effectively improves the mo-
tion quality during the training process. We visualize the human motion under
different weights R in Fig. 6 (b). In this paper, we empirically set the R to be
100.0 for text-to-motion tasks and 1.0 for action-to-motion tasks.
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Table 5: Influence of geometric loss weights on motion generation using HumanML3D.

R value R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

0 0.197±.005 0.338±.006 0.445±.006 9.308±.190 5.463±.027 8.337±.086 3.140±.079

1 0.468±.006 0.656±.004 0.761±.003 0.449±.047 3.272±.018 9.445±.084 1.978±.065

10 0.486±.005 0.672±.004 0.768±.005 0.232±.034 3.169±.025 9.347±.076 1.706±.037

100 0.498±.007 0.684±.006 0.786±.006 0.112±.019 3.110±.027 9.551±.078 1.641±.078

1000 0.494±.005 0.685±.004 0.778±.005 0.195±.026 3.120±.022 9.595±.084 1.600±.045

6 Conclusion

In this paper, we reveal efficiency issues with the existing motion diffusion models
and the challenges in accelerating the models. We introduce the Efficient Motion
Diffusion Model (EMDM) to overcome the obstacles faced by existing generative
diffusion models in achieving fast and high-quality motion generation. Different
from previous approaches, we propose to sample motion from a diffusion model
with much fewer sampling steps at the denoising stage. We utilize a conditional
denoising diffusion Generative Adversarial Network to model the complex de-
noising distributions conditioning on the control signals. This enables the use
of much larger step sizes, which in turn reduces the number of sampling steps
while maintaining high motion quality and consistency in semantics with respect
to the condition. We also incorporate a geometric loss to further elevate motion
quality and enhance training efficiency. The whole model is end-to-end trainable.
Consequently, EMDM achieves a remarkable speed-up without sacrificing mo-
tion quality when compared to current motion diffusion models, demonstrating
its efficiency and effectiveness.
Limitations and Future Works. Although EMDM demonstrates encouraging per-
formance in efficient human motion generation, its motion generation process
lacks physical considerations, which may lead to issues like floating and ground
penetration; See Fig. E5 in Appendix E. Efforts to integrate physics-based char-
acters [16,29,50–52,93] show promise for future improvements. In addition, cur-
rently EMDM accepts mainly textual inputs, but its potential extends to visual
inputs [8,17,37,41,62,64,73,83,94] or music sources [2,33,36] for online motion
synthesis, offering other exciting research directions.
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