
Editable Image Elements for
Controllable Synthesis Supplementary Materials

Jiteng Mu1, Michaël Gharbi2, Richard Zhang2, Eli Shechtman2, Nuno
Vasconcelos1, Xiaolong Wang1, and Taesung Park2

1 University of California, San Diego, USA {jmu,nuno,xiw012}@ucsd.edu
2 Adobe Research, USA {mgharbi,rizhang,elishe,tapark}@adobe.com

https://jitengmu.github.io/Editable_Image_Elements/

In this supplementary materials, we provide more details of the submission:
We show additional editing results and pixel editing baselines in Section 1 com-
plementing Section 4.2 in the paper; Furthermore, reconstruction evaluations are
shown in Section 2; More implementation details, including architecture designs
(paper Section 3.2 and Section 3.3), training recipes (paper Section 4.1), and im-
age element partition algorithms (paper Section 3.1) are discussed in Section 3.

1 Additional Editing Comparison

In Figure 4, 5, and 6 of Section 4.2 in the main text, we have shown our edit-
ing results as well as comparisons to Self-Guidance, Paint-by-Example, and
InstructPix2Pix. Here we provide more details and show additional compar-
isons to these methods. Furthermore, we devise additional pixel editing related
baselines built on our proposed image element partition, namely, pixel editing,
pixel editing + SDEdit, and pixel editing + SD-Inpaint. We run user
studies on the pixel editing related baselines and show the results in Figure 1.
More visual comparisons are presented in Figure 7, 8, 9, 10, 11, 12, 13, and
14. We elaborate on the detailed implementations of each baseline below.

Self-Guidance. The inversion of a real image is implemented following Self-
Guidance, where a set of intermediate attention maps can be recorded by running
a set of forward-process denoisings of a real input. Edits can then be performed
with respect to the obtained attention maps. Since self-guidance modifies the
gradient of each diffusion sampling step, it is sensitive to the hyperparameters
choices. We observe that with small guidance strength, the editing operation
is not respected, and with higher guidance, the realism is negatively affected.
Instead of using separate parameters for individual images as in the paper, we
employ the same parameter set for all testing images.

Paint-by-Example. Paint-by-Example requires a source image with a mask
specifying the region to inpaint, plus a reference image for the target inpainting
content. To achieve spatial editing, we take the pre-trained model and run infer-
ence as follows. We manually annotate each image with three regions: a source
region for the object of interest, a target region for where to put the object, and
a background region for inpainting the source region. In the first step, we treat
the deliberately cropped background region as the reference to remove the object

https://jitengmu.github.io/Editable_Image_Elements/

2 J. Mu et al.

in the source region. Intuitively, this can be interpreted as object removal. Next,
we directly regard the cropped source region as the reference image to inpaint
the target location. Though the first step can potentially achieve object removal,
it is difficult to find appropriate background region as reference for some images
and edits, leading to degraded image realism. The second stage poses further
challenges in inpainting the source region content faithfully to the target loca-
tion with expected size, especially when the source region is of low resolution or
the source region contains only part of an object.

InstructPix2Pix. Though InstructPix2Pix is known to be great at texture
transfer, we find its performance for spatial editing to be limited. We tried var-
ious prompts and found the model tends to either not respond to the spatial
instructions or only modifies the global textures. In addition, it is also worth
noting that using language only is limiting to achieve precise spatial editing.
In comparison, our proposed method directly takes coordinates to represent the
locations and sizes, making it easy to change image elements following the re-
quested spatial edits.

Pixel editing. Pixel editing is a simple baseline implemented by copy-
pasting image elements in pixel space, where the image partition is the same
as used in our algorithm. Specifically, we directly copy the image patches ob-
tained with our algorithm to the target location and resize them as desired.
As expected, pixel editing does not handle the source region properly, leading
to object duplication and unrealistic images. In addition, it is also challenging
to scale up the source region while maintaining high quality with simple pixel
space resizing. To address the challenges, we further propose to use SDEdit and
SD-Inpaint as described below.

59.9

70.6

Pixel Edit + SDEdit 0.5

Pixel Edit72.6

64.1

75.6

Pixel Edit + SDEdit 0.7Ours

Pixel Edit + SDEdit 0.9

Pixel Edit + SD-Inpaint

Fig. 1: Perceptual study where users are
asked to choose which image better reflects
both the editing and image quality. Results
show that ours is preferred compared to all
cases.

Pixel editing + SDEdit. SDEdit
is a simple idea by first manipulating
pixel space, and then adding Gaussian
noise to the edited image and running
the reverse sampling process for im-
age synthesize. A sweet spot balanc-
ing realism and faithfulness can be
identified for some specific interme-
diate time steps. Intuitively, adding
more Gaussian noise and running the
SDE for longer synthesizes more real-
istic images, but they are less faithful
to the give input. To use SDEdit for
spatial editing, we provide the masked
pixel editing results as input, where
the source region is left blank instead
of maintaining the original pixels. We
tested various time step choices (0.5, 0.7, 0.9) and find it is non-trivial to identify
a single sweet spot for all images and editing operations. For a fair comparison,
the diffusion model is chosen to be Stable Diffusion v1.5.

Editable Image Elements for Controllable Synthesis 3

Supervision Bottleneck MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

VAE-KL-Adv L1+LPIPS+Adv 16× 16× 32 0.0052 24.56 0.6701 0.2180 5.96

VAE-KL L2 16× 16× 32 0.0037 25.47 0.6754 0.4617 62.46
AE L2 16× 16× 32 0.0027 27.55 0.7503 0.3759 55.65

Ours - DDIM L2 256× 32 0.0069 22.98 0.6354 0.3376 10.82

Table 1: Reconstruction Comparison. Our method achieves better LPIPS and FID
scores compared to AE and VAE (all trained with L2 loss), and competitive compared
with variational autoencoder trained with adversarial loss. LPIPS and FID scores are
more informative as we prefer faithful reconstruction instead of pixel-perfect results.
Note MSE and PSNR are known to prefer blurry results as visualized in Figure 2. VAE-
KL-Adv denotes variational autoencoder with KL divergence regularization plus losses
following Latent Diffusion Model, VAE-KL for variational autoencoder with KL loss,
AE for autoencoder, and ours-DDIM is with content encoder and diffusion decoder by
running 50-step DDIM sampling steps. Numbers are computed on 5, 000 samples.

Pixel editing + SD-Inpaiting. We also test Stable Diffusion Inpaint-
ing model, where the UNet has 5 additional input channels (4 for the encoded
masked-image and 1 for the mask itself) to inpaint the ‘holes’ left in the source
region. We find though it produces reasonable inpainting results for some editing
operations, it still suffers from scaling up the source region with high quality be-
cause the scaled source region is not modified by the diffusion model with masked
input. In addition, we observe that it tends to keep inpainting another object
rather than blending seamlessly with the background in the source region. Note
that since we find SD-Inpainting model does not handle the small gaps between
patches well, to get better results, we run the morphological operation on the
masks to fill in the gaps first before passing it to the diffusion model.

2 Reconstruction Comparison

To quantitatively evaluate the reconstruction of our method, we compare the
reconstruction quality of the proposed method to various convolutional autoen-
coder approaches, as shown in Table 1. The bottleneck size of all methods is the
same for a fair comparison. Qualitative comparisons are presented in Figure 2.

Specifically, our approach is composed of a content encoder and a diffusion
decoder. The first stage trains the content encoder plus a lightweight transformer
decoder. Then in the second stage, a diffusion decoder is learned with the content
encoder frozen. The reconstruction results presented are obtained by providing
all image patches to the content encoder to obtain corresponding image elements,
then decoding with the diffusion decoder. We run 50 DDIM sampling steps for
the results, showing that our method obtains better LIPIPS and FID compared
to the autoencoder (AE) and variational autoencoder (VAE). From the visual-
izations in Figure 2, it is clear that our reconstruction maintains more details and
is more visually appealing compared to AE and VAE, though showing slightly

4 J. Mu et al.

Input VAE-KL-Adv VAE AE Ours - DDIM

Input VAE-KL-Adv VAE AE Ours - DDIM

Input VAE-KL-Adv VAE AE Ours - DDIM

Input VAE-KL-Adv VAE AE Ours - DDIM

Fig. 2: Reconstruction comparisons. Ours-DDIM, trained with only L2 loss, preserves
more details compared to autoencoder (AE) and variational autoencoder (VAE-KL),
and achieves competitive results compared with variational autoencoder trained with
adversarial loss (VAE-KL-Adv).

Editable Image Elements for Controllable Synthesis 5

lower MSE and PSNR (which is widely known for preferring blurry results). We
also trained the VAE in an adversarial manner following the Latent Diffusion
Model, showing on the top row for reference. Our method achieves competitive
numbers, and from Figure 2, shows similar visual results (sharper details). Note
that the simple L2 loss can be trained much faster than the adversarial loss.
Adversarial training could potentially be used on our method for even better
quality and we leave this for future work.

The input image size to all methods are 512×512. The architecture of all base-
lines are based on the autoencoder borrowed from the Latent Diffusion Model,
which is a convolutional autoencoder with multiple residual blocks, downsam-
pling layers and upsampling layers. The main differences are in that we use more
downsampling and upsampling layers to obtain a compact latent representation
(32× downsampling rather than 8× downsampling). In addition, we also in-
crease the number of channels of the bottleneck to 32 for a fair comparison. The
VAE-KL-Adv is also included for reference, which is trained in an adversarial
manner with an additional patch-based discriminator optimized to differentiate
original images from reconstructions. To avoid arbitrarily scaled latent spaces,
an Kullback-Leibler-term is implemented to regularize the latent. It also uses L1
loss combined with LPIPS loss for better reconstruction.

3 Implementation Details

In Section 3.1, we provide more details of the content encoder and transformer
decoder architectures, the pseudo-code for the fused attention block in our diffu-
sion decoder. Detailed training recipes and hyper parameters are then presented
in Section 3.2. We present the image partition algorithm and comparisons of
different variants in Section 3.3.

3.1 Architectures

The architectures of the content encoder and transformer decoder described in
paper Section 3.2 are illustrated in Figure 3. We also provide more details of
the implementation of our fused attention block for the diffusion decoder (paper
Section 3.3) in Algorithm 1.

Content Encoder. Each image patch is first resized to 32× 32 before input to
the content encoder. This design ensures the features extracted are agnostic to
positional and size information. The content encoder then maps the input im-
age patch to a feature vector of 32 channels, as shown in Figure 3. The content
encoder consists of multiple residual blocks, followed by convolutional downsam-
pling layers with stride 2. One additional middle block consists of 2 Res-Blocks
and 1 attention layer is implemented to further process the intermediate fea-
tures. Then another convolutional layer outputs a feature of 32 channels for this
patch. The overall architecture is based on the convolutional encoder of the La-
tent Diffusion Model, but with less residual blocks at each level and a different

6 J. Mu et al.

3 128 256 512256 512

32

16

4

8

2
1

Attention Block x 4

q

Image Element

Grid
Coordinates

k

v

(𝑥%, 𝑦%, 𝑤%, ℎ%)

512

32 x 32 x 2

512

1 x 1 x 544

1 x 1 x 32

q

1 x 4

Image Element TokenizationContent Encoder Feature

Transformer DecoderContent Encoder

Conv Block Cross Attention Self Attention

1

Output
Input

512

1

Conv Attention Block

Fig. 3: Architecture for content encoder and transformer decoder. Only one image
element is shown for simple illustration, but in practice, all image elements are jointly
decoded.

output dimension. To compensate for the missing spatial information, the patch
feature is combined with the a 4-dimensional vector, indicating its position and
size, to form an image element.

Transformer Decoder. To decode the image element, a set of grid coordinates
of shape 32×32×2 is passed to positional embedding to form the queries as the
input of the transformer decoder. Then the image elements are served as keys
and the features (excluding the spatial information) are used as values for the
cross attention layer. Figure 3 only shows one image element as an illustration. In
practice, all image elements are jointly decoded using the transformer decoder.
The transformer decoder is modified from Masked Autoencoders. The network
consists of 4 attention blocks, each is with 1 cross attention and 2 self-attention
layers. All self-attention layers are with 512 channels and 16 heads, and cross
attention layers with 512 channels and 1 head.

Diffusion Decoder. While the auto-encoder aforementioned produces mean-
ingful image elements, the synthesized image quality is limited. We modify pre-
trained Stable Diffusion model to condition on our image elements for better
reconstruction and editing quality. The Stable Diffusion base model is imple-
mented with a UNet architecture, which contains a set of residual blocks and
attention blocks. To incorporate the image element into the UNet model, we
modify the attention blocks to jointly take the text embedding and the image
elements, as shown in Algorithm 1.

Specifically, for each layer with a cross attention to text embeddings in the
original UNet architecture, we insert a new cross attention layer with parameters
to take the image elements. Both cross attention layers, one on text and the other
on image elements, are processed using the output features of the previous self-
attention layers. The output features of the cross attention are then added to
the self-attention layer features with equal weights.

Editable Image Elements for Controllable Synthesis 7

Algorithm 1: Fused Attention Block

x: input features
context_image: image features mapped from image elements
context_text: text features obtained from text encoders

self attention
x = x + self_attention(norm_self(x))

cross attention
if context_image is not None and context_text is not None:

fuse image and text attention outputs
y_text = cross_attention_text(norm_text(x), context=context_text)
y_image = cross_attention_image(norm_image(x), context=context_image)
y = y_text + y_image

if context_image is not None and context_text is None:
image attention only
y_image = cross_attention_image(norm_image(x), context=context_image)
y = y_image

if context_text is not None and context_image is None:
text attention only
y_text = cross_attention_text(norm_text(x), context=context_text)
y = y_text

x = x + y

feed forward
x = feedforward(norm_feedforward(x)) + x

3.2 Training Details

Our dataset contains 3M images from the LAION Dataset, filtered with an
aesthetic score above 6.25 and text-to-image alignment score above 0.25. We
randomly select 2.9M for training and leave the held-out 100k data for evalua-
tion.

For the content encoder and lightweight transformer decoder, we train this
autoencoder for 30 epochs with MSE loss. We use the AdamW optimizer, set-
ting the learning rate at 1e − 4, weight decay to 0.01, and beta parameters to
(0.9, 0.95). The model is trained on 8 GPUs, with a total batch size of 128. In
addition, all image elements are presented to the decoder for efficient training,
which means no dropout is performed for this stage.

Our diffusion decoder is built on Stable Diffusion v1.5, trained with the same
losses as Stable Diffusion. For the training phase, we use the AdamW optimizer,
setting the learning rate at 6.4e− 5, weight decay to 0.01, and beta parameters
to (0.9, 0.999). We report the results after around 180k iterations. The model is
trained across 8 GPUs, with a total batch size of 64. During inference, we use
classifier-free guidance with equal weights on text C and image element S to
generate our examples: ϵ(z,C,S) = ϵ(z, ∅, ∅) + w ∗ [ϵ(z,C,S) − ϵ(z, ∅, ∅)]. The
examples in the paper are generated with w = 3.0 using 50 sampling steps with
the DDIM sampler. During training, we randomly set only C = ∅ for 30% of
examples, S = ∅ for 10% of examples, and both C = ∅ and S = ∅ for 10% of
examples.

8 J. Mu et al.

Algorithm 2: Image Element Partition
Input: Pretrained SAM model M , Image x, Grid coordinates Q, Total number of

iterations T , Centoid adjustment ratio βc

Output: Image partition A = {a1, a2, · · · , aN}, centoid locations C = {c1, c2, · · · , cN},
bounding box sizes Z = {z1, z2, · · · , zN}

1 C0 = Q
2 for i = 1, 2, · · · , T do
3 s←M(x, Ci−1) // Compute SAM scores
4 g ← ComputeAssignment(s) // SAM assignment
5 Ci ← ComputeCentroids(g) // initial centroid
6 C̃i ← βc · Ci + (1− βc) ·Q // Centroid Adjustment
7 g̃ ← ComputeAssignmentWithDistance(s, C̃i, Q) // Distance regularization (Eq 1)
8 g̃ ← ConnectedComponent(g̃) if i = T − 1
9 Ci ← ComputeCentroids(g̃)

10 end for
11
12 // Compute Outputs
13 A← ComputePatches(g̃)
14 C ← ComputeCentroids(g̃)
15 Z ← ComputeSizes(g̃)

Input Image

Ours SLIC Algorithm Grid Partition

SAM Assignment + Distance Regularization + Centroid Adjustment Ours

Distance Regularization
β	= 4

Distance Regularization
β	= 16

Distance Regularization
β	= 64

Distance Regularization
β	= 256

Fig. 4: Image element partition algorithm intermediate results. We show the step-
by-step results complementing Algorithm 2. Starting from the noisy scores produced
by SAM, distance regularization, centroid adjustment, morphological operation plus
connected components are used sequentially to produce our final partitions.

3.3 Image Element Partition

We here provide more details of the image partition algorithm for Section 3.1 in
the paper. Specifically, we implement Algorithm 2 for extracting image elements,
with intermediate outputs shown in Figure 4.

To divide the image into patches, we borrow the insight of the Simple Linear
Iterative Clustering (SLIC) to operate in the feature space of the state-of-the-
art point-based Segmentation Anything Model (SAM). We start with N = 256
query points using 16× 16 regularly spaced points Q on the image, resulting in
at most 256 image element partitions in the end. To start with, SAM takes an
image x and initial centroids C0 as inputs, and predicts association scores s for
each query point and pixel locations. Then it follows by computing the cluster
assignment g for all pixel locations. However, since the segments tend to vary
too much in shape and size, and extreme deviation from the regular grid is not
amenable to downstream encoding and decoding, see Figure 4 SAM Assignment.

Editable Image Elements for Controllable Synthesis 9

So we propose to add distance regularization as described in Eq 1 in the paper
with hyper parameters β balancing the distance and scores, visualized in Fig-
ure 4 Distance Regularization. Nevertheless, it is observed that centroids tend
to collapse for semantically close regions. To address this, we further modify the
obtained centroids by computing a linear interpolation of the centroids Ci and
grid coordiantes Q, with a hyper parameter βc = 0.2. This effectively avoids
centroid collapse as illustrated in Figure 4 Centroid Adjustment. Finally, mor-
phological operations and connected components are applied to remove small
regions. We set the number of iterations to be 1, but potentially more iterations
could be used for better partitions.

Input Image

Ours SLIC Algorithm Grid Partition

SAM Assignment + Distance Regularization + Centroid Adjustment Ours

Distance Regularization
β	= 4

Distance Regularization
β	= 16

Distance Regularization
β	= 64

Distance Regularization
β	= 256

Fig. 5: Comparisons on different distance regularization strengths corresponding to Eq
1 in the paper. Smaller β tends to drop more pixels and larger β produces less accurate
superpixels. β = 64, achieving a sweet spot between reconstruction and editability, is
used throughout the paper.

We also study various parameter choices for β in Eq 1 as shown in Figure 5.
We empirically choose β = 64, which achieves a good balance between recon-
struction quality and editability. We also compare with various image partition
algorithms, such as SLIC algorithm in pixel space and grid partition. From Fig-
ure 6, our algorithm yields best editing results, whereas other methods presents
various types of failures. We observe that for SLIC algorithm, the image par-
titions tend to show wiggling boundaries and the superpixels obtained are also
not well aligned with object boundaries as ours, making the learning harder.
For grid partition, since the location and size parameters are constants across
all images, it fails to relocate and resize objects. This again shows that our de-
sign of image element partition and resizing are the keys to learn a disentangled
representation.

10 J. Mu et al.

Input Image Ours SLIC Algorithm Grid Partition

SAM Assignment + Distance Regularization + Centroid Adjustment Ours

Distance Regularization
β	= 4

Distance Regularization
β	= 16

Distance Regularization
β	= 64

Distance Regularization
β	= 256

Target Edit

Fig. 6: Comparisons on different image partition algorithms. We test various image
partitions on the same edit and results are shown on the right: ours, SLIC algorithm,
and grid partition. Ours follows the edit operations and preserves object details cor-
rectly. In comparison, SLIC algorithm produces unrealistic images and grid partition
fails to follow the edit.

Editable Image Elements for Controllable Synthesis 11

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 7: Comparisons complementing Figure 4, 5, and 6. Our method is compared to
pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint), pixel
editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and In-
structPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show vari-
ous types of failures, such as decline in image quality, floating textures, and unfaithful
to the edits.

12 J. Mu et al.

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 8: Comparisons complementing Figure 4, 5, and 6. Our method is compared to
pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint), pixel
editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and In-
structPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show vari-
ous types of failures, such as decline in image quality, floating textures, and unfaithful
to the edits.

Editable Image Elements for Controllable Synthesis 13

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 9: Comparisons complementing Figure 4, 5, and 6. Our method is compared to
pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint), pixel
editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and In-
structPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show vari-
ous types of failures, such as decline in image quality, floating textures, and unfaithful
to the edits.

14 J. Mu et al.

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 10: Comparisons complementing Figure 4, 5, and 6. Our method is compared
to pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint),
pixel editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and
InstructPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show various
types of failures, such as decline in image quality, floating textures, and unfaithful to
the edits.

Editable Image Elements for Controllable Synthesis 15

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 11: Comparisons complementing Figure 4, 5, and 6. Our method is compared
to pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint),
pixel editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and
InstructPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show various
types of failures, such as decline in image quality, floating textures, and unfaithful to
the edits.

16 J. Mu et al.

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 12: Comparisons complementing Figure 4, 5, and 6. Our method is compared
to pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint),
pixel editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and
InstructPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show various
types of failures, such as decline in image quality, floating textures, and unfaithful to
the edits.

Editable Image Elements for Controllable Synthesis 17

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 13: Comparisons complementing Figure 4, 5, and 6. Our method is compared
to pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint),
pixel editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and
InstructPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show various
types of failures, such as decline in image quality, floating textures, and unfaithful to
the edits.

18 J. Mu et al.

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Input Image Elements Edit Target Ours Pixel Edit SD-Inpaint

SDEdit 0.5 SDEdit 0.7 SDEdit 0.9 Self-Guidance Paint-by-Example InstructPix2Pix

Fig. 14: Comparisons complementing Figure 4, 5, and 6. Our method is compared
to pixel editing, pixel editing with Stable Diffusion Inpainting model (SD-Inpaint),
pixel editing with SDEdit of various schedules, Self-guidance, Paint-by-Example, and
InstructPix2Pix on various edits. Our results attain superior results in preserving the
details of the input as well as following the new edits. The baseline results show various
types of failures, such as decline in image quality, floating textures, and unfaithful to
the edits.

	Editable Image Elements for Controllable Synthesis Supplementary Materials

