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In the appendix, we provide (1) experiments with other DINOv2 ViT vari-
ants (Appendix A) (2) experiments on more tasks and heads (Appendix B) (3)
experiments on impact of feature dimensions for linear probing (Appendix C)
(4) more visualization and K-Means clustering of features (Appendix D).

A Experiments With More DINOv2 ViT Variants

To demonstrate that the effectiveness of our 3D-aware fine-tuning is agnostic
to DINOv2 architecture variants, we conduct additional experiments using the
ViT-Base architecture with a feature dimension of 768. We show the results of
semantic segmentation and depth estimation across multiple in-domain and out-
of-domain datasets in Tab. 1 and Tab. 2, respectively. We observe a similar trend
of improvement with the ViT-B architecture. For example, on the fine-tuning
dataset ScanNet++, incorporating our fine-tuned features brings an improve-
ment of 3.47% mIoU on semantic segmentation and reduces 0.03 RMSE on
depth estimation. On other indoor datasets NYUv2 and out-of-domain dataset
ADE20k, our 3D-aware fine-tuning consistently improves the original DINOv2.
This experiment indicates that our 3D-aware fine-tuning is applicable to different
ViT architectures and readily benefits downstream tasks.

Table 1: Results of ViT variants on semantic segmentation. Our 3D-aware
fine-tuning yields consistent improvements on semantic segmentation for both ViT-S
and ViT-B architectures.

ScanNet++ [7] NYUv2 [6] ADE20k [8]

Method Arch. mAcc (↑) mIoU (↑) aAcc (↑) mAcc (↑) mIoU (↑) aAcc (↑) mAcc (↑) mIoU (↑) aAcc (↑)

DINOv2 [3] ViT-S 40.84 30.19 80.25 76.88 65.55 82.43 56.74 44.28 79.73
+ Ours ViT-S 43.4 32.76 83.54 80.52 67.5 83.37 58.71 45.93 81.05

DINOv2 [3] ViT-B 42.99 32.72 82.05 80.56 68.45 84.03 59.11 47.16 80.79
+ Ours ViT-B 46.35 36.19 85.5 80.58 70.56 85.72 62.18 49.5 82.52
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Table 2: Results of ViT variants on depth estimation. Our 3D-aware fine-
tuning yields consistent improvements on depth segmentation for both ViT-S and ViT-
B architectures.

ScanNet++ [7] NYUv2 [6] KITTI [2]

Method Arch. RMSE (↓) Rel (↓) RMSE (↓) Rel (↓) RMSE (↓) Rel (↓)

DINOv2 [3] ViT-S 0.3742 0.2836 0.4423 0.1392 3.0322 0.0965
+ Ours ViT-S 0.3361 0.2401 0.4198 0.1300 2.9125 0.0891

DINOv2 [3] ViT-B 0.3439 0.2576 0.3986 0.1218 2.9071 0.095
+ Ours ViT-B 0.3174 0.2324 0.3802 0.1171 2.7923 0.0897

Table 3: Results on image
classification. Our features do
not improve image classification
results.

Method Acc. (↑)

DINOv2 [3] 80.02
+ Ours 80.00

Table 4: Results with DPT head on depth
estimation. Beyond linear probing, we evaluate
with DPT head for depth estimation and observe
consistent improvement.

Method RMSE (↓) Rel (↓)

DINOv2 [3] 0.3027 0.2149
+ Ours 0.2830 0.1936

B Experiments on More Tasks and Heads

Image classification. We additionally evaluate our approach with DINOv2
small on image classification. We train a linear probing on ImageNet-1K [5] for
12500 iterations on a single GPU. As shown in tab. 3, our features do not improve
image classification results. This is expected as classification mainly relies on CLS
token of ViT while our method aims to improve image patch features.

DPT head. Beyond linear probing, we evaluate DINOv2 small with the DPT
head [4] for depth estimation on ScanNet++. In comparison with the linear
probing results (Tab. 2 in the main paper), the DPT head improves both results
and our features are still helpful in this setup (see Tab. 4). This demonstrates
that improvement brought the 3D-aware features is not limited to linear probing
but also applicable to more complex heads.

C Experiments on Feature Dimensions

We concatenate original 2D features with our fine-tuned features, which will
introduce increased feature dimension. In this experiment, we compare with DI-
NOv2 small with duplicate features for linear probing of semantic segmentation
and depth estimation on ScanNet++. As shown in Tab. 5, simply duplication
2○ only leads to little improvement compared with incorporating our fine-tuned

features 3○. This verifies that it is not the number of feature dimensions that
leads to improvement.
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Table 5: Results of duplicating DINOv2 features for linear probing. We verify
that it is not the number of feature dimensions that leads to improvement by showing
that simple duplication of original features does not help.

Fdim mIoU (↑) RMSE (↓)

1○ DINOv2 384 30.19 0.3742
2○ DINOv2 × 2 768 30.31 0.3676
3○ DINOv2 + Ours 768 32.76 0.3361

D Visual Analysis of Features

We train feature Gaussians and conduct 3D-aware fine-tuning on ScanNet++.
In Fig 1, we visualize the features rendered by pre-trained feature Gaussians
(4th column), features of DINOv2 (2nd column) and our fine-tuned features (3rd

column). The colors of features in all visualizations are produced using principle
component analysis (PCA). The standard DINOv2 features suffer from noise and
rough object boundaries. After lifting those features to 3D by training feature
Gaussians, we observe the rendered features enjoy cleaner and sharper object
boundaries. We then fine-tune DINOv2 using those rendered features, which
results in compact and clean feature representations.

Although the fine-tuning is only conducted on ScanNet++, we observe the
resulting fine-tuned DINOv2 can generalize to other indoor datasets (e.g. NYUv2
and ScanNet) and produces cleaner feature maps and more pronounced structure
details (Fig. 2). Similar patterns can also be found in out-of-domain datasets
(e.g. Pascal VOC, ADE20k and KITTI), as shown in Fig. 3. Visualizations of
these feature representations indicate that 3D-aware fine-tuning is helpful and
transferable. We observe the improvements are mainly reflected in two aspects:
(1) cleaner and more compact feature maps. (2) clearer object boundaries and
structured details emerge.

Feature clustering. We also use a simple K-Means clustering to directly ex-
amine the semantic concepts encoded in the feature representations. We show
the K-means clustering results in Fig. 4. The improvements in our features are
directly reflected in those simple clustering results. As shown in Fig. 4, the K-
Means results of DINOv2 (3rd column) are strongly affected by artifacts and
noise. By contrast, our clustering results (5th column) are much cleaner and
more compact. In addition, we observe the PCA features and K-Means cluster-
ing of our 3D-aware fine-tuned features exhibit higher temporal consistency than
the standard DINOv2 features. Please check our demos on our project page to
see the full visualizations of video sequences.
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Input DINOv2 DINOv2 (fine-tuned) Feature Gaussians

Fig. 1: Feature visualization on ScanNet++ [7]. We visualize the features ren-
dered by pre-trained feature Gaussians (4th column), features of DINOv2 (2nd column)
and our fine-tuned features (3rd column). Our 3D-aware fine-tuning helps obtain fea-
tures and capture detailed structures.
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Fig. 2: Feature visualization on indoor datasets NYUv2 [6] and ScanNet [1].
Our 3D-aware fine-tuning helps obtain cleaner features and capture detailed structures.
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Fig. 3: Feature visualization on out-of-domain datasets. Our 3D-aware fine-
tuning is generalizable to out-of-domain datasets and helps obtain cleaner features and
capture detailed structures.
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Input DINOv2 DINOv2 (fine-tuned)

Fig. 4: K-Means clustering of features. We show the PCA features and K-Means
clustering results of DINOv2 (2, 3th columns) and our 3D-aware fine-tuning features
(4, 5th columns). Our K-Means clustering results are much more compact and cleaner
than DINOv2.
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