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Abstract. Industrial anomaly detection is generally addressed as an
unsupervised task that aims at locating defects with only normal train-
ing samples. Recently, numerous 2D anomaly detection methods have
been proposed and have achieved promising results, however, using only
the 2D RGB data as input is not sufficient to identify imperceptible
geometric surface anomalies. Hence, in this work, we focus on multi-
modal anomaly detection. Specifically, we investigate early multi-modal
approaches that attempted to utilize models pre-trained on large-scale
visual datasets, i.e., ImageNet, to construct feature databases. And we
empirically find that directly using these pre-trained models is not opti-
mal, it can either fail to detect subtle defects or mistake abnormal fea-
tures as normal ones. This may be attributed to the domain gap between
target industrial data and source data. Towards this problem, we propose
a Local-to-global Self-supervised Feature Adaptation (LSFA) method
to finetune the adaptors and learn task-oriented representation toward
anomaly detection. Both intra-modal adaptation and cross-modal align-
ment are optimized from a local-to-global perspective in LSFA to ensure
the representation quality and consistency in the inference stage. Exten-
sive experiments demonstrate that our method not only brings a signifi-
cant performance boost to feature embedding based approaches, but also
outperforms previous State-of-The-Art (SoTA) methods prominently on
both MVTec-3D AD and Eyecandies datasets, e.g., LSFA achieves 97.1%
I-AUROC on MVTec-3D, surpass previous SoTA by +3.4%. Code is
available at https://github.com/yuanpengtu/LSFA.

Keywords: Self-supervision · Anomaly detection · Multi-modality

1 Introduction

Industrial anomaly detection is a widely-explored computer vision task, aiming
at detecting unusual image-level/pixel-level patterns in industrial products [28].
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Fig. 1: Illustrations of MVTec-3D AD dataset [11]. The second and third rows
are the input point cloud data and RGB data. The fourth and fifth rows are prediction
results. Our method can avoid the overestimation issues (as shown left) and produce
more accurate results for categories with complex textures (as shown right).

Since the lack of anomalous samples in real-world scenarios, current anomaly
detection methods usually follow unsupervised paradigm [9, 18, 21, 24, 27, 31, 32,
36–39], i.e., training with normal samples but testing on the mixed normal and
abnormal samples. Most of the previous methods [18,36,40] are designed for 2D
images and have achieved great success in 2D anomaly detection. However, in
the scenarios of industrial inspection, due to lack of depth information, some-
times it is hard to differentiate between subtle surface defect and normal texture
with only RGB information (e.g., cookie in Fig 1.). Therefore, recently there
appears new benchmarks [11, 13] to encourage anomaly detection research in a
multi-model view, where the objects are represented with both 2D images and
3D point clouds. To perform precise anomaly localization, existing 2D anomaly
detection approaches can be roughly categorized into two families: reconstruc-
tion based and feature embedding based. The former utilizes the characteristic
that a generator trained with only normal features cannot successfully recon-
struct abnormal features. While the latter aims to model the distribution of
normal samples through a well-trained feature extractor, and in inference stage,
the out-of-distribution samples are treated as anomalies. The feature embed-
ding based family [1, 4] is more flexible and show promising performance on
2D RGB anomaly detection task. However, simply transferring the 2D feature
embedding paradigm into the 3D domain is not easy. Taking the state-of-the-
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art embedding based method PatchCore [32] as an example, when combined
with handcrafted 3D representations (FPFH [23]), it yields a strong multimodal
anomaly detection baseline. However, as shown in Fig. 1, we experimentally find
that the PatchCore+FPFH baseline shows two drawbacks, First, it is prone to
mistake abnormal regions as normal ones due to the large discrepancy between
pretrained knowledge and industrial scenes (see the left part in Fig. 1). Second,
it sometimes fails to identify small anomaly patterns when it comes to categories
with more complex textures, as shown in the right part in Fig. 1.

To address the aforementioned problems, we resort to a feature adaptation
strategy to further enhance the capacity of pre-trained models and learn task-
oriented feature descriptors. In terms of modality, color is more effective to iden-
tify texture anomalies, while depth information can be helpful to detect geomet-
ric deformations in 3D space [23], thus it is more advisable to leverage both the
intra-modal and cross-modal information for adaptation. On the other hand, in
terms of granularity , the object-level correspondence between modalities helps
to learn compact representation, while anomaly detection requires local sensitiv-
ity to identify subtle anomalies [32], hence a multi-grained learning objective is
necessary. With these consideration above, we propose a novel Local-to-global
Self-supervised multi-modal Feature Adaptation framework, named LSFA, to
better transfer the pre-trained knowledge to downstream anomaly detection task.
Specifically, LSFA performs adaptation from two views: intra-modality and cross-
modality. The former adaptation introduces Intra-modal Feature Compactness
(IFC) optimization, where multi-grained memory banks are applied to learn
compact distribution of normal features. As for the latter one, Cross-modal
Local-to-global Consistency (CLC) is designed to align features from different
modality in both patch-level and object-level. With the help of multi-grained in-
formation from both modality, model adapted with LSFA yields target-oriented
features toward anomaly detection in 3D space, thus it is capable of capturing
small anomalies, while avoiding false positives (shown in Fig. 1). For the final
inference of anomaly detection, we leverage the fine-tuned features by LSFA to
construct memory bank and determine normal/anomaly by computing the fea-
ture difference as in [32]. The effectiveness of LSFA is verified on mainstream
benchmarks, including MVTec-3D and Eyecandies. Where LSFA outperforms
previous SoTA [34] by a large margin, i.e., it obtains 97.1% (+3.4%) I-AUROC
on MVTec-3D. To summarize, the key contributions of this work are as follows:

• We propose LSFA, a novel and effective framework towards 3D anomaly de-
tection, it adapts the pre-trained features with local-to-global correspondence be-
tween modalities as supervision. It shows significant advantages on mainstream
benchmarks and sets the new state-of-the-art record.

• In LSFA, Intra-modal Feature Compactness optimization (IFC) is proposed
to improve feature compactness from both patch-wise and prototype-wise with
dynamic-updated memory banks.

• In LSFA, Cross-modal Local-to-global Consistency alignment (CLC) is pro-
posed to alleviate cross-modal misalignment and enhance local-sensitivity of rep-
resentations with multi-granularity contrastive signals.
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2 Related Work

2D industrial anomaly detection. As a binary classification task, unsuper-
vised anomaly detection only trains models with normal samples to distinguish
instances sampled from normal/anomaly distribution, which has drawn exten-
sive attention [28]. Existing methods mainly consist of two classes: reconstruc-
tion based and feature embedding based. For the former, knowledge-distillation
based ones [10, 18, 35] assume that there exists a difference between the pre-
trained teacher model and the student model in the anomalous patch-level fea-
tures. [8, 20] detect defects by comparing the reconstructed images and input
ones. Besides these methods, feature embedding based methods recently have
achieved superior performance with features extracted from models pre-trained
on natural image datasets, i.e., ImageNet. Normalizing flow [22, 40] based ones
distinguish defects by transforming normal features into Normal distribution.
PatchCore [32] stores normal patch-level features for localizing defects by com-
paring the target and normal features. CFA [26] proposes a coupled-hypersphere
fine-tuning framework to adapt patch features to the target dataset.
3D industrial anomaly detection. Different from 2D anomaly detection, 3D
industrial anomaly detection identifies anomaly patches by taking both RGB
and point cloud samples into consideration. [11] introduces the first public 3D
anomaly detection benchmark, MVTec-3D AD for evaluation of methods. [12]
proposes a 3D teacher-student framework to extract local-geometry aware de-
scriptors for point clouds. [23] firstly explores the appliance of memory bank
on this task and utilizes local geometry features extracted from pre-trained
models. M3DM [2] proposes a multimodal industrial anomaly detection method
with hybrid feature fusion to promote interaction between multimodal features.
3DSR [41] proposes a depth-Aware discrete auto-encoder, that enables learning
a joint discrete latent space. However, these methods generally perform cross-
modal alignment while overlook the importance of intra-modal feature compact-
ness. Therefore, their extracted single-modal features are likely to form a distri-
bution where the anomalous/normal features are difficult to be separated from
each other. Such feature distribution limits their ability to effectively integrate
information from both modalities as well, leading to inaccurate anomaly detec-
tion. Additionally, these methods only consider local-level cross-modal alignment
without incorporating global-level alignment of features, which is also crucial for
enhancing information interaction between the two modalities. Motivated by
this, we propose a local-to-global self-supervised multimodal adaption method
to boost the voxel-level detection performance of feature embedding based ap-
proaches from both patch-level and object-level views.

3 Methodology

3.1 Overview

Framework overview and symbol definition. In this section, we first give
out the overview of our LSFA framework. As shown in Fig. 2, LSFA takes both
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Fig. 2: The pipeline of LSFA. The features of two modalities are adapted from two
views: Intra-modal Feature Compactness optimization (IFC) and Cross-modal Local-
to-global Consistency alignment (CLC). The fine-tuned results of the adaptors are used
for defect localization.

point clouds and RGB images in D = {(Pi, Ii)}|D|i=1 as input for joint defect
detection, where Pi ∈ RN×3 and Ii ∈ RH×W×3. For both modality represen-
tation Pi and Ii, a pretrained feature extractor ϕP /ϕI is applied to obtain
modality-specific representation. Since there exists severe domain bias between
pre-trained backbones and downstream detection task, a vanilla transformer en-
coder layer [19] is utilized as the adaptor for these features (note that several
other adaptor structures are also investigated in our appendix). The adaptors
for RGB/3D modalities are denoted as ΨI(·)/ΨP (·), we propose to perform task-
oriented feature adaptation for ΨI(·)/ΨP (·) from two views: Intra-modal Feature
Compactness optimization (IFC) and Cross-modal Local-to-global Consistency
alignment (CLC). (1) IFC constructs both global-level and local-level dynamic-
updated memory banks for both RGB/3D modality to minimize the distance
between normal features from the multi-granularity view, leading to better dis-
tinction between normal and abnormal features. (2) CLC consists of local-to-
global cross-modal alignment modules, which alleviates feature misalignment
between two modalities and enhances the multi-modal information interaction
of spatial structures with self-supervised signals.
Inference with adapted representation. After the adaptation process, since
local-sensitive features are more useful for detecting anomaly patterns, the global
features are discarded for inference. For either modality of RGB or Point Cloud,
only the local features from adaptor is utilized to calculate the anomaly score
of each pixel/voxel through off-the-shelf PatchCore [32] algorithm. Finally both
anomaly scores from two modalities are averaged as the final anomaly estimation.

3.2 CLC: Cross-modal Local-to-global Consistency Alignment

Feature projection. To extract local-sensitive features for anomaly detection,
the ViT [19] and PointMAE [29] are utilized as ϕI/ϕP . ViT splits 2D image
Ii into Nm patches and extract deep feature for each patch, correspondingly,
PointMAE group 3D points from Pi into Nd groups and extract group-wise
feature. To build dense local correspondence between two modality, we remap 3D
points into 2D patches via geometric interpolation and projection. Specifically,
we denote the deep feature of i-th point group as Ai and the group center is



6 Tu et al.

Training Set

Local-Level

Global-Level

Unsupervised Clustering

𝜙𝐼
&
Ψ𝐼

CLC
𝜙𝑃&Ψ𝑃

Batch Samples

𝐿𝐺𝐴
&
𝐿𝐿𝐴

Fig. 3: The proposed inter-modal local-to-global consistency alignment. For
the local view, similarity of path-wise features in the same/different location of the
RGB image and its corresponding 3D point cloud is maximized/minimized to guarantee
local-geometry consistency of two modalities. For global view, instance-wise features
clustered from patch-wise features are optimized similarly.

denoted as ci ∈ R3, then for each point p ∈ R3 in Pi, a point-wise deep feature
fp can be obtained via distance-based interpolation:

fp =

Nd∑
i=1

αiAi, αi =

1
∥ci−p∥2∑Nm

k=1
1

∥ck−p∥2

. (1)

Meanwhile, we can verify whether a 3D point p is projected into a 2D patch
with camera parameters, thus for each image patch from ViT, we average the
feature fp of all points projected into the same patch as 2D projection of original
point-cloud features. By this means, we obtain a 2D patch-wise representation of
3D point features, which shares the same patch number Nm as image features,
and the local correspondence is naturally obtained by associating RGB features
and projected point features of the same patch. Finally, both patch-wise rep-
resentation of RGB and point cloud are fed to adaptor ΨI(·)/ΨP (·) respectively.
The adapted features are denoted as DF = {(FPi , FIi)}

|D|
i=1.

Cross-modal local-to-global consistency alignment. The features of two
modalities are aligned in spatial location after the previous step. However, with-
out cross-modal interaction in the adaption process, cross-modal feature mis-
alignment may lead to inferior results when fusing scores of two modalities during
the inference stage. To address this issue, as shown in Fig. 3, we perform local-to-
global consistency alignment, which can utilize the cross-modal self-supervised
signals to enhance feature quality.

Specifically, the adapted patch-wise features for both RGB/3D point clouds
{FIi , FPi

}Nb
i=1 are first mapped into the same dimension with two fully-connected

layers, denoted as HI/HP , where Nb is the batch size. The projected features
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are denoted as {F ′
Ii
, F ′

Pi
}Nb
i=1, then a patch-wise contrastive loss is calculated to

maximize the feature similarity between patches from different modal but the
same location, and minimize similarity between patches from different location:

LLA = − log

 exp
(〈

F ′j
Ii
, F ′j

Pi

〉)
∑Nm

t=1

∑Nm

k=1 exp
(〈
F ′t
Ii
, F ′k

Pi

〉)
 , (2)

where ⟨·, ·⟩ denotes the innder production between vectors. Since Eq. 2 only
involves local geometry clues while lacking the interaction of global structural
information, we further clustering the local feature FIi/FPi

to obtain an instance-
wise feature GIi/GPi

with the k-means clustering algorithm. And then per-
forming a similar operation on this global features, the corresponding Global
Alignment loss is denoted as LGA.

LGA = − log

(
exp

(〈
G′

Ii
, G′

Pi

〉)∑Nb

t=1

∑Nb

x=1 exp
(〈
G′

It
, G′

Px

〉)) . (3)

Thus the overall loss function for CLC is formulated as:

LCLC = LLA + LGA. (4)

3.3 IFC: Intra-modal Feature Compactness Optimization

The proposed intra-modal feature compactness optimization strategy aims at
helping models generate more compact representation for normal samples, thus
making models more sensitive to anomaly patterns.
Local-to-global compactness optimization. Since there exists severe do-
main bias for the pre-trained models without adaptation, the extracted features
are likely to form a distribution where the anomalous/normal features are diffi-
cult to be separated from each other. Consequently, previous feature embedding
based methods [23] are inevitably prone to mistake anomalies as normal areas.
Motivated by this, as shown in Fig. 4, we design a dynamic-updated memory-
bank in both local and global level to guide compactness optimization.

Since the optimization is conducted within each modality, here we take RGB
feature as an example and the point-cloud feature is processed in a similar man-
ner. Concretely, we denote the memory bank consisting of patch-level RGB fea-
tures as ML

I with length |ML
I | = nL

I . The j-th patch-level feature F j
Ii

of Ii in
batch {FIi}

Nb
i=1 is utilized for nearest neighbor searching in ML

I , where Nb is the
batch size. A mean squared error loss is utilized to minimize the discrepancy be-
tween F j

Ii
and its corresponding nearest item in ML

I . Thus the Local patch-level
Compactness LLC loss can be derived as follows:

LLC =

Nb∑
i=1

Nm∑
j=1

min
Q∈ML

I

∥∥∥F j
Ii
−Q

∥∥∥
2
. (5)
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Fig. 4: The local-to-global compactness optimization strategy, where both
prototype-wise global-level and patch-wise local-level memory banks are involved.

Where Nm is the patch number. Furthermore, to enhance the compactness of
features for each category, a global compactness loss is designed to simultane-
ously optimize the global feature GIi . Denote the memory bank consisting of
global RGB features with length nG

I as MG
I . A similar nearest neighbor search

operation is performed for GIi and MG
I to enhance sensitivity against anomalies

from the global view. Therefore, the Global Compactness loss LGC is:

LGC =

Nb∑
i=1

min
Q∈MG

I

∥∥∥Gj
Ii
−Q

∥∥∥
2
. (6)

After each iteration, the local-level/global-level features of current batch sam-
ples are enqueued into ML

I /MG
I respectively, which can be derived as:{

ML
I = ML

I ∪ {F j
Ii
|j ∈ [1, Nm], i ∈ [1, Nb]}

MG
I = MG

I ∪ {GIi |i ∈ [1, Nb]}.
(7)

Meanwhile, the least recently appended features with the same length as
the enqueued features will be popped out from ML

I /MG
I to keep the features

in banks up-to-date when the length of ML
I /MG

I is larger than nG
I /nL

I . Similar
global and local compactness optimization operations are performed for the point
cloud features {FPi}

Nb
i=1 as well, where the global and local memory bank sizes

of point cloud features are the same as RGB modality. Consequently, the loss
function of the proposed IFC can be summarized as:

LIFC = LLC + LGC. (8)

Therefore to summarize, the overall training loss for our LSFA is derived as:

LLSFA = LIFC + λLCLC. (9)

Where λ is a balancing hyper-parameter.

3.4 Defect Localization

Since LSFA is designed for adapting pre-trained features to estimate anomaly
patterns better. We utilize the pre-trained backbones and the adaptors for fi-
nal feature extraction. The adapted features of two modalities are respectively
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Algorithm 1: Training for the proposed LSFA.
Input: Memory banks {MG

I ,ML
I , MG

P ,ML
P }, adaptors {ΨI , ΨP }, linear

projection layer {HI , HP }, training set features {FI , FP }.
Output: Parameters of adaptors {ΘI , ΘP }.

1 Initialize MG
I ,ML

I ,MG
P ,ML

P .
2 for FIi , FPi ∈ DF do
3 F ′

Ii
←−HI(FIi); F

′
Pi
←−HP (FPi) /* Inter-modal Local-to-global

Consistency Alignment */

4 ΘI , ΘP
optim←− LCLC(F

′
Ii
;F ′

Pi
;ΘP ;ΘI) /* Cross-modal Feature

Compactness Optimization */

5 ΘI
optim←− LIFC(FIi ;M

G
I ;ML

I ;ΘI) ΘP
optim←− LIFC(FPi ;M

G
P ;ML

P ;ΘP )
/* Update Memory Banks */

6 MG
I ,ML

I
update←− FIi ; M

G
P ,ML

P
update←− FPi

7 end

fed into the off-the-shelf feature embedding based method PatchCore [32]. The
anomaly scores of two modalities are averaged as the final anomaly score for
each pixel/voxel to evaluate the effectiveness on anomaly detection. The overall
pseudo-code of LSFA can be found in Algorithm 1.
Discussion. Since the framework of LSFA is similar to M3DM [2], here we dis-
cuss their difference in detail. First, rather than introducing extra modules for
feature fusion in [2], we only perform feature adaptation for each modality and
needs no extra memory bank, thus introducing no extra time and memory cost
for inference. Moreover, M3DM overlooks the importance of object-level feature
alignment to accurate anomaly detection. And our LSFA performs cross-modal
feature alignment from both object-level and patch-level views to fully enhance
the consistency and interaction of cross-modal discriminative information, thus
demonstrating much superior performance to it. Finally, LSFA takes the intra-
modal feature compactness into consideration, which is ignored in M3DM as
well. Specifically, similar to cross-modal alignment, the intra-modal feature com-
pactness optimization is also conducted from both patch-level and object-level
perspectives to alleviate the influence of domain bias of pre-trained features and
obtain high-quality single-modal features.

4 Experiments

4.1 Experimental Details

Dataset. Specifically, we conduct experiments on three 3D industrial anomaly
detection datasets: MVTec-3D AD [11], Eyecandies [13] and Real3D-AD [3]. And
we following the standard evaluation protocol for fair comparisons. Details of the
datasets and evaluation protocols are discussed in the Appendix.
Implementation details. For the feature extractors of the RGB modality, a
ViT-B/8 [19] with DINO [14] is adopted. The 768-dim output of the final layer is
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Table 1: I-AUROC for anomaly detection of all categories of MVTec-3D
AD. ’*’ denotes replacing its features with the same pre-trained features as LSFA for
PatchCore. Results with confidence intervals of LSFA are shown in the Appendix.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

Depth GAN [11] 0.530 0.376 0.607 0.603 0.497 0.484 0.595 0.489 0.536 0.521 0.523
Depth AE [11] 0.468 0.731 0.497 0.673 0.534 0.417 0.485 0.549 0.564 0.546 0.546
Depth VM [11] 0.510 0.542 0.469 0.576 0.609 0.699 0.450 0.419 0.668 0.520 0.546
Voxel GAN [11] 0.383 0.623 0.474 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.537
Voxel AE [11] 0.693 0.425 0.515 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.571
Voxel VM [11] 0.750 0.747 0.613 0.738 0.823 0.693 0.679 0.652 0.609 0.690 0.699
3D-ST [12] 0.862 0.484 0.832 0.894 0.848 0.663 0.763 0.687 0.958 0.486 0.748
FPFH [23] 0.825 0.551 0.952 0.797 0.883 0.582 0.758 0.889 0.929 0.653 0.782
AST [34] 0.881 0.576 0.965 0.957 0.679 0.797 0.990 0.915 0.956 0.611 0.833
FPFH*/M3DM [2] 0.941 0.651 0.965 0.969 0.905 0.760 0.880 0.974 0.926 0.765 0.874
LSFA(Ours) 0.986 0.669 0.973 0.990 0.950 0.802 0.961 0.964 0.967 0.944 0.921

R
G

B

DifferNet [33] 0.859 0.703 0.643 0.435 0.797 0.790 0.787 0.643 0.715 0.590 0.696
PADiM [17] 0.975 0.775 0.698 0.582 0.959 0.663 0.858 0.535 0.832 0.760 0.764
PatchCore [32] 0.876 0.880 0.791 0.682 0.912 0.701 0.695 0.618 0.841 0.702 0.770
STFPM [36] 0.930 0.847 0.890 0.575 0.947 0.766 0.710 0.598 0.965 0.701 0.793
CS-Flow [22] 0.941 0.930 0.827 0.795 0.990 0.886 0.731 0.471 0.986 0.745 0.830
AST [34] 0.947 0.928 0.851 0.825 0.981 0.951 0.895 0.613 0.992 0.821 0.880
PatchCore*/M3DM [2] 0.944 0.918 0.896 0.749 0.959 0.767 0.919 0.648 0.938 0.767 0.850
LSFA(Ours) 0.951 0.920 0.911 0.762 0.961 0.770 0.930 0.675 0.938 0.787 0.861

R
G

B
+

3D

Depth GAN [11] 0.538 0.372 0.580 0.603 0.430 0.534 0.642 0.601 0.443 0.577 0.532
Depth AE [11] 0.648 0.502 0.650 0.488 0.805 0.522 0.712 0.529 0.540 0.552 0.595
Depth VM [11] 0.513 0.551 0.477 0.581 0.617 0.716 0.450 0.421 0.598 0.623 0.555
Voxel GAN [11] 0.680 0.324 0.565 0.399 0.497 0.482 0.566 0.579 0.601 0.482 0.517
Voxel AE [11] 0.510 0.540 0.384 0.693 0.446 0.632 0.550 0.494 0.721 0.413 0.538
Voxel VM [11] 0.553 0.772 0.484 0.701 0.751 0.578 0.480 0.466 0.689 0.611 0.609
3D-ST [12] 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833
PatchCore + FPFH [23] 0.918 0.748 0.967 0.883 0.932 0.582 0.896 0.912 0.921 0.886 0.865
AST [34] 0.983 0.873 0.976 0.971 0.932 0.885 0.974 0.981 1.000 0.797 0.937
PatchCore*+FPFH* [23] 0.981 0.831 0.980 0.985 0.960 0.905 0.936 0.964 0.967 0.780 0.929
M3DM [2] 0.994 0.909 0.972 0.976 0.960 0.942 0.973 0.899 0.972 0.850 0.945
LSFA(Ours) 1.000 0.939 0.982 0.989 0.961 0.951 0.983 0.962 0.989 0.951 0.971

used and then pooled into 56×56 for subsequent training. For the 3D modality,
a point transformer [30] pre-trained on ShapeNet [15] dataset is utilized and
the outputs from 3/7/11 layer are concatenated to fuse multi-scale information.
Details of the implementation are discussed in the Appendix.

4.2 Comparison on 3D AD Benchmark

To evaluate the effectiveness of our method, we first conduct experiments on both
3D/RGB/3D+RGB modality on MVTec-3D AD. Tab. 1 and Tab. 2 present
the comparison results of I-AUROC and AUPRO, the methods are grouped by
modality (we also report P-AUROC in the Appendix). 1) For the I-AUROC met-
ric, our method can not only bring a significant boost to the baseline method
on both single-modality benchmarks but also multi-modality combined ones,
especially for the challenging categories, e.g., cable gland and tire. The single-
modality results demonstrate that our intra-modal feature compactness opti-
mization effectively improves the feature quality, thus benefiting the anomaly
localization in the inference process. Moreover, our method significantly out-
performs all previous methods regarding the average of all classes by a large
margin of 4.7% for 3D, and 4.2% for the combination. A new state-of-the-art
performance is achieved in 17 of all 30 cases for all the individual classes and data
modalities. 2) For the AUPRO metric, LSFA can also achieve consistently higher



LSFA: Self-supervised Feature Adaptation 11

Table 2: AUPRO for anomaly segmentation of all categories of MVTec-
3D. ‘*’ denotes replacing its features with the same pre-trained features as LSFA for
PatchCore. Results with confidence intervals of LSFA are shown in the Appendix.

Method Bagel Cable Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

Depth GAN [11] 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
Depth AE [11] 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
Depth VM [11] 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374
Voxel GAN [11] 0.440 0.453 0.875 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
Voxel AE [11] 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
Voxel VM [11] 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492
FPFH [23] 0.973 0.879 0.982 0.906 0.892 0.735 0.977 0.982 0.956 0.961 0.924
FPFH*/M3DM [2] 0.943 0.818 0.977 0.882 0.881 0.743 0.958 0.974 0.950 0.929 0.906
LSFA(Ours) 0.974 0.887 0.981 0.921 0.901 0.773 0.982 0.983 0.959 0.981 0.934

R
G

B PatchCore [32] 0.901 0.949 0.928 0.877 0.892 0.563 0.904 0.932 0.908 0.906 0.876
PatchCore*/M3DM [2] 0.952 0.972 0.973 0.891 0.932 0.843 0.970 0.956 0.968 0.966 0.942
LSFA(Ours) 0.957 0.976 0.970 0.912 0.934 0.851 0.960 0.957 0.970 0.961 0.945

R
G

B
+

3D

Depth GAN [11] 0.421 0.422 0.778 0.696 0.494 0.252 0.285 0.362 0.402 0.631 0.474
Depth AE [11] 0.432 0.158 0.808 0.491 0.841 0.406 0.262 0.216 0.716 0.478 0.481
Depth VM [11] 0.388 0.321 0.194 0.570 0.408 0.282 0.244 0.349 0.268 0.331 0.335
Voxel GAN [11] 0.664 0.620 0.766 0.740 0.783 0.332 0.582 0.790 0.633 0.483 0.639
Voxel AE [11] 0.467 0.750 0.808 0.550 0.765 0.473 0.721 0.918 0.019 0.170 0.564
Voxel VM [11] 0.510 0.331 0.413 0.715 0.680 0.279 0.300 0.507 0.611 0.366 0.471
3D-ST [12] 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833
PatchCore + FPFH [23] 0.976 0.969 0.979 0.973 0.933 0.888 0.975 0.981 0.950 0.971 0.959
PacthCore*+FPFH* [23] 0.968 0.925 0.979 0.914 0.909 0.948 0.975 0.976 0.967 0.965 0.953
M3DM [2] 0.970 0.971 0.979 0.950 0.941 0.932 0.977 0.971 0.971 0.975 0.964
LSFA(Ours) 0.986 0.974 0.981 0.946 0.925 0.941 0.983 0.983 0.974 0.983 0.968

Sample Ground TruthRGB Point Clouds Combined

Sample Ground TruthRGB Point Clouds Combined

Sample Ground TruthRGB Point Clouds Combined

Fig. 5: Qualitative results of RGB/D modality.

scores than all previous methods for anomaly segmentation, demonstrating that
our method is better at mining localized and detailed clues to discover crucial
unexpected patterns. Besides MVTec-3D AD, we further perform a detailed eval-
uation on the latest large-scale 3D AD dataset Eyecandies. The corresponding
results are shown in the Table 3, where our method obtains the best results
and significantly outperforms all the previous approaches, achieving the average
I-AUROC/AUPRO of 87.5% and 97.8% respectively for RGB modality. For the
comparison of AUPRO results, it can be referred in the supplement, where the
results on the Real3D-AD [3] dataset are available as well.

4.3 Ablation Study

To study the influence of each component within the proposed LSFA, we conduct
ablation analysis on MVTec-3D.
Investigation on IFC. We first conduct studies to analyze the influence of the
proposed IFC. The method that utilizes pre-trained features without adaptation
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Table 3: I-AUROC score for anomaly segmentation of all categories of Eyecandies [13]
dataset on RGB modality. ‘*’ denotes using the same pre-trained backbone as LSFA.

Method Candy
Cane

Choco
late C.

Choco
late P. Confetto Gummy

Bear
Hazel
nut T.

Licor
ice S. Lollipop Marsh

mallow
Peppe
rmint C. Mean

R
G

B

G [7] 0.485 0.512 0.532 0.504 0.558 0.486 0.467 0.511 0.481 0.528 0.507
DFKDE [6] 0.539 0.577 0.482 0.548 0.541 0.492 0.524 0.602 0.658 0.591 0.555
DFM [5] 0.532 0.776 0.624 0.675 0.681 0.596 0.685 0.618 0.964 0.770 0.692
STFPM [36] 0.551 0.654 0.576 0.784 0.737 0.790 0.778 0.620 0.840 0.749 0.708
PaDiM [17] 0.531 0.816 0.821 0.856 0.826 0.727 0.784 0.665 0.987 0.924 0.794
AE [13] 0.527 0.848 0.772 0.734 0.590 0.508 0.693 0.760 0.851 0.730 0.701
PatchCore*/M3DM [2] 0.648 0.949 0.941 1.000 0.878 0.632 0.933 0.811 0.998 1.000 0.879
LSFA(Ours) 0.681 0.958 0.945 1.000 0.883 0.671 0.939 0.824 0.998 1.000 0.890

3D

M3DM [2] 0.482 0.589 0.805 0.845 0.780 0.538 0.766 0.827 0.800 0.822 0.725
LSFA(Ours) 0.517 0.602 0.847 0.850 0.780 0.589 0.773 0.830 0.811 0.843 0.744

R
G

B
+

3D AE [13] 0.529 0.861 0.739 0.752 0.594 0.498 0.679 0.651 0.838 0.750 0.690
PatchCore*/M3DM [2] 0.624 0.958 0.958 1.000 0.886 0.758 0.949 0.836 1.000 1.000 0.897
EasyNet [16] 0.737 0.934 0.866 0.966 0.717 0.822 0.847 0.863 0.977 0.960 0.869
LSFA(Ours) 0.670 0.954 0.961 1.000 0.913 0.767 0.943 0.854 1.000 1.000 0.906

Table 4: Investigation on the loss functions
within CLC.

Component I-AUROC AUPRO P-AUROC
LGA LLA

% % 0.929 0.953 0.987
% ! 0.949 0.961 0.989
! % 0.952 0.961 0.990
! ! 0.959 0.964 0.992

Table 5: Ablation results for two compo-
nents in LSFA, i.e., IFC and CLC.

Component I-AUROC AUPRO P-AUROCIFC CLC

% % 0.929 0.953 0.987
% ! 0.957 0.963 0.990
! % 0.959 0.964 0.992
! ! 0.971 0.968 0.993

for PatchCore is used as the baseline for all the evaluations. As shown in Tab. 5,
the baseline method achieves inferior accuracy for all the metrics with the fixed
pre-trained features. By contrast, IFC brings a significant performance boost
(about 2.8%/1.0%↑ for I-AUROC/AUPRO) by explicitly optimizing the feature
compactness and keeping consistent with the inference process, which enhances
the feature sensitivity to abnormal patterns. Tab. 6 shows a detailed analysis
of each loss term within IFC, where both global and local compactness losses
contribute to the final performance as well.
Investigation on CLC. We then investigate the influence of CLC. As shown
in Tab. 5, CLC also achieves similar accuracy to IFC by performing multi-
granularity cross-modal contrastive representation learning. This mainly accounts
for that the proposed CLC can alleviate the impact of inter-modal misalignment
from multiple views and meanwhile utilize the self-supervised signals for feature
extraction. Similarly, Tab. 4 shows the results of each sub-component in CLC,
where both global and local cross-modal contrastive losses boost performance
over the baseline method. Moreover, further improvement in accuracy can be
observed by combining IFC and CLC. Therefore, the above results verified the
effectiveness of the proposed IFC, CLC, as well as their own key components.
Qualitative results. We conduct qualitative experiments to investigate the im-
pact of RGB/3D modality. Fig. 5 shows the prediction results of single/combined-
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Table 6: Investigation on the loss functions
within IFC.

Component I-AUROC AUPRO P-AUROCLGC LLC

% % 0.929 0.953 0.987
! % 0.950 0.960 0.988
% ! 0.952 0.960 0.989
! ! 0.957 0.963 0.990

Table 7: Investigation on the structure of
ΨI/ΨP .

Structure ΨI/ΨP I-AUROC AUPRO P-AUROC

Linear projection 0.953 0.959 0.989
Single encoder layer 0.974 0.968 0.993
Two encoder layers 0.954 0.963 0.984
1×1 Convolution 0.951 0.962 0.986

Table 8: Training LSFA with LoRA/AdaLoRA on MVTec-3D.

I-AUROC AUPRO

Method 3D RGB RGB+3D 3D RGB RGB+3D

LSFA-LoRA 91.06 85.43 93.91 92.17 93.97 95.16

LSFA-AdaLoRA 91.11 85.72 93.98 92.24 94.15 95.33

modality. It can be observed that the results of RGB modality are more dispersed
and impose large scores in the edge regions. By contrast, the distribution of scores
for 3D modality is more focused around the defects. Finally, the combined re-
sults demonstrate that both two modality helps precise defect localization.
Parameter sensitivity. Next, we evaluate the parameter sensitivity of impor-
tant hyper-parameters in LSFA, including the size of the memory bank nL

I and
the balancing factor λ. As shown in Fig. 6 (left), LSFA achieves similar perfor-
mance across all the sizes, thus not sensitive to nL

I . To balance the performance
and memory cost, we set nL

I = 5 × 104. For the λ, the results in Fig. 6 (right)
demonstrate that LSFA is not sensitive to the value of λ as well. Since larger λ
leads to a slight performance drop, we set λ = 0.6 to get the best results.
Investigation on adaptor structure. As shown in Tab. 7, besides the above
experiments, we finally investigate the influence of different adaptor structures,
including linear projection layer, single vanilla transformer encoder layer, mul-
tiple vanilla transformer encoder layers, and 1×1 convolution layer, where the
single vanilla transformer encoder layer performs best among these structures.

4.4 Few-shot Anomaly Detection

To evaluate the effectiveness of LSFA in extreme cases, we conduct experiments
on few-shot settings. Specifically, we randomly sample 5/10/50 images from each
class as the training set and perform the evaluation on the whole test set. The
results show that LSFA can also achieve superior performance, even compared
with some of the methods trained with the whole training set in Tab. 9.

4.5 Comparison with Fine-tuning Methods

Here we remove the adaptors ϕI/ϕP and combine LSFA with off-the-shelf fine-
tuning methods LoRA [25] and AdaLoRA [42] in PEFT. The results are shown
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Table 9: Performance of LSFA under few-
shot settings.

Method I-AUROC AUPRO P-AUROC

5-shot 0.834 0.936 0.984
10-shot 0.871 0.943 0.987
50-shot 0.926 0.962 0.989
Full dataset 0.971 0.968 0.993

Table 10: Different fine-tuning schemes
for RGB+3D modality on MVTec-3D. ’S-
N’/’All’ denotes training last N blocks/the
whole network.

Metric S-1 S-2 S-3 All

I-AUROC 95.42 94.26 92.14 84.57

AUPRO 96.01 95.45 95.21 90.15

Fig. 6: Investigation on the influence of memory bank size nL
I (left) and balancing

hyber-parameter λ (right).

in Table. 8, which are slightly inferior to results of our LSFA. We remove the
adaptors and evaluate the results of training the whole network and training
the last few stages of the backbone network in our LSFA respectively. As shown
in Table. 10, with more modules used for training, a more severe performance
drop is observed, especially for training all the blocks. Such phenomenon indi-
cates that training with only part/none of the modules fixed will result in severe
catastrophic forgetting and over-fitting to specific data domains, thus failing
to distinguish anomalies from normal patterns. Moreover, we provide compari-
son with fusion based methods in the Appendix, where our LSFA consistently
outperforms the compared methods as well.

5 Conclusion

In this paper, we propose LSFA, a simple yet effective self-supervised multi-
modal feature adaptation framework for multi-modal anomaly detection. Specif-
ically, LSFA performs feature adaptation in both intra-modal and inter-modal
aspects. For the former, a dynamic-updated memory-bank based feature com-
pactness optimization scheme is proposed to enhance the feature sensitivity to
unusual patterns. For the latter, a local-to-global consistency alignment strategy
is proposed for multi-scale inter-modality information interaction. Extensive ex-
periments show that LSFA achieves much superior performance than previous
methods and prominently boosts existing feature embedding based baselines.
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