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In this supplementary material, we provide more experimental results (Sec. A),
experimental details (Sec. B), implementation details (Sec. C), and limitation &
future work (Sec. D) about our proposed PCF-Lift method.

A Experimental Results

A.1 Experiments on More Indoor Datasets

We conduct experiments on more indoor datasets (i.e., Replica [12] and Hyper-
Sim [10]). Specifically, we follow the instructions in Panoptic Lifting’s official
GitHub page1to process the datasets for fair comparisons. Tab. 1 shows that
our method consistently and significantly outperforms the two SOTA methods,
and the visual comparisons in Fig. 1 further indicate our accurate segmentation
results.

Table 1: Quantitative comparisons on the Replica and HyperSim datasets. Results of
prior works are sourced from their papers, and SQscene and RQscene are not reported
in the Contrastive Lift paper.

Dataset Method SQscene(%) ↑ RQscene(%) ↑ PQscene(%) ↑

Replica Panoptic Lifting [11] 69.1 63.6 57.9
Replica Contrastive Lift [3] - - 59.1
Replica Ours 73.4 64.6 62.0
HyperSim Panoptic Lifting [11] 70.4 64.3 60.1
HyperSim Contrastive Lift [3] - - 62.3
HyperSim Ours 79.4 64.5 63.8

A.2 More Visual Results

We provide more visual results in Fig. 2, Fig. 3, and Fig. 4. The results fur-
ther verify that our proposed PCF-Lift could generate accurate and consistent
segmentation results.
1 https://github.com/nihalsid/panoptic-lifting/tree/main.

https://github.com/nihalsid/panoptic-lifting/tree/main
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Fig. 1: Visual comparison on HyperSim dataset [10].

A.3 Ablation Study

Cross-view Constraint. To further demonstrate the effectiveness of the pro-
posed cross-view constraint, we present visual comparisons in Fig. 5 (a). The re-
sults verify that the proposed cross-view constraint further improves the quality
of learned feature space, while the artifacts are significantly reduced. In our main
experiments, we apply a predefined threshold of τ = 0.9 to define the cross-view
positive pairs. To further explore the impact of this threshold value, we conduct
additional experiments using two different values (i.e., τ = 0.85 and 0.95). As
shown in Tab. 2, the results are practically stable given a moderate change of
threshold τ .

Table 2: Quantitative comparisons of different threshold τ values for the cross-view
constraint.

τ 0.85 0.90 (default) 0.95

SQscene 82.3 82.2 82.2
RQscene 86.3 86.9 86.5
PQscene 73.1 73.4 73.2

Multi-view Object Association Algorithm. To validate the effectiveness
of the Multi-view object association (MVOA) algorithm, we present visual com-
parisons in Figure 5 (b). The results illustrate that MVOA achieves superior
segmentation accuracy by effectively identifying the prototype of the underly-
ing 3D object given probabilistic feature similarities. In contrast, substituting
MVOA with the HDBSCAN [9] algorithm results in further challenges, such as
the misidentification of small objects and the unexpected generation of artifacts.
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Furthermore, we explore the impact of varying similarity threshold T values on
the MVOA algorithm performance. In practice, the selection of hyper-parameter
T is based on the average similarity computed across grouped feature pairs iden-
tified within each view in our experiments. We conduct additional experiments
by applying perturbations of −0.05 and +0.05 to the default T value. The ex-
periment results in Tab. 3 indicate that the MVOA algorithm achieves stable
performance within a reasonable range of threshold values.

Table 3: Quantitative comparisons of different similarity threshold T values used in
the multi-view object association algorithm.

Perturbation −0.05 0.0 (default) +0.05

SQscene 81.7 82.2 82.1
RQscene 86.9 86.9 86.5
PQscene 72.8 73.4 73.1

Concentrate Loss in Main Paper Eq.3. We employ the concentrate loss,
based on the 2D masks in each view, to encourage features of the same instance
to maximally converge towards a similarity of one. This facilitates the subse-
quent probabilistic clustering process. Further, we reformulate the calculation of
concentration loss using the PP kernel, incorporating it as a component of the
probabilistic contrastive loss in Eq. (4) in main paper. We perform an additional
ablation study on this loss, showing that the average {PQscene(%), SQscene(%),
RQscene(%)} drops from {73.4, 82.2, 86.9} to {70.3, 78.7, 86.7} on the Messy
Room dataset [3], if we drop this loss term.

Quality of Semantic Field. In our main paper, we utilize scene-level Panoptic
Quality metric to assess the quality and consistency of the rendered panoptic
maps. Note that, the semantic field is adopted from the previous works (i.e.,
Panoptic Lifting [11] and Contrastive Lift [3]) to ensure a fair comparison. For
completeness, we include an additional quantitative comparison of the rendered
semantic maps in Tab. 4. Following the previous methods, we report the mean
Intersection over Union (mIoU) metric. As Tab. 4 shows, the semantic perfor-
mances of different methods are practically similar as expected. This fact further
proves that the notable improvements in scene-level PQ mainly result from the
enhanced quality of the learned instance fields, attributed to our proposed prob-
abilistic design.

A.4 3D Representation Choice

For fair comparisons, we follow the prior baselines (Panoptic Lifting [11] & Con-
trastive Lift [3]) to adopt the TensoRF [4] representation. Yet, our method is
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Table 4: Quantitative comparisons of rendered semantic maps. We report the mean In-
tersection over Union (mIoU) metric. As expected, the performance is almost the same,
further indicating that the improved final performance in PQscene is mainly influenced
by the higher quality of the learned instance fields with the proposed probabilistic de-
sign.

Method Messy Rooms dataset [3] ScanNet [5]

PQscene mIoU PQscene mIoU

Panoptic Lifting [11] 63.2 91.8 58.9 65.2
Contrastive Lift [3] 69.0 91.8 62.0 65.2
Ours 73.4 91.7 63.5 65.2

Table 5: Quantitative comparisons (PQscene) using different 3D representations on the
Messy Room dataset [3].

Scene ID TensoRF [4] ZipNeRF [2]

Contrastive Lift [3] Ours Contrastive Lift [3] Ours

large_corridor_25 76.5 81.0 77.3∗ (re-implemented) 80.7
old_room_25 78.9 80.9 79.0∗ (re-implemented) 81.7

agnostic to the 3D representation choice, since the proposed probabilistic feature
branch is separate from the other branches (i.e., color and density) for 3D recon-
struction representations. Further, we conducted an experiment on two scenes in
the Messy Room Dataset using the ZipNeRF [2] representation. From Tab. 5, we
can see that our probabilistic method consistently outperforms the deterministic
method.

A.5 Efficiency

Table 6: Comparisons of the training speed in iterations per second. Overall, our PCF-
Lift significantly enhances performance and achieves comparable efficiency, compared
to baselines [3, 11].

Method Ours Contrastive Lift [3] Panoptic Lifting [11]

Training speed 21.74 23.16 21.87

We compare the training speed in iterations per second, measured on an
NVIDIA 3090 RTX GPU. Overall, our PCF-Lift significantly enhances perfor-
mance and achieves comparable efficiency, compared to the previous methods, as
shown in Tab 6. Besides, the panoptic segmentation rendering efficiency of our
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Fig. 2: Visual comparisons on the Messy Room dataset [3].

PCF-Lift is almost identical to Contrastive Lift (0.457 vs. 0.456 sec. per image),
tested on an NVIDIA 3090 RTX GPU using the Messy Room Dataset.
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Fig. 3: Visual comparisons on the Messy Room dataset [3].

A.6 Robustness Experiments

For robustness experiments, we present more visual results in Fig. 6. The results
verify PCF-Lift’s capability to maintain performance consistency under various
conditions and showcase its robustness.
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Fig. 4: Visual comparisons on ScanNet dataset [5].

B Experimental details

Uncertainty Analysis. To verify whether our method could provide mean-
ingful modeling for uncertainty, we conduct a statistical analysis on the learned
covariances within two distinct regions of images: the boundary areas and the in-
ternal areas of object instances, across all observed views. For identifying bound-
ary areas, we apply the Canny edge detection algorithm followed by a dilation
operation on the ground-truth segmentation map for each view. The internal ar-
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Fig. 5: Visual comparisons for ablation study.

eas of object instances are identified as the remaining foreground pixels outside
the boundary areas. We then select the top-10 (K=10) covariance samples from
both the boundary and internal areas for each view and plot their histograms
separately to analyze the variance patterns.

Selected Models in Robustness Experiments. To study the robustness of
our probabilistic method when incorporating different 2D models, we choose the
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Fig. 6: Visual comparisons of PCF-Lift’s results using different 2D segmentation mod-
els and incorporating different levels of hand-crafted noise.
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4 official models with LVIS [6] vocabulary in Detic [13] to conduct the experi-
ments. Each model differs in terms of its architectural backbone and the type of
supervision applied during training. Specifically, Model 1 employs a ResNet50
backbone with box supervision, Model 2 is built on a Swin-B backbone also
using box supervision, Model 3 utilizes a ResNet50 backbone but with Detic
supervision, and Model 4 is based on the Swin-B backbone, incorporating Detic
supervision. This diverse selection allows us to comprehensively assess the perfor-
mance impact of different 2D models on our method’s robustness. The pretrained
models can be downloaded from https://github.com/facebookresearch/Detic.

C Implementation Details

We ensure a fair comparison by utilizing a similar architecture, specifically Ten-
soRF [4], as used in recent works [3,11]. Our method initializes the grid of color
and density with a resolution of 1283 and progressively increases this resolution
to 1923 till the end of the training process. For the semantic field predictions,
our approach utilizes a five-layer Multilayer Perceptron (MLP) with 256 hidden
units. To represent instance information, we use a five-layer MLP with 256 hid-
den units to predict two crucial components: a 3-dimensional vector represent-
ing the Gaussian mean and an additional 3-dimensional vector for the diagonal
Gaussian covariance in both slow and fast instance fields. Practically, the MLPs
for semantic and instance fields do not incorporate position encoding, while the
semantic and instance predictions are directly generated from the input 3D po-
sitions. To ensure that the Gaussian covariance values are strictly positive, we
employ the following activation function g(x):

g(x) =

{
x+ 1, if x > 0

exp(x), if x ≤ 0
.

In our experiments, we train our neural fields for 400k iterations using a learn-
ing rate of 5 × 10−4 for all MLPs, a learning rate of 0.01 for the grids, and
a batch size of 2048 on all scenes unless otherwise stated. Following baseline
works [3, 11], our PCF-Lift employs a multi-stage strategy to ensure a stable
and effective model training. In the initial 40K iterations, we only use the RGB
reconstruction loss to train the model. This initial step is critical, allowing for
a reasonable quality of the density field to support the rendering of instance
and semantic fields. After the initial 40K iterations, we introduce the semantic
segmentation loss, i.e., cross-entropy loss, to train the semantic field. After 160k
iterations, we add the instance loss term to the overall training loss. Besides, we
use the additional segment consistency loss (proposed in Panoptic Lift [11]) to
train the semantic field from 280K iteration. Throughout the training process,
we balance the contributions of the RGB loss, semantic segmentation loss, seg-
mentation consistency loss, and instance loss with weights of 1.0, 0.1, 0.1, and
1.0, respectively. To further enhance the stability of the training, the gradients
propagated from the semantic and instance field-related losses are particularly

https://github.com/facebookresearch/Detic
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blocked from influencing the density field. During the inference, we utilize the
proposed multi-view object association (MVOA) to extract the prototype fea-
tures for generating the instance segmentation results. Despite the effectiveness
of the MVOA algorithm in identifying relevant prototype features, we observe
that applying a score threshold to filter out prototypes with low confidences can
further enhance the overall performance. To determine the optimal score thresh-
old, we undertake a hyper-parameter sweep using a partial training set following
the common practice used in [3].

D Limitation & Future work

To fairly compare with the state-of-the-art works, we also adopt the TensorRF [4]
as the basis of our PCF-Lifting method, while leading to relatively slow training
time. To achieve higher efficiency, we will consider investigating the latest 3D
reconstruction technique, such as 3D Gaussian Splatting [7], in the future work.
Moreover, the current experiments focus on indoor scenes, leaving the challenging
task of outdoor scene understanding as an interesting area for future research.
To provide a preliminary insight, we present one outdoor scene from the Mip-
NeRF 360 dataset [1], as shown in Fig. 7. A more comprehensive exploration of
outdoor scenes will be addressed in our future work.

Fig. 7: Lifting an outdoor scene of the Mip-NeRF 360 dataset [1]. Note that, similar
to the processing of the Messy Room dataset [8], we categorize all object types into a
single “foreground” class.
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