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Abstract. Generating natural human grasps necessitates consideration
of not just object geometry but also semantic information. Solely depend-
ing on object shape for grasp generation confines the applications of prior
methods in downstream tasks. This paper presents a novel semantic-
based grasp generation method, termed SemGrasp, which generates
a static human grasp pose by incorporating semantic information into
the grasp representation. We introduce a discrete representation that
aligns the grasp space with semantic space, enabling the generation of
grasp postures in accordance with language instructions. A Multimodal
Large Language Model (MLLM) is subsequently fine-tuned, integrating
object, grasp, and language within a unified semantic space. To facili-
tate the training of SemGrasp, we compile a large-scale, grasp-text-
aligned dataset named CapGrasp, featuring over 300k detailed cap-
tions and 50k diverse grasps. Experimental findings demonstrate that
SemGrasp efficiently generates natural human grasps in alignment
with linguistic intentions. Our code, models, and dataset are available
publicly at: https://kailinli.github.io/SemGrasp.

Keywords: Semantic Grasp Generation · Discrete representation · MLLM

1 Introduction

In applications such as AR/VR and embodied robotics, the ability to generate
human-like grasps for a given object is of substantial value. The goal of grasping
extends beyond simple object lifting; it involves alignment with human intent
and preparation for subsequent manipulation tasks, such as avoiding hot water
in a mug or preparing to open a bottle cap (Fig. 1 left). Hence, relying solely
on the geometric information of objects is inadequate. Combining the semantic
information of the object with the description of intent enables the generation
of more natural and logical grasps.

Typical grasp representations in previous grasp generation methods exhibit
constraints in embedding semantic information. For example, methods that de-
pict grasps through robotic hand poses [31, 44, 47, 50, 70, 74, 78, 93], MANO
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Fig. 1: Our SemGrasp methodology. The left figure shows the grasp generation
process, while the right illustrates the decoding of our discrete grasp representation.
<grasp> comprises three tokens: <o>, <m>, and <r>.

model [63] based poses [6, 7, 23, 28, 30, 46, 68, 69, 72, 75, 80, 89], contact regions
[3,20,37,38,45,81,82,87], and implicit forms [32,33]. Attempts to generate dex-
terous grasps based on semantic cues, such as those by [28, 47, 78, 81, 93], rely
on coarse affordance vectors for conditional generation or directly use vision-
language models [18, 60] to filter sampled grasps. Nevertheless, integrating de-
tailed semantic information or language descriptions into the grasp generation
process remains challenging.

When humans plan a grasping posture, they initially determine the grasp’s
general orientation, guided by the object’s category and the semantics of the
instruction. Subsequently, the specific manner of grasping is decided, influenced
by both the manipulation intent and the object’s shape. Finally, the refinement
of the grasp pose is conducted, taking into account the object’s detailed geometry
and the hand-object contact state to ensure physical plausibility. Therefore, it is
crucial to design a grasp representation that explicitly incorporates these three
steps while implicitly embedding semantic information.

In this paper, we introduce a novel grasp generation method, termed Sem-
Grasp, that incorporates semantic information into the generation process.
This approach, inspired by human grasp planning, divides the grasp representa-
tion into three interrelated components: 1) orientation, influenced by the intent
and the object’s function; 2) manner, specifying the grasp taxonomy required for
interaction; and 3) refinement, detailing the hand pose adjustments necessary
for physical plausibility.

Given that language is inherently discrete, we naturally extend this discrete-
ness to other modalities to synchronize with the semantic space, similar to other
multimodal studies [29, 41, 83]. Furthermore, human grasp poses can be cate-
gorized into 33 discrete types according to the Grasp Taxonomy [14]. By com-
bining object shape and manipulation intent, a human grasp can be derived by
adjusting these foundational types. Consequently, we employ a vector quantized
variational autoencoder (VQ-VAE) [62, 73] to discretize the grasp components
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into tokens. This approach not only augments the alignment of grasp-language
within the semantic space but also offers significant benefits: 1) it enhances grasp
generation’s controllability and interpretability through explicit token represen-
tation; 2) it markedly reduces the dimensionality of the grasp space, simplifying
the learning process of this representation. The VQ-VAE operates as an encoder-
decoder structure, taking the object’s point cloud as conditional input, whereby
the encoder encodes the grasp into three tokens via a codebook lookup, and the
decoder reconstructs these tokens back into the original grasp.

To align the discrete grasp representation of SemGrasp with semantic
space more effectively, we leverage a multimodal large language model (MLLM).
Inspired by the structure of LLaVA [43], our MLLM processes three modalities:
the discretized grasp tokens, the object features obtained via PointBERT [84],
and the language description. Following many MLLM works [29, 43], our model
is trained in two training stages: 1) multimodal alignment, training the MLLM
to predict grasp tokens from object features and language descriptions, thus
mapping these modalities in a unified space; and 2) instruction tuning, fine-
tuning the MLLM to enhance grasp generation for complex outputs.

Currently, well-aligned language-grasp datasets are scarce. The annotations
in [28,81] cover only simple intentions. To train SemGrasp, we collect Cap-
Grasp, extending existing hand-object interaction datasets in three ways: 1)
Low-level annotations, identifying contact states, such as which fingers touch the
object and which parts of the object are being grasped. These details are deduced
from the positions of hand and object. 2) High-level annotations, encompass ma-
nipulation intent and grasp force, for instance, ‘tightly touch the bottle cap to
unscrew it’. Utilizing low-level information, we generate these grasp-related de-
scriptions with GPT-4 [57]. Additionally, based on dataset images or rendered
visuals, we employ GPT-4v [58] to annotate complex intentions. 3) Conversa-
tional annotations: Employing LLMs, we construct grasp-language mixed con-
versations. These dialogues include both low and high-level information. We
train SemGrasp using CapGrasp. Experiments show that our method well
generate the corresponding grasp pose across multiple metrics. We also verify
our method’s potential value in AR/VR and embodied robotics applications.

In summary, our contributions are threefold: 1) We propose SemGrasp,
an innovative grasp generation method integrating semantic information. 2) We
introduce a novel grasp discrete representation, efficiently and effectively ex-
pressing grasp postures and supporting the task of grasp description through
language alignment. 3) We compile CapGrasp dataset. To the best of our
knowledge, it is the first dataset of semantic grasps that encompass low-level,
high-level, and conversational annotations.

2 Related Works

Grasp Generation Grasp generation remains a fundamental task with wide
applications in robotics [1,55]. Recently, the generation of human-like grasps has
attracted increasing attention. Unlike the 6DoF (degrees of freedom) parallel-



4 K. Li et al.

jaw grippers commonly used in robotics [10,12,13,31,54,70], the higher freedom
in human fingers significantly complicates grasp generation. ObMan [23] lever-
ages GraspIt! [53] for synthesizing grasps, while [46] optimize grasp based on
force closure. Methods such as [6, 74, 78] validate their techniques in physical
simulations. Data-driven approaches [6, 7, 23, 28, 30, 46, 48, 68, 69, 72, 75, 82, 89]
employ end-to-end generative models like cVAE [67] or GAN [19]. Given the
high degrees of freedom in the MANO model [63], most of these works imple-
ment post-processing to enhance contact consistency and physical plausibility.
However, these methods solely emphasize geometric information of objects or in-
corporate basic intent features [28, 81]. In contrast, our SemGrasp integrates
semantic aspects of grasping, facilitating the direct generation of grasp postures
that correspond with language descriptions.

Hand-Object Interaction Datasets Understanding hand-object interac-
tion is pivotal in AR/VR, animation, and embodied AI. Existing datasets pri-
marily concentrate on hand-object pose estimation or reconstruction. These
datasets are either synthesized through rendering techniques [7, 16, 23, 40] or
compiled by annotating real-world data [2, 4, 5, 11, 17, 21, 22, 34, 36, 39, 48, 49, 59,
65, 69, 76, 81, 85, 94]. Some studies delve into the semantics of grasping. For in-
stance, [93] introduces ‘touch codes’ to depict contact states between fingers and
object parts. [81] offers annotations of grasping intent and object segmentation
based on affordances. [28] segments object point clouds according to grasping
semantics. Nonetheless, these datasets typically provide only basic semantic cat-
egorizations. Our CapGrasp, in contrast, delivers comprehensive annotations
of hand-object interaction, encompassing detailed low-level contact state infor-
mation, high-level grasp-related descriptions, and conversational annotations.

Multimodel Large Language Models The development and application
of Large Language Models (LLMs) have surged in recent years. Leading com-
mercial models like GPT-4 [57] and open-source counterparts such as Llama [71]
and Vicuna [90] demonstrate exceptional language understanding and generation
capabilities. There’s an increasing trend of integrating LLMs into multimodal
tasks, including image [26,43,92], video [41,86], 3D [25,77,83], and human pos-
ture and motion tasks [15,29]. For example, [43] uses a vision encoder to extract
image features and aligns these with the language space using projection lay-
ers. [29] interprets motion sequences as a series of tokens, and fine-tunes the T5
model [61] with LoRA [24] to facilitate various tasks like motion generation and
captioning. Our work fine-tunes a Vicuna-based model [90] for grasp generation,
leveraging LLMs to interpret and generate complex hand-object interactions.

3 Method

3.1 Overview

Given a specific object O, represented as a point cloud, our goal is to align
the human grasp G with the associated language description L, facilitating the
task of semantic grasp generation. To this end, we introduce a novel grasp gen-
eration methodology, termed SemGrasp, which fundamentally comprises two
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Fig. 2: Our SemGrasp pipeline. The grasp-aware language model outputs both the
grasp tokens and the language conversations.

principal components: grasp discretization (Sec. 3.2) and a grasp-aware language
model (Sec. 3.3). The initial phase involves the tokenization of the grasp into
three interrelated tokens by training a VQ-VAE [62, 73]. As shown in Fig. 1
right, after the tokenizer is trained, the VQ-VAE is frozen, enabling the pro-
jection of <grasp> tokens from the codebook onto grasp configurations. Subse-
quently, as illustrated in Fig. 2, the grasp-aware language model is designed to
reconcile the discrete grasp representations with the linguistic domain, trained
specifically to generate corresponding <grasp> tokens. These resultant <grasp>
tokens can then be reverted to the original grasp pose through the VQ-VAE
decoder. The training of the grasp-aware language model is conducted utilizing
our dataset, CapGrasp, which builds upon existing dataset of hand-object
interactions [81], augmented through automated expansions (Sec. 3.4).

3.2 Grasp Discretization

Consistent with prior studies [30, 33], we define the grasp G = (T ,θ,β) within
the canonical space of the object. Here, T ∈ R4×4 represents the homogeneous
transformation matrix, indicating the global rotation and translation of the hand
relative to the object’s central coordinate system. The parameters θ ∈ R15×3 and
β ∈ R10 denote the local hand pose and shape parameters, respectively. The
hand vertices H ∈ R778×3 are computed using a differentiable layer, specifically
the MANO M model [63], where H = M(G) = M(T ,θ,β).

In this work, to more effectively illustrate the human grasp process and align
it with the semantic space, we discretize the grasp G into three components
<o, m, r>, representing the orientation, manner, and refinement token, respec-
tively, where o, m, r ∈ N. We employ a hierarchical VQ-VAE [62], encompassing
the trainable codebooks Bi, encoders Ei, and decoders Di, where i ∈ {1, 2, 3}, to
quantize the grasp vector into meaningful integers and subsequently reconstruct
the original grasp vector from the quantized tokens (Fig. 3).

The encoders progressively map the hand’s representation into the latent
space, capturing grasp information from low to high levels. This structured ap-
proach enables the simulation of the grasping process through conditional prob-
abilities: 1) The hand’s global information T is captured with the orientation



6 K. Li et al.

��������������������

����������������������

�����
����

�����
����

����������� ������ ���������

Fig. 3: Simplified illustration of the discretization process with hierarchical VQ-VAE.

token <o>, where T̂ = D1(o,O). 2) The local hand pose θ,β is encapsulated
by the manner token <m>, conditioned on <o>, with θ̂, β̂ = D2(o, m,O). 3)
For the fine-tuning process, the delta parameters ∆T , ∆θ, ∆β are represented
by the refinement token <r>, conditioned on <o, m>, where ∆T̂ , ∆θ̂, ∆β̂ =
D3(o, m, r,O). The final grasp is reconstructed as Ĝ = (∆T̂ · T̂ , ∆θ̂+ θ̂, ∆β̂+ β̂).
The hat symbol ·̂ denotes the reconstructed values.

Specifically, the codebook B = {bk}Kk=1, with each bk ∈ RdB , where dB
represents the dimension of the VQ-VAE latent space and K the number of
codebook entries. For each input vector z, the encoder E maps it to the latent
space using the mapping network NE and finds the nearest codebook entry bz:
z = E(z) = argmink∥NE(z)−bk∥2, where z ∈ {1, 2, . . . ,K}. The decoder D then
reconstructs the original vector z with the mapping network ND: ẑ = D(z) =
ND(bz). The VQ-VAE is trained to minimize the reconstruction loss Lrec, the
embedding loss Lemb, and the commitment loss Lcom:

Lrec = ∥H − Ĥ∥22 = ∥H −M(Ĝ)∥22 (1)

Lemb + Lcom = ∥sg[NE(z)]− bz∥22 + ∥NE(z)− sg[bz]∥22 (2)

where sg[·] denotes the stop-gradient operation. To express semantics through
<o, m, r>, Lrec comprises three components, detailed in the Appx.

3.3 Grasp Aware Language Model

Building upon the grasp discrete representation, we design a grasp-aware lan-
guage model aimed at facilitating semantic grasp generation tasks. As depicted
in Fig. 4, our model is trained to align three distinct modalities: the human grasp
G, object points O, and the language description L.

Grasp Modal After we train the VQ-VAE, this module is frozen. We take
the encoders E as the grasp tokenizer that transfers the grasp G into the <grasp>
token which contains three components: <o, m, r>. To distinct the grasp token
from the language, we add special tokens <SG> and <EG> to the start and end
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Fig. 4: Grasp Aware Language Model.

of the grasp, respectively. The grasp token, as generated by the MLLM model,
can be converted back to the human grasp utilizing the VQ-VAE decoders D.

Object Modal We employ PointBERT [84] to extract the object features
fO from the point cloud O, where O ∈ RN×3 and fO ∈ RM×dO . Here, N denotes
the number of points, M the count of point features, and dO the dimension of the
object feature space. Notably, PointBERT requires the normalization of object
sizes, a factor crucial for grasp generation. Thus, we incorporate the object size
as a distinct token <OS> within the MLLM inputs. Subsequently, object features
are projected into a unified space alongside the grasp token via a linear projection
layer PO. Similar to the grasp token, special tokens <SO> and <EO> are affixed to
the object feature sequence, delineating its start and end. The projected object
features serve as the system message in the GPT-style prompt.

Language Modal Our language model undergoes fine-tuning based on the
Vicuna-7B checkpoint [90], with a tailored prompt designed to direct the com-
pletion of specified tasks (detailed further in Appx). Textual content is tokenized
into 32K word pieces employing the SentencePiece methodology [35].

Training Our model architecture, akin to LLaVA [43], aligns all modalities
through projection or embedding layers into a unified semantic space, yielding
X = {xi}Ti=1 ⊂ RT

dL
, where dL signifies the semantic space dimensionality. An

autoregressive language model is then trained to optimize the likelihood of the
next tokens, predicated on preceding ones p(X̂|X) =

∏
i p(x̂

i|x̂<i, x), terminat-
ing with the end-of-sentence token </s>. The primary objective is to diminish
the negative log-likelihood loss LNLL:

LNLL = − log p(X̂|X) = −
∑
i

log p(x̂i|x̂<i, x) (3)

Utilizing LoRA [24], we finetune the MLLM model, adjusting approximately
0.4B parameters within the linear layers. This process unfolds in two phases: 1)
multimodal alignment, wherein the MLLM is trained to predict the grasp tokens
based on object features and language descriptions, consolidating these modali-
ties. During this phase, the object feature projection layer PO is updated. The
embedding layer of the MLLM is also refined to accommodate the newly intro-
duced special tokens; and 2) instruction tuning, throughout which the MLLM
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undergoes further refinement for grasp generation task combined with language
outputs, keeping the projection layer frozen for training stability.

3.4 CapGrasp Dataset

Currently, no dataset with well-aligned grasp language annotations exists for
training SemGrasp on grasp generation tasks and downstream applications.
Due to the high cost and labor-intensive nature of manual semantic annotation,
we design an automatic annotation methodology based on GPT-4 to augment ex-
isting hand-object interaction datasets. Our dataset, CapGrasp, encompasses
low-level, high-level, and conversational annotations.

Low-level Annotations Low-level annotations refer to the contact rela-
tionships between each finger and various parts of the object. According to the
Grasp Taxonomy [14], we can deduce the grasp type and intent from these low-
level annotations. For instance, if the thumb and index finger are in contact
with a screw, it is inferred that the grasp type is a ‘pinch’ and the intent is to
‘screw/unscrew’. The OakInk dataset [81] provides annotations for objects’ CAD
models, hand vertices, and object part segmentation. Utilizing this information,
we calculate the contact states when the distance between hand vertices and the
object’s part segmentation points is less than an empirically defined threshold.

High-level Annotations High-level intent is annotated from two perspec-
tives: 1) based on low-level contact information. Given this information (i.e., the
finger and object part contact), we employ GPT-4 to infer the grasping intent.
For example, if all fingers are grasping the handle of a mug, GPT-4 can deduce
that it is a firm grasp with possible intents such as ‘make a toast’ or ‘avoid
hot beverage’. 2) Based on images or rendered views. Since the OakInk dataset
includes a subset of real captured images (i.e., OakInk-image), we manually se-
lect representative frames that are clear, unobstructed, and with explicit intent.
We leverage GPT-4v, a commercial visual-language model, to infer high-level
information such as manipulation intent and grasp force. For grasps in OakInk
without matching images (i.e., OakInk-shape), we render scenes with Blender
using realistic hand textures [42]. The prompt details are elaborated in Appx.

Conversational Annotations With the aforementioned low-level and high-
level annotations, we construct conversations using the GPT-4 model. We ask
GPT-4 to generate various conversational templates from different perspectives,
including detailed hand-object contact information, manipulation intent, grasp
force, and type. These dialogues must be consistent with the grasp and ensure
logical plausibility. Detailed prompts are provided in Appx.

Considering the hallucination problem of GPT-4, to ensure the quality of
our CapGrasp, we manually review these annotations to filter out intents
that defy common sense and conversations that lack logical coherence. Statisti-
cally, our dataset includes approximately 1.8k object models from OakInk, about
50,000 hand-object grasp pairs. For each pair, we offer on average 6 detailed cap-
tions and conversational annotations. Additionally, to enhance the performance
of our method, we further augment CapGrasp by generating over 1.5M con-
versational annotations using Llama-3 [52] in a fully automated process.
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4 Metrics and Experiments

Our methodology, SemGrasp, incorporates two principal components: the
grasp discrete representation and the grasp-aware language model. We assess
the reconstruction accuracy of VQ-VAE to demonstrate the validity of our grasp
discretization approach. Additionally, we evaluate the performance of grasp gen-
eration by our MLLM. Comparative and ablation studies underscore the effec-
tiveness of our methodology.

4.1 Metrics

Aspect of Physical Plausibility To evaluate the physical plausibility of the
predicted grasp pose Ĝ, we employ several metrics: 1) Mean Per-Vertex Po-
sition Error (MPVPE, in mm) calculates the average L2 distance per vertex
between the predicted hand mesh Ĥ and the ground truth H, when available.
2) Penetration Depth (PD, in cm) measures the maximum penetration depth of
hand vertices into the object, indicating surface penetration. 3) Solid Intersec-
tion Volume (SIV, in cm3) quantifies the volumetric intersection by voxelizing
the object mesh and calculating the volume within the hand surface. 4) Simu-
lation Displacement (SD, in cm) tests grasp stability in PyBullet [8], measuring
the object’s center displacement under steady hand conditions and gravity [23].
These metrics gauge both the quality of grasp generation and the accuracy of
our grasp discrete representation.

Aspect of Semantic Consistency Semantic consistency is evaluated by
examining the quality of grasp generation: 1) GPT-4 assisted evaluation. For
generated grasps Ĝ, we first render the hand-object interaction following the
same pipeline as in Sec. 3.4. Then, we use GPT-4v to score the semantic consis-
tency of the grasp images based on input captions. Scores range from 0 to 100,
with higher scores indicating better consistency. The prompts used in GPT-4
assisted evaluation are listed in Appx. 2) P-FID calculates the Fréchet Incep-
tion Distance between the point clouds of the Ĥ and H, using the pre-trained
feature extractor from [56]. 3) Perceptual Score (PS) assesses the naturalness of
grasps and semantic consistency, with 5 volunteers rating the generated grasps
on a 5-point Likert scale. The final score is the mean Likert score.

4.2 Implementation Details

The VQ-VAE’s codebook B consists of K = 512 entries, each dimensioned at
dB = 256, initialized by sampling uniformly from [− 1

K , 1
K ]. We employ Point-

BERT [84] as the point cloud feature extractor in the VQ-VAE encoder E for both
hand vertices H and object vertices O. Similar to [77], PointBERT is pretrained
using the ULIP-2 method [79] for enhanced geometry-language alignment. The
predicted rotation from the VQ-VAE decoders D uses a 6D representation [91],
subsequently converted to the axis-angle representation for further computation.

For the MLLM, we utilize Llama structure [71] as the model backbone, fine-
tuning based on the Vicuna-7B checkpoint [90]. To extract object feature fO,
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we reuse PointBERT from the VQ-VAE and freeze its parameters. fO includes
M = 513 embeddings, each of dimension dO = 384. The object projection layer
PO projects fO to the language space dimension of 4096. We configure the LoRA
module [24] with a rank setting of r = 64, resulting in approximately 6% param-
eters being finetuned. The learning rate is set to 5e-4 and 3e-5 for the multimodal
alignment stage and instruction tuning stage, respectively, with a cosine anneal-
ing learning rate scheduler for training stability. The batch size is 128, and the
MLLM is trained over 20 epochs on 4 A100 GPUs with 80GB of memory each.

4.3 Comparisons

Discrete VQ-VAE Grasp Representation Given the discretization of grasps,
three primary concerns arise: 1) Does discretization compromise reconstruction
accuracy? 2) Does it affect the physical plausibility of the interaction?, and 3)
Does it have the capability to embed semantic information?

To answer the first two questions, we compare our method with two state-
of-the-art methods, GrabNet [69] and Jiang et al . [30], on a reconstruction task.
Both methods are based on cVAEs [67] for grasp generation. For a fair compar-
ison, we retrain these models using our CapGrasp dataset. GrabNet employs
RefineNet to refine the interaction in an end-to-end iterative manner, whereas
Jiang et al . utilize test time adaptation (TTA) to optimize hand-object contact.
Our method leverages a refinement token to adjust the hand pose in an end-
to-end manner. Compared to configurations without the refinement token, our
approach with the refinement token exhibits superior performance, achieving a
26% improvement in MPVPE and a 9% improvement in SIV. Considering the
TTA, an optimization-based approach, can precisely improve hand-object inter-
action, we also report our method’s performance with TTA in Tab. 1 for a fair
comparison, which attains current SOTA results in PD and SIV. The results
demonstrate that our discrete grasp representation method can accurately de-
pict hand poses and specifically ensure the physical plausibility of interactions.
Compared to previous SOTA methods, our method is competitive and exhibits
advantages in certain metrics.

Table 1: Our discrete VQ-VAE grasp representation compared with SOTA methods.

MPVPE ↓ PD ↓ SIV ↓ SD mean. ↓ SD std. ↓

CapGrasp dataset - 0.11 0.62 0.94 1.62

GrabNet [69] w/o refineNet 18.14 0.76 5.42 1.75 2.61
GrabNet [69] 27.49 0.54 3.45 1.77 2.36
GrabNet [69] w/ TTA 27.16 0.49 2.16 1.35 1.56

Jiang et al. [30] w/o TTA 33.68 0.72 5.81 1.53 1.77
Jiang et al. [30] w/ TTA 33.84 0.58 2.78 1.36 1.55

Ours w/o refinement token 20.36 0.48 3.00 1.95 2.11
Ours 14.97 0.46 2.72 2.14 2.37
Ours w/ TTA 23.61 0.37 1.27 1.90 2.12
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(b) MLLM’s qualitative results. We only visualize grasp and
ignore the text outputs for better visualization. Failures from
incorrect orientation predictions are highlighted in red box.

Fig. 5: Qualitative results of our SemGrasp.

Table 2: Quantitative results of our MLLM-based grasp generation method.

P-FID ↓ PD ↓ SIV ↓ SD mean. ↓ SD std. ↓ GPT-4 ↑ PS ↑

CapGrasp - 0.11 0.62 0.94 1.62 82.3 4.7

BERT [9] based 3.32 0.49 4.60 2.17 2.26 47.3 3.7
SemGrasp 2.28 0.48 4.24 2.00 2.33 74.5 4.6

To explore whether our discrete representation method can encode semantic
information, we conduct a controllable generation task. For GrabNet, the cVAE-
based method, we directly fix the sampling vector z = 0, enforcing the model to
generate similar grasps. For our method, we assign the same const value to the
<o, m> tokens. As depicted in Fig. 5a, take the specific category of mugs as an
example, although the shape of the mug varies, our generated grasps maintain
consistency in orientation and manner, showing the semantic consistency of our
method. In contrast, GrabNet’s predictions lack interpretability.

Language Guided Grasp Generation We need to validate that MLLM
can control grasp generation G based on textual input L. To the best of our
knowledge, there are no existing works directly comparable to ours. Therefore,
leveraging our discrete representation, we construct a straightforward baseline
that treats this task as a classification problem. We finetune the official BERT
model [9] to embed the language description in conjunction with the object fea-
ture. Subsequently, we deploy three distinct classification heads to predict the
<o, m, r> tokens. We train this modified BERT with our CapGrasp following
the same settings in SemGrasp. These predicted tokens are then decoded into
the final grasp pose as in our SemGrasp. The outcomes of this experimental
setup are documented in Tab. 2. From the results, we observe that our MLLM
outperforms the baseline in both the physical plausibility and semantic consis-
tency metrics. Showing that simply treating the task as a classification problem
is not sufficient to generate grasp pose that aligns with the language description.
On one hand, benefitted from the pretrained LLM, our SemGrasp can well
understand the language instructions. On the other hand, the discrete represen-
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Table 3: Representation ablation.

MPVPE ↓ PD ↓ SIV ↓ SD
mean. ↓ std. ↓

One token 29.95 0.66 5.14 1.90 2.29
<o, m> 25.73 0.58 4.32 2.14 2.50
<o, m, r× 2> 15.37 0.50 2.98 2.28 2.57
<o, m, r× 3> 15.90 0.52 3.37 1.98 2.18
Single VQ 28.02 0.68 5.31 1.81 2.00
w/o semantic 21.94 0.60 4.59 1.84 1.91

Table 4: VQ-VAE settings.

MPVPE ↓ PD ↓ SIV ↓ SD
mean. ↓ std. ↓

B entries K = 256 95.52 1.59 51.83 1.42 1.29
B entries K = 1024 39.82 0.80 5.30 3.10 3.40
B dim. dB = 512 46.32 1.11 10.86 2.00 3.09
B dim. dB = 128 38.67 0.80 6.42 2.28 2.78

Vanilla 48.48 1.09 9.42 2.24 2.87
EMA+Reset [62] 24.67 0.73 5.74 1.81 2.00

tation is interpretable, making the MLLM more controllable. We demonstrate
the qualitative results of our SemGrasp in Fig. 5b.

4.4 Ablation Studies

Ablation on Discrete Representation We conduct ablation studies to ex-
amine the design of our tokenization approach. As outlined in Sec. 3.2, we utilize
three tokens—orientation, manner, and refinement—to represent <grasp> as
<o, m, r>. In our evaluation, detailed in Tab. 3, we explore different token con-
figurations: 1) Single Token: Compressing G into a single codebook significantly
degrades reconstruction accuracy. 2) Two Tokens: This setup differs from the
w/o refinement token setting in Tab. 1, as here we train the representation with
only two tokens from scratch. 3) and 4) Multiple refinement Tokens: Iteratively
predicting <r> and adjusting the hand pose step by step demonstrates that
performance deteriorates when the number of <r> exceeds one. Moreover, we
empirically find that predicting more tokens increases the complexity of MLLM
training. 5) Single VQ-VAE: We train a single VQ-VAE to predict three grasp
tokens simultaneously with a shared codebook. A single network struggles to en-
capsulate the intricate grasp representation. 6) w/o semantic. In this setting, we
still use the hierarchical VQ-VAE to predict three tokens, but we do not assign
semantic meaning to the tokens. This setup results in decreased performance.

Ablation on VQ-VAE settings Our investigation into the configurations
of VQ-VAE focuses on two aspects: 1) Codebook B Setting: The size of trainable
parameters in the codebook has a significant impact on network performance,
leading to either non-convergence or underfitting (see Tab. 4). 2) Training Strat-
egy: VQ-VAE often suffers from codebook collapse. While methods like expo-
nential moving average (EMA) and codebook reset (Reset) are used to mitigate
this (as in [62, 88]), we find that these strategies weaken the representation ef-
fectiveness in the grasp representation task. Thus, we opt not to use the EMA
strategy and allow each entry to be reset only once during training.

Ablation on MLLM settings We conduct ablation studies on the MLLM
configurations as presented in Tab. 5: 1) Pretrained LLM: The comparison be-
tween Llama-7B [71] and Vicuna-7B models shows Vicuna-7B as more aligned
with our grasp generation needs, offering better task suitability. 2) Object size
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Table 5: Ablation study of our MLLM-based grasp generation.

P-FID ↓ PD ↓ SIV ↓ GPT-4 ↑ PS ↑

w/ Llama 2.38 0.51 4.20 58.9 3.8
w/o <SO> 3.74 0.70 8.20 43.3 3.2
w/o 2-stage 4.54 0.49 5.26 62.5 4.0
LoRA r = 16 3.76 0.48 4.38 69.2 3.3
LoRA r = 128 2.68 0.50 5.10 74.5 4.0

token <SO>. Contrary to the original ULIP’s size normalization of the object
point cloud, our findings highlight the significance of object size for grasp gen-
eration tasks. 3) Training Stages: Comparing the MLLM trained in a two-stage
process with a single-stage approach shows that the former not only enhances
effectiveness but also stabilizes the training process. 4) and 5) LoRA rank: We
explore the impact of the LoRA rank on the MLLM. We experimentally find
that rank 64 is the optimal choice for our generation task.

5 Applications

To demonstrate the real-world applicability of SemGrasp, we conducted case
studies in AR/VR and robotics, showing that our method, combined with RL-
based policies, can synthesize dynamic grasp motions.

5.1 Application in AR/VR

In the context of AR/VR, producing grasps that align with user intent and
facilitate natural object manipulation is essential. We evaluated the practicality
of grasps generated by SemGrasp using the D-grasp method [6] within the
RaiSim [27] simulated environment. D-grasp, which is based on a reinforcement
learning (RL) approach, focuses on creating dynamic human grasps. It calculates
the next grasp action from a static reference grasp Ḡ, the target object position
T̄O, and the current state, including the hand and object’s pose and velocity,
using a policy π trained with the PPO [64] algorithm.

For our experiments, SemGrasp generates the reference pose Ḡ for a spec-
ified object O and language instruction L. We utilize the publicly available D-
grasp checkpoints1 to synthesize dynamic grasps. The object is targeted to lift
10 cm upwards along the gravitational direction. We maintain the hand shape
parameter β at 0, consistent with D-grasp. This process is illustrated in Fig. 6a.

5.2 Application in Embodied Robotics

Our method’s efficacy is further validated in embodied robotics. Following the
UniDexGrasp2 methodology [78], which entails static reference grasp generation
1 https://github.com/christsa/dgrasp
2 https://github.com/PKU-EPIC/UniDexGrasp

https://github.com/christsa/dgrasp
https://github.com/PKU-EPIC/UniDexGrasp
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(a) Human-like grasps motion in AR/VR
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(b) Dexterous grasps execution in robotics

Fig. 6: Applications of our SemGrasp in both the AR/VR environment and robotics
scenario.

and goal-conditioned grasp execution, our experiments focus on the latter phase
to assess the performance of SemGrasp-generated grasps. We retarget our
generated grasp Ḡ to the ShadowHand S [66] and evaluate the grasp within the
IsaacGym simulation [51].

Initially, SemGrasp produces the reference grasp pose Ḡ. We then es-
tablish a pipeline to adapt Ḡ for the ShadowHand model ḠS , beginning with
aligning finger keypoints between the MANO and ShadowHand models. Given
the significant differences in degrees of freedom (DoF) and morphology between
the two models, we implement a fitting-based optimization approach to refine
the ShadowHand-object interaction. After optimizing ḠS , we apply the off-the-
shelf UniDexGrasp’s pretrained policy to execute the dynamic grasp sequence.
Details on our fitting pipeline and the integration of ḠS with UniDexGrasp are
further elaborated in the Appx. Fig. 6b showcases the process of grasping and
lifting as generated by UniDexGrasp.

6 Conclusion

We introduce SemGrasp, an approach aimed at generating semantic grasps
from language instructions. We propose a novel grasp representation that em-
ulates the natural human grasping process. The discretized representation is
both interpretable and controllable, making it ideal for semantic space align-
ment. Leveraging this representation, we deploy MLLM to generate grasps from
language instructions. Tailored for this task, we also present CapGrasp, a
comprehensive dataset containing grasp-text-aligned annotations. As we explore
potential applications in AR/VR and embodied robotics, we are hopeful that
SemGrasp will contribute to advancements in generating more human-like,
semantically coherent grasps in various contexts.

Limitations Despite SemGrasp demonstrating the capability to generate
static single-hand grasps from semantic cues and dynamic grasps through RL
integration, exploration remains in two directions: two-hand manipulation and
end-to-end semantic grasp motion synthesis. The former requires addressing both
hands’ cooperation, and the latter, the continuity of motion, both contingent
on the availability of extensive, high-quality motion capture or synthesis data
for training. Tackling these challenges promises to advance embodied grasping,
pushing toward more sophisticated and realistic manipulation.
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