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Abstract. Mixed Reality systems aim to estimate a user’s full-body
joint configurations from just the pose of the end effectors, primarily
head and hand poses. Existing methods often involve solving inverse
kinematics (IK) to obtain the full skeleton from just these sparse obser-
vations, usually directly optimizing the joint angle parameters of a hu-
man skeleton. Since this accumulates error through the kinematic tree,
predicted end effector poses fail to align with the provided input pose.
This leads to discrepancies between the predicted and the actual hand
positions or feet that penetrate the ground. In this paper, we first refine
the commonly used SMPL parametric model by embedding anatomi-
cal constraints that reduce the degrees of freedom for specific parame-
ters to more closely mirror human biomechanics. This ensures that our
model produces physically plausible pose predictions. We then propose a
biomechanically accurate neural inverse kinematics solver (MANIKIN)
for full-body motion tracking. MANIKIN is based on swivel angle predic-
tion and perfectly matches input poses while avoiding ground penetra-
tion. We evaluate MANIKIN in extensive experiments on motion capture
datasets and demonstrate that our method surpasses the state of the art
in quantitative and qualitative results at fast inference speed.

Keywords: Inverse Kinematics · Human Body Models · Motion Track-
ing · Character Animation · Mixed Reality

1 Introduction

In today’s Mixed Reality environments, user interaction primarily relies on the
user’s head pose and hand for input. The problem of full human body pose esti-
mation has since emerged as a challenging task using such sparse tracking cues as
input. Recent work [3,4,11,13,21,64,67,74] has leveraged data-driven techniques
to address this challenge by learning the mapping from sparse observations to
full-body poses, trained on large-scale motion capture datasets.

Typically, models for representing full-body poses are parameterized with
a kinematic chain and encode a pose as a vector of joint angles. While this
model-based approach maintains realistic human body proportions with consis-
tent bone lengths, it also accumulates positional errors throughout the kinematic
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tree. These errors, however, lead to discrepancies between predicted results and
observed positions or poses.

To reconcile the mismatch between observed joint poses and those repre-
sented through human models, prior work has proposed several approaches.
Methods have combined traditional IK solvers for the upper body, where hand
poses are available as input, with neural networks to estimate the lower body [67].
Others integrate iterative optimization techniques that further process the values
estimated by neural networks [9,21]. Finally, researchers have proposed special-
ized loss functions to enforce alignment during network training [74].

However, several limitations remain in existing methods that prevent accu-
rate tracking from sparse input cues alone. First, commercial IK solvers (e.g.,
Final IK [2]) primarily focus on aligning predictions with observations with-
out considering the naturalness and smoothness of motion, as shown and solved
in previous work [3, 21]. Second, optimization-based methods [9, 21] are sen-
sitive to initial values, prone to getting stuck in local minima, and they are
time-consuming to execute, which is challenging in real-time applications. Third,
purely learning-based methods [13,74] struggle to generalize well to unseen data.

Besides method limitations, previous approaches rely on a parametric human
motion model, often SMPL [40], which assumes knowledge of full 3-DoF rotations
during processing [39, 42]. Since multiple joint orientation configurations can
result in the same final joint positions, however, unconstrained optimization
may yield physically impossible joint angles. Optimization may also produce
end-effector positions that diverge from those captured as input, resulting in a
mismatch of hand positions that complicates precise interaction or feet locations
that penetrate the ground.

In this paper, we introduce MANIKIN, a novel biomechanically accurate
neural inverse kinematics solver that is designed to predict full-body poses from
sparse tracking of the end-effectors (e.g., hand) while ensuring precise alignment
of its position with the known observational data. Our neural solver is fully
differentiable for efficient training, while providing fast inference for real-time
applications. The key novelty of our solver is its prediction of limb swivel, which,
in the case of the arm, is the angle between the vertical plane through the shoul-
der and wrist and the plane containing the entire arm [23, 29, 60]. Besides, our
method refines SMPL-based models [40] with a lower degree-of-freedom represen-
tation that better matches human biomechanical constraints and, thus, ensures
physically plausible predictions.

Our method surpasses the state-of-the-art tracking accuracy in two steps.
Our neural network first forecasts the position of the base joint shoulder and
the swivel angle. We then determine the joint configurations based on the swivel
angle and the provided positions of the wrists through analytic geometry, guided
by human motion constraints. Our approach reduces hand position errors from
more than 5 cm [74] to a mere 0.1 cm on real VR data, which enables precise
hand control in AR/VR environments. We validate our approach in more detail
in extensive experiments on existing motion capture datasets. Our method con-
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sistently outperforms existing techniques, yielding more accurate and smoother
motion results.

To summarize, the main contributions of this paper are:
1. MANIKIN, a novel IK solver for full-body pose estimation that builds on a

biomechanically accurate body representation that matches human motion
constraints. MANIKIN is fully differentiable and affords end-to-end training.

2. A neural-analytic solution for the joint angle configuration of human limbs
based on swivel angle prediction. This enables precise end-effector control,
accurate full-body pose tracking, and ensures physically plausible predictions.

3. New state-of-the-art performance for full-body pose estimation, surpassing
previous optimization-based as well as pure learning-based methods while
achieving considerably fast inference time. Our approach also generalizes well
other IK tasks, thereby providing a new paradigm for IK problems and show-
ing promising potential for real applications.

2 Related Work

Inverse Kinematics for Human Motions. Inverse kinematics (IK) aims
to solve for the joint parameters of a kinematic chain given a desired end-
effector pose. It has been extensively studied and applied in fields such as
robotics [14, 43, 47, 53, 63] and computer animation [2, 6, 16, 46, 57, 73]. Previous
research [3,21] has highlighted the limitation as unrealistic animations of tradi-
tional full-body IK solutions (e.g., Final IK [2]). Recent works have combined
IK with deep learning to improve the robustness and flexibility of the predic-
tions [25,33–35,55,67,72]. Specifically, some methods employ optimization-based
techniques to refine predictions obtained from neural networks [5, 8, 9, 21, 48].
However, iterative optimization is slow by design and often suffers from local
minima. To address these challenges, HybrIK [34] integrates neural networks
with analytic IK through twist-and-swing decomposition. However, HybrIK’s
effectiveness depends on precise full-body keypoint estimation from images, lim-
iting its applicability when only end-effector poses are available. Motivated by
this limitation, we have developed a framework that combines neural networks
with analytic IK for pose estimation using only end-effector poses. We demon-
strate that traditional analytic IK methods [23, 60] can still play a significant
role when effectively integrated with neural networks.

Model-based Human Pose Estimation. 3D human pose estimation is a
well-established problem that has been addressed using various sensing modali-
ties [7,8,26,56,62,68]. Many methods aim to locate the body’s joints by directly
regressing on their positions within the human skeleton [36,49,58,59,71,75]. To
ensure bone consistency, SMPL-based pose estimation algorithms [8,24,40] have
been proposed that estimate the parameters of a human body model. More recent
works use Transformers to operate on sequential data [37,38,41,65,66]. Methods
for estimating full-body pose using IMU sensors [19,62,68,69], or tracked head-
sets and hand controllers [4,13,20,21] have also employed the SMPL body repre-
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sentation. However, although SMPL offers flexibility in possible poses, allowing
3-DoF rotations for all joints is not biomechanically accurate [27] and leads to
an overparameterized model. Some previous methods [8, 48] train body priors
to constrain body poses to be realistically looking. However, the internal joint
configurations of these poses are not guaranteed to be biomechanically plausible.

Motion Capture from Sparse Observations. Motion capture using sparse
wearable devices has gained significant attention due to its portability and cost-
effectiveness. Existing methods can generally be categorized into IMU-based
methods [7, 19, 22, 44, 62, 68–70] and MR device-based methods [4, 11, 13, 20, 21,
30,32,50,64,67]. In the context of virtual and augmented reality, the research ad-
vancements aimed at capturing full-body movements from tracked end-effector
poses are also particularly significant, as inside-out tracking of users’ heads and
hands [17,18], or hand-held controllers, is now common in mixed reality devices.
Our previous work AvatarPoser [21] was the first 3-point-tracking method that
generalizes over different motion types. It uses a Transformer model to estimate
the full-body pose and integrates it with IK optimization to reduce the hand po-
sition error. Following this, AGRoL [13] proposed a diffusion model for smoother
predictions, and then EgoPoser [20] focuses on efficient egocentric pose and shape
estimation in the wild with realistic field-of-view modelling. AvatarJLM [74] im-
proved upon these results by modelling joint-level correlations and introducing a
hand alignment loss to replace the IK optimization. However, these methods can
not yet guarantee solutions that are globally optimal and anatomically plausible.

3 Proposed Method

We propose MANIKIN, a novel neural constrained inverse kinematics solver for
full-body pose tracking from the pose of end-effectors. Thus, we first describe
the challenge of full-body pose estimation using sparse sensor data. Following
this, we introduce our biomechanically inspired human motion modeling ap-
proach. Leveraging this modeling method, we subsequently present our neural
constrained inverse kinematics solution designed specifically for this task.

3.1 Task Description

The aim of our paper is to accurately track the full-body pose based on the
poses of the end effectors. Despite our proposed solution’s applicability to gen-
eral IK problems, we focus on a common scenario in Mixed Reality due to page
constraints. Specifically, we address situations where the global 6 DoF poses of
the head and hands are available, as formulated in our previous work Avatar-
Poser [21]. Each 6DoF pose encompasses 3D positions and orientations. Using
these poses as input, our objective is to reconstruct the spatial positions of the
articulated joints comprising the user’s entire body within the global space. This
is a challenging and ill-posed IK task, as multiple full-body pose configurations
can lead to the same hand poses.
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3.2 Human Motion Modeling
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Fig. 1: Comparison between SMPL and biomechanically constraint limb motion: (a)
the skeleton of the SMPL model, (b) unrealistic SMPL joint configurations in the
AMASS dataset, (c) biomechanically plausible joint configurations, (d) swivel angle
parametrization of arm and leg.

Biomechanically Plausible Motion Constraints. To describe human move-
ment, previous methods [13,21,74] use the first 21 joints of the SMPL model [40]
for full body human motion modeling (Fig. 1a). The finger joints are omitted,
and the hand pose is denoted by the wrist pose. SMPL employs a standard skele-
tal structure to define a human body, and the pose of each joint is characterized
by its relative rotation concerning its parent joint within the kinematic tree. The
adopted SMPL rig encompasses 22 joints, resulting in the definition of a pose
through 3 × 22 = 66 parameters represented as axis angles, supplemented by
three parameters for root translation, summing up to 69 parameters in total.

While SMPL can adequately represent the skin of the human body and keep
the bone length consistent, it is important to acknowledge that the 3 DoF as-
sumption of the SMPL model does not fully account for the inherent constraints
governing realistic human motion. For instance, once the pose of the shoulder of
a human is fixed, the wrist position on the same arm can only be controlled by
a constrained flexion-extension movement of the elbow joint. In contrast, the 3
DoF rotation of the SMPL model can make the wrist position move on a sphere,
which is impossible for humans. This is even evident in the AMASS dataset [42],
which contains instances of unrealistic SMPL joint configurations (Fig. 1b).

In key literature of biomechanics [10, 31, 51, 52, 54], the prevalent model for
describing the human arms and legs involves three rigid segments connected by
frictionless joints, constituting a total of seven degrees of freedom (Fig. 1c). In-
formed by this, we correct the degrees of freedom in the SMPL model’s joints to
more accurately mirror the natural motion constraints of human arms and legs
while maintaining three degrees of rotational freedom for other joints, including
those in the spine and hip.
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Swivel Angle. Informed by prior work [23, 29, 60], we base motion modelling
of arms and legs on the swivel angle, which represents the extent to which the
respective mid joint (elbow or knee) is rotated around the end-base axis (wrist-
shoulder or ankle-hip). When the position of the base joint is fixed, the 7-DoF
limb has one more DoF than the 6 constraints of the controlled end effector,
which can lead to infinite possible joint angle configurations to reach the end
effector pose. The swivel angle can parameterize the extra degree of freedom to
give a unique solution. This becomes clear when noting that as the swivel angle
ϕ of the arm changes, the elbow traces a circular arc situated on a plane whose
normal is parallel to the wrist-to-shoulder axis (Fig. 1d, equally applies to legs).

3.3 Biomechanially Accurate Neural Inverse Kinematics

By utilizing realistic motion constraints, we propose a novel solution for full-
body pose estimation from sparse tracking points at the end effectors. Fig. 2
shows an overview of our framework. Given the 6D poses of the head and hands
as input, the neural network predicts the body’s global orientation, local poses
of the joints on the torso, the foot pose, and the swivel angle of arms and legs.
Utilizing the torso angles, forward kinematics is applied to attain shoulder and
hip positions (Torso FK ). Our biomechanical constraints allow us then to an-
alytically compute limb angles via inverse kinematics on the respective swivel
angle and base joint position (Analytic Arm/Leg Solver). Finally, we render the
full body model. We will introduce the details of each part in the following.

Input Representation. The inputs of our network are positions p and orien-
tations Φ of the head and hands, as well as the corresponding linear and angular
velocities to obtain a signal of temporal smoothness. For each input joint j,
the linear velocity v is given by backward finite difference at each time stamp
vt = pt − pt−1. Similarly, the angular velocity ω is given by ωt = Φ−1

t−1Φt. We
convert orientation and angular velocity into their 6D representation Φ1×6 and
ω1×6. As a result, the final input representation is a concatenated vector of posi-
tion, linear velocity, rotation, and angular velocity from all given sparse inputs,
which we write as xj =

[
p1×3
j ,v1×3

j , Φ1×6
j , ω1×6

j

]
. To utilize the temporal infor-

mation, we use a sliding window of N frames as the input. The input window
is then fed into a neural network to predict the full-body pose at a current frame.

Neural Network. Given the 6D poses of the head and hands, we use the neural
network to predict the poses of joints on the torso, the 6 DoF foot poses, and the
swivel angle of arms and legs. Our framework is plug-and-play and supports any
network backbone. To compare to state-of-the-art methods on full-body pose
estimation from head and hand pose, we employ two kinds of backbone models:
(1) a three-layer lightweight Transformer [21], denoted as MANIKIN-S and (2) a
larger temporal-spatial Transformer network [74], denoted as MANIKIN-L. For
a fair comparison with previous methods, we maintain the identical architecture
as the original model, with the exception of the output layer where we predict
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Fig. 2: Overview of MANIKIN for full-body pose estimation from sparse tracking
signals. Given the 6 DoF of the head and two hands, the neural network predicts the
foot pose, swivel angles for arms and legs, as well as joint angles in the torso. Next,
the shoulder and hip position can be obtained through forward kinematics on the
torso. Given the poses of an end effector (hand and foot), predicted swivel angles, and
base joint (shoulder and hip) positions, we use analytic geometry to get all limb joint
configurations. Combined with the predicted torso joints, we obtain a full-body pose.

swivel angles ϕ for arms and legs, in addition to foot poses.

Torso FK. After the network predicts the torso joint angles, we employ for-
ward kinematics on these angles to calculate the joint positions. The benefits of
using Torso FK are two-fold. First, the joint positions are directly optimized to
reduce the joint position error. Second, the obtained positions of base joints (i.e.
shoulder and hip) are further used for swivel angle prediction and for analytic
IK solution. Compared to previous methods that apply forward kinematics on
the entire body, our method is more efficient and accurate, because the network
can focus on the torso part. The loss function for the torso FK is the L1 loss
between the predicted joint positions and the ground truth joint positions:

Ltorso
FK =

∥∥∥FK(θpred
torso)− FK(θgt

torso)
∥∥∥
1

(1)

Swivel Angle Estimation. Existing datasets do not provide the swivel angle,
so we calculate the ground truth swivel angle from the ground truth joint po-
sitions. By varying the swivel angle ϕ, different positions of the elbow joint are
obtained along an orbiting circle of the elbow. Let pb, pm, and pe be the position
of the base joint, mid joint, and end joint of a human limb. lbm represents the
distance between the base joint and the mid joint, corresponding to the length
of the upper arm in an arm or the length of the thigh in a leg. lme denotes the
distance between the mid joint and the end joint, equating to the length of the
forearm for an arm or the length of the lower leg for a leg. The relationship be-
tween the swivel angle, elbow joint, and the orbit circle is illustrated in Fig. 3a.
We define the reference vector of the corresponding limb vref to align with the
downward direction of the forward direction of the body’s longitudinal axis for
the arm or sagittal axis for the leg (Fig. 1d). Furthermore, u is defined as the
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Fig. 3: Illustrations of the triangular geometry of the human limbs. (a) shows the
relationship between swivel angel and mid joint position. (b) to (d) show the procedure
to rotate the limb from T-pose to desired positions.

projection of vref onto the orbit circle plane, and v is orthogonal to u and the
normalized base-end vector n:

n =
pe − pb

∥pe − pb∥
, u =

−vref + (vref · n)n
∥ − vref + (vref · n)n∥

, v = u× n (2)

In the triangle formed by the base joint, the mid joint, and the end joint, the
angle α between the base-mid and base-end vectors can be calculated by

α = arccos
(
lbm

2 + ∥pe − pb∥2 − lme
2

2lbm∥pe − pb∥

)
(3)

Then the center of the mid-joint orbit circle pc can be derived by:

pm
c = pb + lbmn cosα (4)

The swivel angle ϕ can be calculated by

cosϕ =
u · (pm − pm

c )

∥pm − pm
c ∥

, sinϕ =
v · (pm − pm

c )

∥pm − pm
c ∥

(5)

We normalized the predicted cosϕ and sinϕ by their root sum squared so that
cos2 ϕ + sin2 ϕ = 1. Since single angle representation ϕ is discontinuous (e.g., 0
and 2π are equivalent), it is hard for networks to fit [76]. Therefore, we optimize
the swivel angle in its continuous representation [cos(ϕ), sin(ϕ)]T :

Lswivel =
∥∥sin(ϕ)− sin(ϕgt)

∥∥
1
+
∥∥cos(ϕ)− cos(ϕgt)

∥∥
1

(6)

The mid-joint position is a function of the swivel angle. Once the swivel angle
is predicted, we can also get the mid joint position by:

ppred
m (ϕ) = pm

c + rmc (ucosϕ+ vsinϕ) (7)
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where pm
c can be calculated by Eq. 4 and rmc = lbm sinα is the radius of the

mid joint orbit circle.
Since our goal is to find the best mid-joint position that depends on the

swivel angle, we also optimize the middle joint position in the loss function.

Lm =
∥∥ppred

m (ϕ)− pgt
m
∥∥
1

(8)

Analytic Limb Solver. Given the predicted position of the base joint and the
swivel angle, there exists a closed-form solution when the 6 DoF pose of end
effectors is provided. We will solve for the joint angles in the following.

1) Mid joint flexion rotation. The desired positions of the base, mid, and end
joints define the triangle formed by these points. The flexion angle rotates around
the vertical axis in the T pose and brings the end joint from the position from pi

e

to pj
e (Fig. 3b). The flexion rotation angle of the mid-joint θflexion

m is calculated
by the law of cosines:

θflexion
m = π − arccos

(
lbm

2 + lme
2 − ∥pe − pb∥2

2lbmlme

)
(9)

2) Base joint swing and twist rotation. The base joint is always a ball-and-
socket joint with three DoFs and can be parameterized with the swing-and-twist
decomposition [15]. The swing rotation is determined by the rotation needed to
bring the mid joint from the position pi

m in T-Pose to the desired position pm

(Fig. 3c), which can be given by:

θswing
b =

(pi
m − pb)× (pm − pb)

∥(pi
m − pb)× (pm − pb)∥

arccos
(
(pi

m − pb) · (pm − pb)

l2bm

)
(10)

Once the base swing rotation is applied to the base joint in T-pose, the end-joint
position moves from pj

e to pk
e . Next, the base twist will make the limb rotate in

order for the end joint to move from pk
e to reach the desired position pe (Fig. 3d).

The rotation axis is the vector −−−→pbpm, and the twist rotation of the base joint
can form an orbiting circle of the end joint. The radius of this orbit circle rec can
be calculated by:

rec = lmesin(θflexion
m ) (11)

Then the twist rotation of the base joint can be solved by:

θtwist
b = 2arcsin

(
∥pe − pk

e∥
2rec

)
= 2arcsin

(
∥pe − pk

e∥
2lmesin(θflexion

m )

)
(12)

Since the foot pose is directly predicted by the neural network, we can now
obtain the poses for all joints of the leg.
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3) Elbow twist. The mid joint on the arm has one more DoF than the mid joint
on the leg, which is the elbow twist that controls the pronation-supination of the
forearm and hand. Although the elbow twist and the wrist swing rotations are
applied to different joints, we observed that their combined effect is the same as
a single 3-DOF rotation qglobal

wrist . The elbow twist quaternion is given by [12]:

qtwist
elbow =

(
qw∥vtwist

elbow∥2, vx(vtwist
elbow · q), vy(vtwist

elbow · q), vz(vtwist
elbow · q)

)
(13)

where q = (qx, qy, qz) is the vector part of quaternion qglobal
wrist = (qw, qx, qy, qz),

and vtwist
elbow = (vx, vy, vz) = −−−→pepm is the twist axis vector.

4)Wrist joint swing. The swing quaternion of the wrist is calculated by mul-
tiplying the original global wrist quaternion with the conjugate of the twist
quaternion:

qswing
wrist = qglobal

wrist qtwist*
elbow (14)

With these equations in place, we can now determine the poses of all body joints.

End-to-End Training. Our method is fully differentiable and supports end-to-
end training. The final loss function is composed of a local rotational loss Llocal
to optimize the local body pose, a global orientation loss Lglobal to optimize the
global root orientation, a foot pose loss LFoot to optimize the foot position and
orientation, a torso FK loss to optimize the torso joint positions Ltorso

FK , a swivel
angle loss Lswivel together with a mid joint loss Lm to optimize the swivel angles.

Ltotal = λoriLori + λrotLrot + λfootLfoot + λtorso
FK Ltorso

FK + λmLm (15)

We set the weight of λori to 0.05, λswivel and λm to 0.2, and all other weights
to 1. To optimize the parameters of the network, we adopt the Adam solver [28]
with batch size 256. We set the input window size as 40 frames. We train our
model with PyTorch on NVIDIA GeForce GTX 4090 GPUs.

Joint Angles in SMPL-based dataset. Our above described neural-analytic
approach involves using neural networks to predict the positions of base joints
and swivel angles, and then deriving the positions of mid-joints based on the
swivel angle. Our method can also refine the SMPL-based dataset (e.g., AMASS)
to ensure biologically plausible arm- and leg configurations. To do so, we can
just apply the same calculations (Equations 9-14) to analytically derive joint an-
gles given the known base and mid joint positions of the dataset. This method
accurately replicates SMPL model joint positions and improves joint angle rep-
resentations based on real human motion constraints. This provides valuable
resources for applications like healthcare.

4 Experiments

In this section, we will evaluate the effectiveness of MANIKIN to show its benefit
over previous SMPL-based methods for full body tracking based on end-effectors.
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4.1 Datasets and Evaluation Metrics

Following prior work [13,21,74], we use the subsets CMU [1], BMLrub [61] and
MPI [45] of AMASS [42] for training and testing. For sim-to-real evaluation, we
additionally use a real-world VR motion capture dataset [74].

The evaluation metrics employed in our paper are based on prior work [13,
21, 74]. Specifically, we use MPJPE (mean per-joint position error, in [cm]) to
validate the accuracy of pose estimation, MPJVE (mean per-joint velocity error,
in [cm/s]) to validate smoothness of motion and accuracy, H-PE to analyze hand
position error, U-PE to analyze upper-body position error, L-PE to analyze
lower-body position error, Jitter (measured as a jerk, in [102m/s3]) to validate
smoothness of motion, GP to analyze ground penetration error.

4.2 Comparisons to State-of-the-Art Methods

We compare MANIKIN with state-of-the-art methods in MR-based full-body
tracking: AvatarPoser [21], AGRoL [13], and AvatarJLM [74]. To ensure a fair
comparison, we categorize the methods into two groups based on whether the
model is lightweight or heavyweight. AGRoL originally was designed to predict
the current frame using future frames during offline evaluation. To align it with
the setting of the other compared methods, we adapted AGRoL (denoted with *)
to predict the current frame based on past frames. AvatarPoser* denotes Avatar-
Poser without optimization-based IK, enabling real-time inference.

Evaluation Protocols. MANIKIN-S and MANIKIN-L follow the online evalu-
ation protocol used in AvatarPoser and AvatarJLM. They utilize the past N=40
frames as input and only output the last frame as the prediction at timestamp
t, with a step size of 1 for the sliding window. MANIKIN-LN is the seq2seq-
variant of MANIKIN-L that inputs and outputs N=40 frames with the window
shifting by a step size of N in evaluation. We introduced this variant for a fair
comparison with the seq2seq model AGRoL (input & output N=196 frames with
step size N), which leveraged future signals from its input window for predictions.

Results on AMASS Dataset. Following prior work [13, 21, 74], we use the
subsets CMU [1], BMLrub [61], and MPI [45] of AMASS [42], as well as the
same data splits, for training and testing. Tab. 1 shows the experimental results.
Our default lightweight model significantly reduces position error compared to
the very recent AvatarJLM [74], while achieving nearly 20× faster processing
speed. Our model also has significantly fewer parameters.

Results of Cross-Dataset Evaluation. We follow [21,74] to perform a 3-fold
cross-dataset evaluation on the subsets CMU [1], BMLrub [61] and MPI [45].
Thus, we train on two subsets and test on the remaining one. Tab. 2 shows the
results. Our method outperforms all other methods in all metrics. We provide
visual comparisons in first-person view in Fig. 4 and third-person view in Fig. ??.
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Table 1: Results on AMASS dataset. The best result is highlighted in boldface.

Methods MPJPE H-PE GP U-PE L-PE MPJVE Jitter FPS Param. FLOPs
AvatarPoser* [21] 4.20 1.98 2.36 2.01 7.85 29.32 16.64 612 4.12M 0.33G
AGRoL* [13] 3.86 1.42 2.24 1.60 7.13 50.78 48.30 17.8 7.48M 1.00G
MANIKIN-S (Ours) 3.36 0.02 0.75 1.32 6.72 23.18 14.08 580 4.12M 0.33G
AvatarPoser [21] 4.18 1.15 2.36 1.76 7.85 29.40 16.80 12.4 4.12M 0.33G
AGRoL [13] 3.71 1.31 2.21 1.55 6.84 18.59 7.26 0.24 7.48M 1.00G
AvatarJLM [74] 3.35 1.24 0.81 1.53 6.54 20.79 10.08 31.1 63.8M 4.64G
MANIKIN-L (Ours) 3.19 0.01 0.69 1.43 6.27 20.10 9.97 30.5 63.8M 4.64G
MANIKIN-LN (Ours) 2.73 0.01 0.52 1.30 5.13 13.55 7.95 0.81 63.8M 4.64G

Table 2: Results of cross-dataset evaluation. The best results are in boldface.

Methods CMU BML MPI

MPJPE H-PE GP MPJVE MPJPE H-PE GP MPJVE MPJPE H-PE GP MPJVE

AvatarPoser* [21] 8.40 4.72 2.06 35.88 7.08 3.37 2.85 43.85 8.07 5.61 2.64 30.92
AGRoL* [13] 8.81 3.41 2.98 85.85 7.34 2.01 2.21 56.21 8.18 2.46 3.00 103.01
MANIKIN-S (Ours) 7.21 0.04 0.72 29.06 6.31 0.03 1.99 40.29 6.41 0.04 0.70 27.03

AvatarPoser [21] 8.37 2.08 2.06 35.76 7.04 1.54 2.85 43.70 8.05 2.56 2.64 30.85
AGRoL [13] 8.87 3.19 2.20 28.02 7.29 1.97 2.97 34.29 7.91 2.34 2.86 26.09
AvatarJLM [74] 7.75 1.37 1.11 26.54 6.49 0.85 2.24 36.96 6.60 1.17 1.65 23.57
MANIKIN-L (Ours) 6.92 0.04 0.62 25.38 6.02 0.02 1.97 33.74 6.19 0.03 0.66 23.28
MANIKIN-LN (Ours) 6.90 0.04 0.60 22.49 5.96 0.01 1.68 30.33 6.08 0.01 0.65 21.74

AvatarPoser

AvatarJLM

AGRoL

NeCoIK
(Ours)

AvatarPoser
(ECCV’22)

AGRoL
(CVPR’23)

AvatarJLM
(ICCV’23)

MANIKIN
(Ours)

First-person view Third-person view

Fig. 4: Visual comparisons of different methods under the first and third person views.
The ground truth pose is colored in transparent gray. Our method can perfectly match
the hand observation and has better full-body prediction results than other methods.

Results on Real-Captured Data. To further evaluate our performance on
the real-world headset-and-controller data of VR/AR applications, we test our
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Table 3: Results on real-captured data. The best result is highlighted in boldface.

Methods MPJPE H-PE GP U-PE L-PE MPJVE Jitter

AvatarPoser 11.22 6.60 2.20 5.79 20.73 31.67 12.87
AvatarJLM 9.72 5.27 0.17 5.32 17.43 27.59 13.10
MANIKIN-L 8.85 0.12 0.01 4.43 16.57 26.12 12.25

Table 4: Ablation studies for the effect
of proposed IK solutions and swivel an-
gle estimation. The evaluation is made
on the MPI dataset.

Methods MPJPE H-PE GP U-PE L-PE MPJVE

Ours 6.41 0.04 0.66 3.02 12.09 27.03
No Upper IK 7.20 5.61 0.66 4.41 12.09 31.16
No Lower IK 7.06 0.04 2.64 3.02 14.13 27.05
Opt-based IK 7.65 2.56 1.89 4.18 13.75 31.02
Learning-based IK 7.96 4.35 2.08 4.41 14.13 31.27

No Lmid 6.59 0.05 0.72 3.25 12.44 27.35
No Lswivel 6.62 0.04 0.66 3.27 12.48 27.15
Swivel - Single 7.14 0.06 0.75 4.05 12.54 29.03
Swivel - Search 8.82 0.05 0.74 5.51 14.61 38.02

Table 5: Results estimating full body pose
given the positions of the head, wrists, and
ankles. The best result is highlighted in
boldface.

Methods MPJPE MPJVE U-PE L-PE H-PE F-PE

Transformer-SMPL 5.34 22.74 4.37 6.73 5.65 6.48
Transformer-Ours 3.74 14.98 3.31 4.36 0.11 0.12

RNN-SMPL 7.93 43.84 5.64 11.24 7.94 12.86
RNN-Ours 4.92 24.97 4.10 6.10 0.20 0.76

MLP-SMPL 8.68 32.26 6.52 11.81 9.96 13.17
MLP-Ours 5.37 20.10 4.52 6.60 0.24 0.78

method on the real-captured data from [74]. Tab. 3 shows the results. We train
our method using the same training data as AvatarJLM [74]. Our method out-
performs all other methods in all metrics.

4.3 Ablation Studies

We ablate our method to illustrate the effectiveness and essentiality of each com-
ponent. Accordingly, we assess the performance of our method across various IK
methods and swivel angle estimation approaches.

Design Choices of IK Methods. The upper part of Table 4 shows a perfor-
mance comparison of different IK approaches. Results show that our approach
outperforms alternative options.

Design Choices of Swivel Angle Estimation. We assess different methods
for determining the swivel angle in the lower section of Table 4. Experiments
show removing the mid-joint loss(No Lmid) will give worse results, indicating
the mid-joint loss can regularize the swivel angle prediction to reach the best
position. However, if we remove the swivel angle loss and only optimize the
mid-joint position (No Lswivel), it is still worse than our default setting because
swivel also helps regularize the network optimization. Besides, predicting the
swivel angle as a single value (Swivel-Single) is worse than predicting that as
a continuous representation. We also tried searching the swivel angle using the
traditional method outlined in [23] (Swivel-Search), yielding the least favorable
results. This can be explained by the algorithm’s limitation of merely verifying
the swivel angle’s validity without leveraging motion priors learned from data.
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4.4 Generalization to Other Tasks

Our method is a general solution for human pose estimation from sparse tracking
signals and can be applied to other tasks. To demonstrate its applicability, we
evaluate the performance on the task of full-body pose estimation from the 3D
positions of 5 end-effectors, i.e., the head, two wrists, two ankles (orientations are
not provided). This task resembles motion capture- or motion editing settings
where only end-effector positions are available. We employ three commonly uti-
lized network backbones — Transformer, RNN, and MLP — and conduct direct
comparisons of the same model’s performance when trained using SMPL and
our method. We train all methods on the CMU- and the BioMotionLab dataset
and test them on the MPI dataset. Experiments show that our method achieves
significantly better results on all metrics (Table 5). F-PE denotes foot error,
measured on the ankle joint.

4.5 Limitations and Disscussion

Our method shows significant improvements over previous approaches for full-
body IK tasks across multiple datasets, though some limitations still remain.
First, a prerequisite for our solver is knowledge of the user’s body dimensions,
specifically the lengths of the skeleton bones. This requirement aligns with prior
work that assumes specific dimensions of the body to be known [11, 13, 21, 74].
For a wider adoption of our method, the body dimensions of the user could be
obtained by direct measurement through calibration or body shape estimation,
as addressed in our recent work EgoPoser [20]. Second, when only head and
hand signals are available, full-body reconstruction can still be challenging for
complex motions, such as a person sitting and crossing their legs. Third, since
this paper focuses on designing an effective neural-analytic IK framework for
full-body motion estimation tasks, we utilized network architectures similar to
those in previous studies [21, 74]. Based on our framework, future work could
explore more advanced backbone models for this task.

5 Conclusion

We have presented MANIKIN, a novel IK paradigm based on realistic biome-
chanical human motion constraints and analytic geometry for full-body pose
estimation from end-effector poses. MANIKIN is differentiable and allows end-
to-end training. Our approach predicts the base joint position and swivel angle
based on neural networks and provides a closed-form solution for the joint angle
configuration of human limbs. This enables accurate end-effector control, full-
body pose tracking, and physically plausible predictions. MANIKIN achieves new
state-of-the-art performance on full-body pose estimation, surpassing previous
optimization-based and pure learning-based methods while keeping an extremely
fast inference time. Our solution provides a new paradigm for IK problems with
considerable potential for real-world applications.
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