
P2P-Bridge: Supplementary Materials

Mathias Vogel1 , Keisuke Tateno2, Marc Pollefeys1,3 , Federico Tombari2,4 ,
Marie-Julie Rakotosaona∗,2, and Francis Engelmann∗,1,2

1 ETH Zurich 2 Google 3 Microsoft 4 TU Munich

Abstract. In this supplement, we present additional results, including
experiment details and information about our backbone network. Ad-
ditionally, we include extra experiments, such as object-level denoising
using non-Gaussian noise types.

1 Experiment Details

In this section, we will provide additional details about the data processing and
training of our method and baseline methods.

1.1 Frameworks and Computational Resources

We implement our method using Python 3.10, PyTorch 2.0, and CUDA 11.8. All
experiments are conducted using a single RTX 3090 or RTX 4090, except when
training the large models on ARKitScenes and ScanNet++, for which 4 RTX
3090 are used.

1.2 Dataset Processing and Splitting

In our main paper, we only utilized a subset of the testing rooms due to computa-
tional limitations. The subsets were filtered to ensure representation of different
room types (e.g., kitchen, bathroom, living room) with minimal errors or outliers
in the point clouds. Subsequently, a random subset from the filtered rooms was
chosen for testing all algorithms. You can access the training, validation, and
testing splits for indoor scenes in our Code Repository.
ARKitScenes. We filter out rooms that do not have high-resolution RGB frames
or have incorrect laser scanner positions. Since the Faro scan is not in the same
coordinate system as the low-resolution scans, we first use PREDATOR [3] to
align the Faro scan with the low-resolution scans. Then, we use the multi-scale
iterative closest point (ICP) algorithm with the transformation matrices from
PREDATOR as initialization to refine the transformation matrix. After aligning
all rooms with the refined transformation, we crop outliers caused by reflection
errors by calculating a minimal bounding box around each room. For the training
phase, we incorporate 96 visits (rooms) with 266 noisy reconstructions, as there
are often multiple reconstructions per room created at different times and lighting

https://orcid.org/0009-0009-7959-0608
https://orcid.org/0000-0003-2448-2318
https://orcid.org/0000-0001-5598-5212
https://orcid.org/0000-0001-5745-2137
https://github.com/matvogel/P2P-Bridge


2 M. Vogel et al.

conditions. To evaluate against the baselines, we use 10 rooms with a single
reconstruction each.
ScanNet++. On ScanNet++, we calculate the noisy point cloud reconstructions
using scripts provided by the authors. These reconstructions were obtained by
first filtering the depth maps according to their agreement with the Faro laser
depths. This was followed by 3D projection using the camera intrinsic matrices
and globally optimized poses from COLMAP [11,12] without applying further
fusion methods. We also generate 3D reconstructions using 3DMatch [16] on the
pre-filtered depth maps with globally optimized poses. This process provides
additional evaluation data to assess the methods in a more advanced pipeline,
which includes integrating deep-learning methods in the 3D reconstruction step.
We have utilized the dataset version from November 2023. For training, we are
using the nvs_sem_train dataset, while the nvs_sem_val dataset is split into
two parts - one for ablation studies and another for comparing methods and
generating tables in the main paper. We have opted to use nvs_sem_val for
evaluation/testing due to its minimal errors in ground truth room scans. The
training set comprises 230 rooms, and we are conducting evaluations against
baseline methods on 8 rooms.
Object-Datasets. We use the data provided by ScoreDenoise in the form of a
Google Drive link to obtain the PU-Net training data, as well as the test data
for Gaussian noise (examples folder) and the PC-Net test data.

1.3 Patch-Wise Sampling

On the PU-Net dataset, we train our model on only coordinate features and
KNN patches of size 2048. When it comes to indoor scene data, we sample
training batches of size 4096 from spherical patches with a radius of 0.3m on
ScanNet++ and 0.5m on ARKitScenes. The radius size was empirically tuned
to approximately fit the target amount of points. When there are less than 4096
noisy points, we up-sample the size by duplicating points and adding 2% of
bounding diagonal Gaussian noise to both coordinates and features of noisy
points. If there are more than 4096 noisy points inside the sphere, we use farthest
point sampling to down-sample the input. When there are less than 4096 clean
points in the sampling sphere, we don’t use it to avoid the model being trained on
assigning multiple noisy points to the same clean points. We center each sphere
and scale it to the unit radius. We generate overlapping patches during inference
and average all point predictions for points in the overlapping regions. When a
patch is artificially up-sampled, we only take predictions for the original points
and ignore the predictions for the supplementary noisy points because including
those leads to irregular point density.

1.4 Feature Extraction

We require a point cloud of a whole scene and additional RGB images, camera
intrinsics, and poses to extract additional features. We use DINOV2-VITS14 to

https://drive.google.com/drive/folders/1--MvLnP7dsBgBZiu46H0S32Y1eBa_j6P?usp=sharing


P2P-Bridge: Supplementary Materials 3

extract features from RGB frames of the scene of shape [⌊H
14
⌋×⌊

W
14
⌋, 384] which we

then up-sample to the original image size [H,W, 384] using bilinear interpolation.
We use each feature map’s corresponding pose and camera intrinsics to project
the full point cloud back onto the image grid, respecting occlusion and extracting
the feature vector at the grid coordinate. Finally, we perform KNN interpolation
on the full cloud to fill in missing features due to occlusion.

1.5 Data-Alignment

We use two approaches depending on the datasets used to align the clean data
with the noisy data for nearest-neighbor interpolation. On the PU-Net dataset,
we use an implementation based on the auction algorithm to align the noisy
and clean data because the noisy and clean point clouds have the same amount
of points. We use the CUDA-based implementation from PointMixup [1]. On
ScanNet++ and ARKitScenes, we use the fact that the clean point clouds have
a much higher amount of points than the noisy clouds. We find that directly
assigning the nearest neighbor in the clean point cloud for every noisy point
leads to very good results and assigns unique neighbors for nearly 100% of noisy
points. This mapping describes the shortest path between the noisy points and
the surface of the clean point cloud.

1.6 Baseline Methods

Our experiments on indoor scenes use the parameters and pre-trained weights
provided in the publicly available code repositories. These are, ScoreDenoise,
MAG, DMRDenoise, Itertive-PFN and PD-Flow. We utilized the best-performing
hyperparameters as per the respective papers for each model. Pre-trained weights
were used for initialization when training on ScanNet++ and ARKitScenes. The
code for the bilateral point cloud filter can be found on their project page.

1.7 Network Architecture

Figure 1 and Fig. 2 describe the individual components of our diffusion model
backbone. It mainly consists of blocks introduced in PVCNN [5], except for the
adaptive group normalization block we borrow from LION [17]. The grouping
operation in the set-abstraction block first takes a k-nearest-neighborhood for
each point in the input and then uses max-pooling on each neighborhood to
extract the feature with the highest value.

1.8 Hyperparameters

We find that a network of smaller size is sufficient for datasets with a relatively
small amount of noise or simpler underlying clean data, such as the PU-Net
dataset or ScanNet++ scene reconstructions obtained using 3DMatch. We list
the parameters for the building blocks and the diffusion parametrization in Tab. 3

https://github.com/luost26/score-denoise
https://github.com/IndigoPurple/MAG
https://github.com/luost26/DMRDenoise
https://github.com/ddsediri/IterativePFN
https://github.com/unknownue/pdflow
https://www.ipol.im/pub/art/2017/179/?utm_source=doi


4 M. Vogel et al.

Fig. 1: Set abstraction and feature propagation block with additional point voxel
convolution blocks.

and Tab. 4. The diffusion timesteps are quadratic discretized between t0 and
t1 using T discretization steps. The linear-symmetric schedule is adapted from
I2SB [4] On ARKitScenes and ScanNet++ without 3DMatch, we use a larger
architecture in terms of parameters, which is described in Tab. 2 and Tab. 1.

Table 1: Parameters of individual network
blocks for the large architecture used on
ARKitScenes and ScanNet++.
Parameter Setting

SA1 SA2 SA3 SA4

PVC Layers 2 3 2 -
PVC Dimension 64 128 256 -
Shared-MLP Output Dimension 64-128 128-256 256-512 512-1024
Grouper Points 1024 256 64 16
Grouper Radius 0.1 0.2 0.4 0.8
Voxel Resolution 32 16 8 8

Global Attention Head Dimension 32
Global Attention Heads 12

FP1 FP2 FP3 FP4

PVC Layers 2 2 3 2
PVC Dimension 512 512 256 128
Voxel Resolution 8 8 16 32
Shared-MLP Output Dimension 1024-512 512-512 512-256 256-128

Shared-MLP Output Dimension 128-128-3

Table 2: Global network parameters
for the large architecture used on ARK-
itScenes and ScanNet++.
Parameter Setting

PVC Dropout 0.1
Time Embedding Dimension 64
Global Feature Dimension 1024
Feature Embedding Dimension 64
Grouper Max Neighbors 32

Diffusion Timesteps T 1000
Diffusion t0 0.0001
Diffusion t1 1
Diffusion Schedule linear-symmetric
Diffusion Schedule βmin 0.0001
Diffusion Schedule βmax 0.0003

Table 3: Parameters of individual network
blocks for the small architecture used on
PU-Net and ScanNet++ & 3DMatch.
Parameter Setting

SA1 SA2 SA3 SA4

PVC Layers 1 2 1 -
PVC Dimension 32 64 128 -
Shared-MLP Output Dimension 32-64 64-128 128-256 256-512
Grouper Points 512 128 32 8
Grouper Radius 0.1 0.2 0.4 0.8
Voxel Resolution 32 16 8 8

Global Attention Head Dimension 32
Global Attention Heads 4

FP1 FP2 FP3 FP4

PVC Layers 1 1 2 1
PVC Dimension 256 256 128 64
Voxel Resolution 8 8 16 32
Shared-MLP Output Dimension 512-256 256-256 256-128 128-64

Shared-MLP Output Dimension 64-128-3

Table 4: Global network parameters for
small the architecture used on PU-Net and
ScanNet++ & 3DMatch.
Parameter Setting

PVC Dropout 0.15
Time Embedding Dimension 64
Global Feature Dimension 1024
Feature Embedding Dimension 32
Grouper Max Neighbors 32

Diffusion Timesteps T 1000
Diffusion t0 0.0001
Diffusion t1 1
Diffusion Schedule linear-symmetric
Diffusion Schedule βmin 0.0001
Diffusion Schedule βmax 0.02



P2P-Bridge: Supplementary Materials 5

Fig. 2: Building blocks of our network architecture based on PVCNN [5].

2 Additional Experiments

This section provides additional quantitative and qualitative results on the
denoising task but also discusses runtime as well as the effectiveness of using
EMD assignment for shortest-path-interpolation.

2.1 Inference Speed

The comparison of runtime required to achieve the denoising results in our
work is presented in the table below. Although diffusion models typically entail



6 M. Vogel et al.

high runtime due to the extensive inference steps involved, our approach only
necessitates as few as three steps, resulting in a relatively low runtime compared
to other methods such as I-PFN.

Table 5: Average Runtime. Comparison of the average denoising runtime of different
denoising methods without I/O on a RTX 3090.

Method 10k (s) 50k (s) 1.5M (s)

Bilateral 0.26 2.70 295.42
PD-Flow 0.78 4.89 305.08
ScoreDen. 0.91 4.18 332.98
I-PFN 14.05 31.29 912.43
Ours 0.82 4.36 342.18

2.2 Data-To-Data vs Noise-To-Data

In this analysis, we are comparing our data-to-data denoising approach with
noise-to-data denoising methods by tailoring generative point cloud diffusion
models to the denoising task. A crucial distinction between these two types of
generative models lies in the fact that noise-to-data models generate the noisy
point cloud by applying Gaussian noise to each clean point from the original point
cloud. This means that the correspondence between noisy and clean points is
always known. In contrast, for real-world denoising, the noisy point cloud comes
from a 3D reconstruction or scan affected by non-Gaussian noise, and there is
no direct correspondence between noisy and clean points. Hence, learning the
denoising process becomes complex. The effectiveness of diffusion bridges stems
from their ability to integrate existing data by conditioning the diffusion process
using prior distributions. To support this claim, we adapted PointVoxelDiffusion
(PVD) [19] and PointDiffusionRefinement (PDR) [7] to the denoising task. For
PVD, this is achieved using the same approach as the one employed by the
authors of PVD for point cloud completion. This involves combining Gaussian
noise with real-world noise prior by point cloud concatenation. In PDR, a distinct
network is utilized to merge Gaussian noise with the real-world noise prior in a
more advanced manner. The outcomes of these experiments are presented below,
demonstrating a definite enhancement of our data-to-data approach over both
noise-to-data approaches.

2.3 Shortest-path Interpolation

In our main paper, we address the challenge of linearly interpolating disordered
data structures like point clouds by using shortest-path interpolation. This method
establishes a unique correspondence between the noisy and the clean point clouds.
We achieve this correspondence by employing the Hungarian algorithm or by



P2P-Bridge: Supplementary Materials 7

Table 6: Noise-to-Data vs Data-to-Data. Comparison of different diffusion ap-
proaches. The noise-to-data approaches (PVD & PDR) begin denoising from isotropic
Gaussian noise, while our data-to-data approach starts denoising using the real-world
noisy data directly. The metrics are calculated on the PU-Net test dataset [15] and are
multiplied by 104.

10k 50k
1% noise 2% noise 3% noise 1% noise 2% noise 3% noise

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PVD [19] 25.9 22.12 27.11 23.13 29.53 25.25 5.50 4.74 7.57 6.64 10.0 8.88
PDR [7] 3.68 1.19 7.76 4.30 13.45 8.82 1.09 0.62 1.81 0.9 2.59 1.52
Ours 2.28 0.39 3.20 0.81 3.99 1.42 0.59 0.09 0.90 0.32 1.56 0.84

utilizing the assignments derived from EMD calculation. This approach proves
to be an optimal solution to the Schroedinger’s Bridge Problem within our
specific problem framework [9]. To validate this assumption, we retrained our
network on object-level datasets, employing Chamfer-Distance based interpolation
and present the results below. Our findings demonstrate that the EMD-based
shortest path interpolation consistently outperforms the Chamfer-Distance based
interpolation in all scenarios.

Table 7: Comparing Shortest-Path Interpolation Methods. Comparison of
our EMD-based shortest path interpolation methods with a CD-based shortest path
interpolation method. The metrics are calculated on the PU-Net dataset [15] under
Gaussian noise.

10k 50k
Shortest Path 1% noise 2% noise 3% noise 1% noise 2% noise 3% noise
Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

CD-Based 2.34 0.41 3.35 0.84 4.17 1.48 0.62 0.11 0.94 0.33 1.59 0.90
EMD-Based 2.28 0.39 3.20 0.81 3.99 1.42 0.59 0.09 0.90 0.32 1.56 0.84

2.4 Additional Qualitative Results on PC-Net

We show additional qualitative results in Fig. 3 on denoising chosen objects from
the PC-Net test dataset under 3% of Gaussian noise.

2.5 Denoising on Non-Gaussian Artificial Noise

For additional experiments on the PU-Net and PC-Net test data, we employ
various types of synthetic noise. To better grasp the impact of each noise type
on clean data, we provide an overview in Fig. 4.



8 M. Vogel et al.

Noisy Clean

Noisy Input ScoreDenoise [6] MAG [18] PD-Flow [8] P2P-Bridge (Ours) Original

Fig. 3: PC-Net 3% Gaussian Noise. Qualitative comparison of our P2P-Bridge and
recent deep-learning-based point cloud denoising methods on the PC-Net test set under
3% Gaussian noise.

Noisy Clean

Clean 3% Gaussian Noise 3% Discrete Noise 3% Laplacian Noise

Fig. 4: Comparison of different types of artificial noise.

Isotropic Gaussian Noise. Given a noise vector in three dimensions x =
[nx, ny, nz]

T , where nx, ny and nz are the noise components for each dimension,
isotropic Gaussian noise with zero mean can be formulated using

p(n) =
1

(2πσ2
)
3/2 exp(−

n2
x + n

2
y + n

2
z

2σ2
) , (1)

where σ is the noise standard deviation. Isotropic Gaussian noise is the type of
Gaussian noise we commonly refer to when discussing Gaussian noise.
Laplacian Noise. The Laplace distribution shares similarities with the Gaussian
distribution, but it is characterized by a sharper peak and heavier tails. It is
commonly used to model the difference between two independent, identically



P2P-Bridge: Supplementary Materials 9

distributed exponential random variables. We formulate Laplacian noise with
zero mean and scale b for each noise component ni with i ∈ [x, y, z] using

p(ni) =
1

2b
exp(−

∣ni∣

b
) . (2)

Discrete Noise. The nature of discrete noise lies in its representation of uncer-
tainty or variability in a digital format, where the values it can take are distinct
or quantized. Unlike continuous noise, which can assume any value within a
given range, discrete noise is characterized by specific, separate values. Following
ScoreDenoise, we use a discrete noise model

p(n; s) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0.1 if n = (±s,0,0) or (0,±s,0) or (0,0,±s),
0.4 if n = (0,0,0),
0 otherwise,

(3)

where s is controlling the amplitude of the noise.

Quantitative Results. Although all methods are trained on Gaussian noise
removal, we also evaluate our method against Bilateral, ScoreDenoise, MAG, and
PD-Flow on discrete and Laplacian noise. This shows how methods can generalize
to not only different data but also different noise characteristics. The resulting
metrics are listed in Tab. 8. Our method shows significantly better denoising
performance than previous works, especially in the higher noise regimes.
Qualitative Results. Figure 5 shows the qualitative results on artificially
corrupted objects using 3% noise strength of Gaussian, Laplace and discrete type.



10 M. Vogel et al.

Table 8: Object-Level Scores on Laplacian and Discrete Noise. We show the
Chamfer distance (CD) and Point-2-Mesh distance (P2M) on the PU-Net (top) and
PC-Net (bottom) datasets using discrete and Laplacian noise. Scores are multiplied by
104.

Num. of Points 10 ⋅ 103 (sparse) 50 ⋅ 103 (dense)

Noise Amount 1% 2% 3% 1% 2% 3%

Method CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

P
U

-N
et

[1
5]

D
is

cr
et

e
L
ap

la
ci

an

Bilateral [2] 12.80 8.83 38.50 31.97 68.87 59.55 8.90 7.51 39.00 35.67 82.03 75.84
ScoreDenoise [6] 6.68 3.51 32.96 27.29 94.23 84.06 3.17 2.16 24.00 21.44 95.75 88.10
MAG [18] 6.69 3.52 32.97 27.30 94.34 84.16 3.18 2.16 24.02 21.46 95.90 88.24
PD-Flow [8] 6.76 3.90 39.86 33.92 102.35 91.40 6.18 5.06 54.05 49.59 168.13 154.85
I-PFN [13] 5.16 2.14 23.85 18.37 60.04 51.76 2.33 1.35 23.27 20.40 66.67 61.01
P2P-Bridge (Ours) 4.22 1.63 7.80 4.69 16.20 12.04 1.82 1.05 14.55 12.04 59.54 52.24

Bilateral [2] 2.60 0.76 5.62 3.05 11.76 8.74 0.99 0.44 2.84 2.13 8.68 7.79
ScoreDenoise [6] 2.43 0.50 4.07 1.63 7.90 4.87 0.73 0.20 2.90 2.13 9.80 8.78
MAG [18] 2.44 0.51 4.07 1.63 7.90 4.87 0.74 0.21 2.90 2.14 9.81 8.79
PD-Flow [8] 2.67 0.88 16.27 12.94 36.34 30.07 1.94 1.27 12.20 10.99 52.35 49.10
I-PFN [13] 1.90 0.23 3.00 1.00 5.31 2.89 0.47 0.06 1.47 0.91 5.87 5.07
P2P-Bridge (Ours) 2.14 0.40 2.89 0.92 4.23 1.94 0.53 0.12 1.30 0.71 4.05 3.29

P
C

-N
et

[1
0]

D
is

cr
et

e
L
ap

la
ci

an

Bilateral [2] 15.38 10.47 35.85 28.04 61.46 49.92 21.40 19.72 91.13 90.06 272.65 280.39
ScoreDenoise [6] 7.32 2.28 26.92 13.58 76.60 42.59 2.83 0.96 17.97 9.78 70.47 39.71
MAG [18] 7.33 2.28 26.94 13.60 76.76 42.68 2.84 0.97 17.99 9.80 70.53 39.74
PD-Flow [8] 7.05 2.04 32.79 17.26 82.27 46.12 4.87 2.03 40.38 22.58 126.13 70.46
I-PFN [13] 5.75 1.65 20.83 10.12 48.56 26.66 1.96 0.54 16.58 8.79 49.46 28.85
P2P-Bridge (Ours) 5.55 1.38 9.37 3.21 15.67 6.41 2.03 0.58 10.22 4.34 38.79 20.08

Bilateral [2] 4.36 1.00 10.14 7.61 15.22 12.33 0.97 0.20 4.05 2.76 9.61 7.03
ScoreDenoise [6] 3.22 0.85 4.76 1.40 7.57 2.85 0.98 0.20 2.16 0.91 7.72 4.65
MAG [18] 3.23 0.86 4.77 1.40 7.58 2.86 0.99 0.21 2.17 0.92 7.73 4.66
PD-Flow [8] 3.25 0.63 4.59 1.04 7.11 2.25 0.97 0.17 1.96 0.56 6.94 3.42
I-PFN [13] 2.45 0.73 3.45 1.12 4.90 1.93 0.67 0.14 1.15 0.41 3.37 1.66
P2P-Bridge (Ours) 2.70 0.66 3.77 1.00 4.90 1.52 0.79 0.14 1.29 0.33 2.46 0.92

2.6 Qualitative Results on ScanNet++

Fig. 6 shows more results from a closer point of view, highlighting the difference
between the methods. Our method demonstrates better performance in both
coarse and fine structures. However, it still lacks some details present in the
ground truth, such as empty spaces between bars or small objects on surfaces.

2.7 Beyond Local Denoising

We additionally evaluate the effectiveness of our method in performing transfor-
mations that go beyond local denoising, including the mitigation of fitting errors
such as shifts. Figure 7 depicts walls from an outside point of view, revealing
large outlier surfaces. The figure highlights our method’s ability to identify and
remove clusters of outliers.



P2P-Bridge: Supplementary Materials 11

Noisy Clean

3%
G

au
ss

ia
n

3%
L
ap

la
ce

3%
D

is
cr

et
e

Noisy Input ScoreDenoise [6] MAG [18] PD-Flow [8] P2P-Bridge (Ours) Original

Fig. 5: PC-Net Varying Noise Types. Comparison of our method with recent deep
learning-based point cloud denoising methods on an object from the PC-Net dataset.
Varying noise types are applied to a point cloud with a size of 10k points.



12 M. Vogel et al.

Noisy Clean

Noisy Input Bilateral [2] ScoreDenoise [6] PD-Flow [8] P2P-Bridge Ground Truth
(Ours) (Faro)

Fig. 6: ScanNet++ Details. Qualitative comparison on ScanNet++ [14] using noisy
iPhone scans as input.



P2P-Bridge: Supplementary Materials 13

Noisy Clean

Noisy Input Bilateral [2] ScoreDenoise [6] P2P-Bridge Ground Truth
(Ours) (Faro)

Fig. 7: Qualitative comparison between best performing methods on ScanNet++ [14]
using noisy iPhone scans as input that got refined using 3DMatch [16]. This comparison
focuses on the ability to remove outlier clusters, especially surfaces. These mostly occur
alongside large surfaces such as walls, tables, or wardrobes.



14 M. Vogel et al.

References

1. Chen, Y., Hu, V.T., Gavves, E., Mensink, T., Mettes, P., Yang, P., Snoek, C.G.:
PointMixup: Augmentation for Point Clouds. In: European Conference on Computer
Vision (ECCV) (2020) 3

2. Digne, J., de Franchis, C.: The Bilateral Filter for Point Clouds. In: Image Processing
On Line (2017) 10, 12, 13

3. Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: Registra-
tion of 3d point clouds with low overlap. In: International Conference on Computer
Vision and Pattern Recognition (CVPR) (2021) 1

4. Liu, G.H., Vahdat, A., Huang, D.A., Theodorou, E.A., Nie, W., Anandkumar, A.:
I2SB: Image-to-Image Schrödinger Bridge. In: International Conference on Machine
Learning (ICML) (2023) 4

5. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-Voxel CNN for Efficient 3D Deep Learning
(2019) 3, 5

6. Luo, S., Hu, W.: Score-Based Point Cloud Denoising. In: International Conference
on Computer Vision (ICCV) (2021) 8, 10, 11, 12, 13

7. Lyu, Z., Kong, Z., XU, X., Pan, L., Lin, D.: A Conditional Point Diffusion-
Refinement Paradigm for 3D Point Cloud Completion. In: International Conference
on Learning Representations (ICLR) (2022) 6, 7

8. Mao, A., Du, Z., Wen, Y.H., Xuan, J., Liu, Y.J.: PD-Flow: A point cloud denoising
framework with normalizing flows. In: European Conference on Computer Vision
(ECCV) (2022) 8, 10, 11, 12

9. Peyré, G., Cuturi, M.: Computational optimal transport. Foundations and Trends
in Machine Learning (2019) 7

10. Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.:
PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds
(2020) 10

11. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on
Computer Vision and Pattern Recognition (CVPR) (2016) 2

12. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016) 2

13. de Silva Edirimuni, D., Lu, X., Shao, Z., Li, G., Robles-Kelly, A., He, Y.: Iterativepfn:
True iterative point cloud filtering. In: International Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 13530–13539 (2023) 10

14. Yeshwanth, C., Liu, Y.C., Nießner, M., Dai, A.: ScanNet++: A High-Fidelity
Dataset of 3D Indoor Scenes. In: International Conference on Computer Vision
(ICCV) (2023) 12, 13

15. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: PU-Net: Point Cloud Up-
sampling Network. In: International Conference on Computer Vision and Pattern
Recognition (CVPR) (2018) 7, 10

16. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch:
Learning Local Geometric Descriptors from RGB-D Reconstructions. In: CVPR
(2017) 2, 13

17. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
LION: Latent Point Diffusion Models for 3D Shape Generation. In: International
Conference on Neural Information Processing Systems (NeurIPS) (2022) 3

18. Zhao, Y., Zheng, H., Wang, Z., Luo, J., Lam, E.Y.: Point Cloud Denoising via
Momentum Ascent in Gradient Fields (2023) 8, 10, 11



P2P-Bridge: Supplementary Materials 15

19. Zhou, L., Du, Y., Wu, J.: 3D Shape Generation and Completion Through Point-
Voxel Diffusion. In: International Conference on Computer Vision (ICCV) (2021)
6, 7


	P2P-Bridge: Supplementary Materials

