
Supplemental Materials of
Optimizing Illuminant Estimation in

Dual-Exposure HDR Imaging

Mahmoud Afifi , Zhenhua Hu , and Liang Liang

Google
{mafifi, zhenhuahu, annyliang}@google.com

1 Analogy to Chromagenic Color Constancy

In the main paper, we draw an analogy to the chromagenic color constancy
theory [8–10]. Our argument is grounded in the empirical findings from [1, 10],
indicating that even when the chromagenic filter constraints are not satisfied,
color mapping matrices computed to map between the colors of the main camera
and a filtered/second camera still exhibit a certain degree of correlation with the
scene illuminant. Practically speaking, such mapping matrices capture the color
differences (or “distortion”) between the main camera and the filtered/second
camera.

Our analogy is based on the observation that, in a dual-exposure setup,
the long-exposure image, Il, and the short-exposure image, Is, exhibit varying
levels of chromatic differences and distortions based on the scene irradiance
per color channel. We illustrated in the main paper the variations in the red,
green, blue ratios between long and short exposure images and showed that
chromatic histograms exhibit differences in similarity between the two images.
We also demonstrated that these differences can vary based on the scene lighting
condition.

In Fig. 1, we present a similar study conducted on the two-camera dataset [1],
which includes two cameras from a Samsung smartphone device. Comparing Fig.
1 with the corresponding figure (Fig. 2) in the main paper, we observe that both
cases share a similar level of differences based on the lighting condition, albeit
with less extent in the case of dual-exposure imaging. Thus, we draw our analogy
by employing a 3×3 color matrix that maps the rgb-chromaticity of Il and Is
along with the covariance matrix of the ratio between each color channel in Is
and Il to build our dual-exposure feature (DEF).

It is important to note that analogizing Is and Il to images with and without
a color filter does not imply their identity. While both the chromagenic color con-
stancy theory and our method rely on color differences between paired images
of the same scene, the use of two different camera response functions in chroma-
genic color constancy introduces a high level of color differences. In contrast, the
dual-exposure case exhibits a lower level of color differences but remains valuable
for our task. The disparities between Is and Il in dual-exposure scenarios arise
from multiple factors, including varying photon counts captured by the camera
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(A) Image captured under indoor lighting (B) Image captured under daylight lighting
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Hist similarity: 0.582±	0.063

Red STD: 0.0518±0.027

Green STD: 0.0418±0.015

Blue STD: 0.0548±0.029

Hist similarity: 0.506±0.088

Red STD: 0.0553±0.029

Green STD: 0.0590± 0.033

Blue STD: 0.0518±0.028

(C) Clustered images under indoor lighting (D) Clustered images under daylight lighting

Fig. 1: In the main paper, we drew an analogy to chromagenic color constancy, demon-
strating that both cases (i.e., two cameras and dual exposure capturing) result in varia-
tions per color channel, and these differences are linked to scene irradiance and camera
response function. Here, we present images captured by two cameras from [1]. It can
be observed that similar variations to the corresponding figure in the main paper in
each channel occur due to the camera response function per channel. Moreover, spatial
variations are noticeable based on scene irradiance and camera response function. (A)
and (B) show scenes captured under indoor and outdoor lighting, respectively. In (C)
and (D), we present the average rg-chromaticity histogram and aggregated red, green,
and blue pixel values from 25 images sharing similar lighting conditions in (A) and
(B), respectively.

and the non-linear nature of the camera response function (where each color
channel is formulated by a different non-linear response function). As a result,
these differences lead to variations in chromaticity, noise levels, and saturation
between Is and Il. Collectively, these factors provide valuable clues derived from
the correlation between dual-exposure images, Is and Il, aiding in the accurate
estimation of the illuminant in a scene.

2 Additional Details

2.1 Mapping matrices

Our DEF employs a 3×3 matrix that maps between the rgb-chromaticity values
of images Is and Il. In the main paper, we presented ablation studies that uti-
lized different mapping matrices between the chromaticity values of Is and Il.
Specifically, we evaluated using the geometric affine transformation instead of the
linear mapping matrix. Here, we use Iνs and Iνl to refer to the rgb-chromaticity
of the long and short-exposure images. The affine transformation matrix, de-
noted as M , between Iνs and Iνl , after appending an additional constant 1 to the
rgb-chroma triples, can be computed as follows:
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M =

[
αRaff. Taff.
0 1

]
(1)

Taff. = centroid(Iνs )− 2 centroid(Iνl ) (2)

α =
∥∥∥Iν′

l

∥∥∥ / ∥∥∥Iν′

s

∥∥∥ , (3)

Raff. = UV T , (4)

where Iν
′

s and Iν
′

l refer to centered values of Iνs and Iνl obtained by subtracting
the centroids of Iνs and Iνl , respectively. 0 ∈ R3 is a zero vector, U and V are
3 × 3 matrices, and S is a 3×3 diagonal matrix. U , S, and V can be obtained
via singular value decomposition of the matrix multiplication of Iν

′

s and Iν
′

l

T
.

Since the last row of M is fixed, we excluded it from the color matrix, Cc used
in our DEF.

We also explored the use of a 3×3 homography matrix as an alternative to the
3×3 linear mapping matrix discussed in the main design of our method. Homog-
raphy mapping has demonstrated its utility in various color applications [6, 7].
The homography matrix is computed to map between [r, g, 1]T rg-chromaticity
values of long and short-exposure images. Based on our results, the linear trans-
formation outperforms both geometric transformation and homography map-
ping.

2.2 Exposure-Based Convolutional Color Constancy

In the main paper, we discussed a modification to the existing convolutional color
constancy (CCC) framework by incorporating our DEF. The DEF is processed
by a lightweight multilayer perceptron (MLP) that produces weighting factors
to linearly interpolate between a set of learnable biases, generating DEF-based
biases for use in the CCC. We referred to this modified version of CCC as
exposured-based CCC, or ECCC for short. In our experiments we used a 64×64
histogram (also we presented an ablation study on using ECCC with 32×32
histograms) for ECCC and other CCC methods [2, 4]. The histogram, H, is
computed as described in the following equation:

H(u, v) =

k∑
t=1

∥∥∥I(t)∥∥∥ [|ut − u| ≤ ε ∧ |vt − v| ≤ ε] , (5)

where k refers to the total number of pixels in the image, ε = (bmax − bmin)/h,
with bmax = 2.85 and bmin = −2.85 as the histogram boundary values. In ECCC,
in contrast to FFCC [4] and C5 [2], only colors from long-exposure and short-
exposure images (Il and Is) are used to create histograms, excluding edge color
histograms for simplicity. Specifically, we utilized two histograms, Hl and Hs,
which represent the uv chroma values of Il and Is, respectively, and thus, two
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Fig. 2: This figure shows the generated bias map alongside the learned filters of the
ECCC. In (A), we show a pair of input raw images captured with long and short
exposure times, along with the ground-truth illuminant color. In (B), we show the
histogram of image taken with long exposure (noting that our design employs the
histograms of both short and long exposure images), the learned global filters Fj (j ∈
l, s), the probability map P , and the estimated illuminant color based on P . In (C),
the generated bias is shown. (D) demonstrates the ECCC learned bias filters that are
linearly interpolated based on the produced weights of the MLP using the input DEF
associated with each pair of images.

convolutional filters, Fl and Fs, were learned in ECCC. Similar to FFCC and
C5, FFTs are employed when convolving Fl and Fs over Hl and Hs, respectively.

To train ECCC, we used additional smoothness loss terms to encourage
smoothness in the learned filters and biases. These smoothness terms can be
described as follows:

SB (B) = λB

(∥∥B′
up ∗ δu

∥∥2 + ∥∥B′
up ∗ δv

∥∥2) , (6)

SF ({Fj}) = λF

∑
j

(
∥↑ (Fj) ∗ δu∥2 + ∥↑ (Fj) ∗ δv∥2

)
, (7)

where δu and δv are 3×3 horizontal and vertical Sobel filters, respectively, and
λB = 0.01 and λF = 0.02 are hyperparameters to control the strength of smooth-
ness loss terms.

Figure 2 shows two examples of generated biases alongside the learned n
biases (with n = 20). The figure also displays the learned convolutional filters
for both histograms of images captured with long and short exposures (Il and
Is). The convolutional filters (Fl and Fs) remain fixed in the model, while the
bias dynamically changes based on the input DEF.

2.3 Dataset

As discussed in the main paper, we collected a dataset of multi-exposure raw im-
ages with ground-truth illuminant colors for training and evaluating our method.
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(A) NUS dataset (B) Cube+ dataset (C) Samsung dataset (D) Our dataset

Fig. 3: Ground truth illuminant colors of the dataset used in our paper and other
datasets. (A) NUS dataset [5]. (B) Cube+ dataset [3]. (C) Samsung dataset [1]. (D)
Our dataset. For the NUS and Samsung datasets, we display the ground truth from a
single camera: Canon EOS-1Ds for NUS and the main camera for Samsung.

(A) w/ gray chart (B) Auto (C) Short /8 (D) Short /4 (E) Short /2 (F) Long ×2 (G) Long ×4 (H) Long ×8

Fig. 4: Additional examples from the dataset used in this work. For each scene, we
captured the scene with a gray calibration object placed in the scene to obtain the
ground-truth illuminant (A) and captured the scene using different exposure settings
without the gray object (B-H). The terms ‘short /e’ (C-E) and ‘long ×e’ (F-H) refer
to multiplying and dividing auto exposure time by a factor e, respectively. The first
image in (A) is displayed in sRGB, while the rest are shown in raw RGB space.

Figure 3 illustrates the distribution of R/G and B/G values for the ground-truth
illuminant colors in the collected dataset. We also present illuminant distribu-
tions from other datasets (NUS [5], Cube+ [3], and Samsung [1]). Our dataset ex-
hibits reasonable diversity, sometimes better, as observed when comparing with
the Samsung dataset [1]. Notably, our dataset does not lack examples for certain
regions in the Planckian-like curve, unlike the NUS and Cube+ datasets [3, 5].
Additional example images from our dataset are shown in Fig. 4.
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