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Abstract. High dynamic range (HDR) imaging involves capturing a se-
ries of frames of the same scene, each with different exposure settings, to
broaden the dynamic range of light. This can be achieved through burst
capturing or using staggered HDR sensors that capture long and short
exposures simultaneously in the camera image signal processor (ISP).
Within camera ISP pipeline, illuminant estimation is a crucial step aim-
ing to estimate the color of the global illuminant in the scene. This
estimation is used in camera ISP white-balance module to remove unde-
sirable color cast in the final image. Despite the multiple frames captured
in the HDR pipeline, conventional illuminant estimation methods often
rely only on a single frame of the scene. In this paper, we explore lever-
aging information from frames captured with different exposure times.
Specifically, we introduce a simple feature extracted from dual-exposure
images to guide illuminant estimators, referred to as the dual-exposure
feature (DEF). To validate the efficiency of DEF, we employed two illu-
minant estimators using the proposed DEF: 1) a multilayer perceptron
network (MLP), referred to as exposure-based MLP (EMLP), and 2) a
modified version of the convolutional color constancy (CCC) to integrate
our DEF, that we call ECCC. Both EMLP and ECCC achieve promising
results, in some cases surpassing prior methods that require hundreds of
thousands or millions of parameters, with only a few hundred parameters
for EMLP and a few thousand parameters for ECCC.

Keywords: Computational color constancy · Illuminant estimation ·
HDR imaging

1 Introduction and Related Work

Camera image signal processor (ISP) comprises several modules, each dedicated
to enhancing specific aspects of the quality of captured raw images by the cam-
era sensor [16]. One key component among these modules is the white-balance
module, which aims to eliminate undesirable color casts introduced by the com-
bination of scene lighting and camera sensitivity. To achieve this, the auto white-
balance module runs an illuminant estimator onboard the camera ISP to estimate
the RGB color of the illuminant, under the assumption that a single global illu-
minant illuminates the scene for simplicity [30, 44]. Image white balancing can
thus be described as follows:
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Fig. 1: Conventional illuminant estimators often rely on a single frame for illuminant
color estimation. Although the HDR camera pipeline includes at least two frames of
the same scene, conventional methods usually consider only a single frame (either with
auto exposure, shown in the dashed green line, merged frame, or one frame of the burst
capture) [12,16,44,62]. This paper proposes leveraging information from dual-exposure
capturing in multi-exposure HDR imaging to enhance illuminant estimation in camera
pipelines. Our method uses frames captured at long and short exposures, available in
multi-exposure bursts [28] or staggered HDR sensors [52, 58]. Achieving comparable
or superior results, our method employs lightweight models (∼300–6000 parameters)
compared to those using hundreds of thousands or millions of parameters. In this figure
and the following figures, all raw images have the gamma operator applied to aid
visualization, and all sRGB images are rendered using the HDR+ camera pipeline [44].

IWB = diag

(
[
ℓ̂G

ℓ̂R
, 1,

ℓ̂G

ℓ̂B
]T

)
I, (1)

[ℓ̂R, ℓ̂G, ℓ̂B ]
T = f(I), (2)

where I and IWB are 3 × k RGB colors of raw image and white-balanced raw
image, respectively, with k refers to the total number of pixels in the image,
diag(.) creates a 3×3 diagonal matrix from a given vector, ℓ̂ ∈ R3 refers to
the estimated illuminant color vector, T refers to vector transpose, and f is an
illuminant estimator function.

Modern camera ISPs capture several frames of each scene with different ex-
posure times to enhance final image dynamic range [28,38]. This can be achieved
through burst capturing, involving rapid capture with varying exposure times in
quick succession, or by using staggered high dynamic range (sHDR) sensors that
simultaneously capture long and short exposures [52, 58]. The captured images
are then combined, incorporating multiple exposures of the same scene at dif-
ferent levels, resulting in a greater dynamic range than what would be possible
with a single image [43,49,51,55]. This HDR imaging camera pipeline, therefore,
includes more than a single frame of the captured scene, and internal camera
ISP modules, such as the auto white-balance module, can access these additional
frames. While such additional frames may have beneficial information to help il-
luminant estimators, conventional illuminant estimation methods often rely on a
single frame (e.g., [9,36,41,47,54,63,64]) in both traditional single-frame camera
pipelines [39] and multi-frame HDR ISPs [44].
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Such single-frame illuminant estimators can be categorized into: 1) statistical
methods that rely on statistics computed from input raw image information (e.g.,
colors, edges) [13,14,25,31,50,56,57] and 2) learning-based methods that learn,
from a set of training images labeled with ground-truth illuminant colors, to map
from input raw color information to the corresponding illuminant color [6,8,10,
11, 24, 36, 42, 45, 47, 48, 54, 63, 64]. While the latter category typically achieves
better results than the statistical methods, most learning-based methods are
camera-dependent, meaning that they require domain adaptation or fine-tuning
when deployed on new cameras to achieve similar accuracy on cameras used for
training due to the influence of the camera response function on both raw image
colors and ground-truth colors [3–5,35,53,59].

A limited number of attempts have proposed learning-based methods that
go beyond the single-frame input scheme. For example, the cross-camera convo-
lutional color constancy (C5) [4] suggests utilizing additional unlabeled images
captured by the testing camera, in addition to the primary single-frame image of
the scene being captured to improve the generalization for cameras that were not
included in the training phase. Xing et al. [60] proposed the use of a depth map,
captured by a time-of-flight (ToF) sensor, along with the primary raw image to
predict illuminant color in the scene by leveraging the geometry information ob-
tained from depth map. Abdelhamed et al., [2] proposed leveraging the presence
of two cameras in most modern mobile phone devices. Assuming dual streaming
from both cameras, they derived a feature within the framework of chromagenic
color constancy theory [21–23] to enhance the accuracy of illuminant estimation,
yielding promising results.

Our method, in contrast to the majority of prior work, adopts the strategy
of benefiting from multiple frames available in the camera ISP (similar to [2]).
However, unlike [2, 60], which requires streaming from dual cameras and may
lead to impractical high power consumption, our method relies on two frames
captured of the same scene under different exposure settings, already present
in the HDR imaging pipeline, to estimate the illuminant color of the captured
scene (see Fig. 1). Specifically, we utilize: 1) a frame captured with short exposure
time, that we refer to as short-exposure image (Is), and 2) another frame of the
same scene captured with long exposure time, that we refer to as long-exposure
image (Il). Having dual-exposure images in the HDR imaging pipeline is feasible,
making our method practical for most HDR imaging pipelines. Accordingly, Eq.
2 can be modified to include our dual-exposure input images as follows:

[ℓ̂R, ℓ̂G, ℓ̂B ]
T = f(Il, Is). (3)

Our objective in this work is to design the function f in a manner that
enables the effective utilization of the additional information provided by the
dual-exposure images, Il and Is.

Contribution In this paper, we present a feature inspired by the chromagenic
color constancy theory [21–23], termed the dual-exposure feature (DEF), that
is derived from images captured with both short exposure time (Is) and long



4 M. Afifi et al.

exposure time (Il). DEF leverages the variations in chromatic information be-
tween these dual-exposure images, providing valuable guidance for illuminant
estimator methods. To assess its effectiveness, we trained a lightweight multi-
layer perceptron network (MLP) for illuminant estimation that utilizes solely our
DEF as input, departing from the conventional approach of using actual RGB
values of the captured scene colors. Additionally, we explored the integration
of DEF into an established color constancy framework, specifically the convo-
lutional color constancy (CCC) [4, 8, 9, 37], which we refer to as exposure-based
CCC (ECCC). The experimental results on a multi-exposure dataset, collected
to evaluate our work empirically, show that these models – namely, EMLP and
ECCC – achieve promising results with a reasonable number of parameters – 354
learnable parameters for EMLP and 6,156 learnable parameters for ECCC. This
outperformance across diverse evaluation metrics is observed when comparing to
prior methods that require significantly higher number of parameters, ranging
from tens to hundreds of thousands, or even millions.

2 Illuminant-Linked Dual Exposure Feature

To develop an efficient illuminant estimator that benefits from both Il and Is,
we introduce a compact feature that aims to capture the correlation between
these dual-exposure images. Our feature is inspired by the chromagenic color
constancy theory [21–23]. Specifically, we explore the analogy between long and
short exposure images, Il and Is, and aligned images captured by two cam-
eras [2] under the chromagenic color constancy theory, leading us to develop our
dual-exposure feature (DEF). To begin, we review the chromagenic color con-
stancy theory under the Lambertian reflectance model with a single illuminant
assumption. The captured raw image I can mathematically be described by:

I(y)ρ =

∫
γ

Sρ(x)D(x)R(y, x) dx+ z, (4)

where S (·), D (·), and R (·) represent the camera response function (typically
represented by camera sensitivity, infrared cut-off filter, and spectral lens trans-
mission), the spectral power distribution of light, and scene reflectance, respec-
tively. Here, x refers to a wavelength within the visible range γ, y refers to the
pixel location in image I, ρ ∈ {R,G,B} refers to the color channel, and z de-
notes the undesired noise, typically represented by signal-dependent and additive
components [1]. According to the chromagenic color constancy theory [22], if we
capture two images of the same scene with a specially chosen chromagenic filter,
Q, applied between image captures, the linear color matrix that maps between
those captured images is unique to the illuminant color present in this scene.
That is, given an image, I, that is captured by the main camera, and a filtered
image, If , that can be described as:

I
(y)
fρ

=

∫
γ

Sρ(x)Qρ(x)D(x)R(y, x) dx+ z, (5)
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the 3×3 color matrix Cc that maps between the colors of I and If is indicative
of the scene illuminant. This color matrix can be computed by minimizing the
following equation:

argmin
Cc

∥CcIf − I∥F , (6)

where ∥·∥F is the Frobenius norm. The closed-form solution for Eq. 6 can be
obtained using the pseudoinverse (i.e., Cc = II†f ). While theoretically validated,
the chromagenic filter conditions required to obtain a unique mapping matrix
per illuminant are challenging to meet in practice. Empirically, Finlayson et
al., [23] found that most filters exhibit a reasonable level of correlation between
the computed matrix and the illuminant color, excluding neutral filters, which
consistently result in a scaling relationship between the unfiltered image, I, and
the filtered image, If . Relaxing the conditions to include normal colored filter,
Abdelhamed et al., [2] proposed using two cameras, with the second camera
serving as the main camera after applying a colored filter—i.e., S(·)Q(·). Sur-
prisingly, even when chromagenic filter conditions are not met, using a normal
colored filter [23] or another camera with a different response function [2] still
shows a correlation between the computed matrix Cc and the illuminant color
to some extent, achieving promising results.

We argue that this correlation arises due to the variations, or what can be
considered a form of “distortion”, in the colors captured by the second (filtered)
camera when compared to the original colors captured by the main camera.
This color distortion varies based on the interplay between the scene irradiance,
D(·)R(·), and the camera response functions – namely, the main camera’s S(·)
and the filtered/second camera’s S(·)Q(·) in Eqs. 4 and 5. In the context of ma-
chine learning (ML) models, the camera response functions remain fixed across
the entire dataset. Consequently, ML models, such as the one proposed in [2],
learn the correlation between the ground-truth illuminant color and the scene ir-
radiance through the matrix Cc that represents the level of “distortion” between
the colors of captured scene images.

In a dual-exposure setup, we have a long-exposure image, Il, and a short-
exposure image, Is, both capturing the same scene. The extent of color distortion
in each image varies based on the scene irradiance; for instance, Is may exhibit a
higher level of color distortion and noise than Il under suboptimal lighting condi-
tions (e.g., indoor light), while Il may have a higher level of color distortion and
over-saturated colors than Is in well-lit scenes (e.g., outdoor light). This differ-
ence in color distortion arises because the non-linear camera response function
receives a different number of photons to form each image colors based on the
exposure time and scene irradiance [32]. As a result, Il and Is can exhibit color
variations that differ across individual color channels [15], that are somewhat
akin to those caused by a color filter (though to a lesser extent). Even within
the same color channel, different levels of color differences between Il and Is
can be observed spatially due to the interaction between the non-linear camera
response function of that channel and the spatially varying scene irradiance (see



6 M. Afifi et al.

(A) Image captured under indoor lighting (B) Image captured under daylight lighting
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(C) Clustered images under indoor lighting (D) Clustered images under daylight lighting
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Fig. 2: Cameras perceive different amount of photons when capturing the same scene
with different exposure times. Images taken with both long and short exposure times
exhibit variations in each channel due to the camera response function and scene irra-
diance. Additionally, spatial variations, in each color channel, can be observed based
on object reflectance, as the interplay of lighting, object reflectance, and the camera
response function leads to different outcomes. (A) and (B) show raw images of scenes
captured under indoor and outdoor lighting, respectively. In (C) and (D), we present
the average rg-chromaticity histogram and aggregated red, green, and blue pixel values
from 25 images sharing similar lighting conditions in (A) and (B), respectively.

Fig. 2). In Fig. 2, we show two examples of dual-exposure images captured under
different lighting conditions. As can be seen, the differences between the colors in
Il and Is under each lighting condition exhibit variations, which are observable
in the histogram similarity (here we use the Bhattacharyya distance similarity
metric) and variations of the ratios in each color channel between Il and Is.
That is, the correlation between Il and Is is not always a proportional scaling,
as in the case of a neutral filter. We observed similar patterns as shown in Fig.
2 when studying examples from the two-camera dataset in [2] (see supplemental
materials).

Based on this discussion, we propose to compute the color matrix Cc to map
between the rgb-chromaticity values (i.e., [R/κ,G/κ,B/κ]T , with κ = R+G+B)
of Is and Il. The reason for not using the RGB triples, similar to chromagenic
color constancy, is that we aim to reduce the influence of intensity differences
between Il and Is when computing Cc. In addition, we compute the covariance
matrix, Cv, of the ratio image X ∈ R3×k, where X

(y)
ρ = I

(y)
sρ /

(
I
(y)
lρ

+ ϵ
)
, and ϵ

is a small number added for numerical stability. Computing Cv is performed as
described in Eq. 7 to measure the variance in each color channel between Is and
Il and the joint variability across channels.

Cv(X) = E
[
(X − E[X])(X − E[X])T

]
, (7)

where E (·) is the expected value (mean) of the matrix. Both Cc and Cv form our
dual-exposure feature (DEF) that represents the differences in color distortion
in Il and Is. Our DEF is represented as a vector ∈ R15, where we exclude
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Fig. 3: We present an illuminant-related dual-exposure feature (DEF), derived from
a pair of images captured with short and long exposures. Using DEF, we deploy a
simple multilayer perceptron network (MLP) with only 354 parameters, referred to
as exposure-based MLP or EMLP, for illuminant estimation, as shown in (A). We
further explore the integration of DEF into the CCC framework, as shown in (B),
by dynamically generating bias map based on DEF. We denote this modified CCC
framework as exposure-based CCC or ECCC.

the redundant values in Cv over the symmetric positions. To evaluate DEF’s
effectiveness as a clue for scene illuminant colors, we employed a lightweight MLP
for scene illuminant estimation (Fig. 3-A), that we call exposure-based MLP
(EMLP). EMLP relies solely on our DEF as input. It comprises an input fully
connected (fc) layer with 9 output neurons, followed by leaky ReLU (LReLU)
[61], two hidden fc layers, each with 9 output neurons with LReLU in between,
and an output fc layer with three neurons. EMLP achieves results comparable to
complex models with thousands or millions of parameters (refer to Tables 1 and
2), while maintaining a lightweight design with just a few hundred parameters.
Consequently, DEF is empirically shown as a valuable feature providing strong
insights into the illuminant scene color.

3 Integration with Convolutional Color Constancy

In this section, we incorporate the proposed DEF into one of the most established
frameworks for illuminant estimation. Specifically, we introduce modifications
to the convolutional color constancy (CCC) framework [4, 8, 9, 37] to leverage
the benefits of the DEF, which we refer to as exposure-based CCC or ECCC
for short. It is important to note that ECCC does not introduce a new CCC
method; instead, it serves as an illustration of how the DEF can be seamlessly
integrated into existing, well-established illuminant estimation frameworks.

Let’s begin with a brief description of the CCC [8, 9]. Given a single raw
image, the CCC operates by learning one or more convolutional 2D filters, de-
noted as {Fj}, which convolve over the 2D histogram(s), {Hj}, of the image
colors in the uv color space (i.e., the log of G/R and G/B chroma values of
pixel colors) [8,20]. This convolutional operation can be accelerated by FFTs as
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proposed in [9]. Afterwards, a 2D bias map, B, is added, followed by a softmax
operation, σ, to compute the “probability” map, P , of the illuminant bin in the
uv 2D histogram space. This simplified version of the CCC can be described as
follows:

P = σ

∑
j

(Fj ∗Hj) +B

 . (8)

In CCC [8,9], the filters and bias are learned across the entire training dataset.
This means it consists of a single bias and one or more filters (the number de-
pends on the histograms used, either a single histogram for image colors or two
histograms, including the edge color histogram). Later, C5 [4] proposes a hy-
pernetwork that dynamically generates filters and bias based on the input raw
image and additional images taken from the same camera, aiming to improve
the generalization of CCC across cameras. While cross-camera color constancy is
out of the scope of this paper, we propose to use our DEF to dynamically “gen-
erate” a bias map based on the input image. That is, we learn a bank of biases,
{Bi}, where i ∈ {1, ..., n}, such that we linearly interpolate between them based
on blending weights emitted from an MLP network that processes our DEF. In
this way, the DEF controls the bias of the CCC model, acting as “candidate”
illuminant priors within the uv space for the input image (see Fig. 3-B). To im-
plement this, we need to have multiple bias maps, which definitely will lead to an
impractical increase in model size. Thus, we propose to use a downsampled size
(1/4 of histogram size) for the learnable biases, {Bi}. Furthermore, we propose
to feed two histograms (i.e., j ∈ {l, s}) of both Il and Is, denoted as Hl and Hs,
respectively, into the model. This leads to the learning of two downsampled fil-
ters, {Fj}, corresponding to the histograms of the long-exposure image (Il) and
the short-exposure image (Is). Learning small-sized filters and biases has the
following benefits. First, we can learn many biases within an affordable model
size (e.g., n = 20 requires ∼6K parameters, while FFCC [9] with a single bias
requires ∼12K parameters). Second, it implicitly produces smooth filters and
biases, which are desirable to avoid overfitting [4,9]. With this modification, Eq.
8 can be rewritten as follows:

P = σ

∑
j

(↑ (Fj) ∗Hj) +B′
up

 , (9)

B′
up =↑ (

n∑
i=1

wiBi). (10)

where ↑ (·) refers to upscaling through bilinear interpolation, [w1, ..., wn]
T is a

weighting vector produced by a lightweight MLP (similar to EMLP, but with
n output neurons) that processes our DEF. After computing P , the estiamted
illuminant can be obtained by:
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(A) w/ gray chart (B) Auto (C) Short /8 (D) Short /4 (E) Short /2 (F) Long ×2 (G) Long ×4 (H) Long ×8

Fig. 4: Examples from the dataset used in this work. For each scene, we captured the
scene with a gray calibration object placed in the scene to obtain the ground-truth
illuminant (A) and captured the scene using different exposure settings without the
gray object (B-H). The terms ‘short /e’ (C-E) and ‘long ×e’ (F-H) refer to multiplying
and dividing auto exposure time by a factor e, respectively. The first image in (A) is
displayed in sRGB, while the rest are shown in raw RGB space.

ℓ̂u =
∑
u,v

uP (u, v), ℓ̂v =
∑
u,v

vP (u, v), (11)

ℓ̂ =
[
exp

(
−ℓ̂u

)
/q, 1/q, exp

(
−ℓ̂v

)
/q
]T

, (12)

q =

√
exp

(
−ℓ̂u

)2
+ exp

(
−ℓ̂v

)2
+ 1. (13)

4 Experiments

4.1 Data

To the best of our knowledge, the existing HDR multi-exposure datasets (e.g.,
[17, 33]) do not provide ground-truth illuminant colors for training and evalua-
tion of our method. Thus, we compiled a dataset of scenes captured with both
auto exposure and various multiple-exposure settings for each scene using Pixel
7 Pro camera (see Fig. 4). Images captured with auto exposure are used for
training (in the case of learning-based methods) and evaluating other methods,
while those captured with multiple exposure settings are employed for validating
our method. Our set comprises 558 scenes, each captured using auto exposure
and six additional exposure settings: ×2, ×4, ×8, 1/2, 1/4, and 1/8, indicating
adjustments to the original exposure time. Specifically, ×2 signifies doubling the
original exposure time, ×4 and ×8 denote quadrupling and octupling, respec-
tively, while 1/2, 1/4, and 1/8 represent dividing the original exposure time by
2, 4, and 8, respectively. These adjustments are dynamically computed as ratios
from the initial auto exposure, following the common practice in multi-exposure
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HDR imaging on smartphone cameras [28, 38]. The camera was fixed on a tri-
pod to minimize potential misalignment between images captured by different
exposure settings. In total, we captured 3,906 raw images (558×7 captures of
each scene). The dataset is organized as follows: 83 and 86 scenes were randomly
selected for validation and testing, respectively, with the remaining 387 scenes
were used for training. Additionally, each scene was captured with a gray cali-
bration object to obtain the ground-truth illuminant. The images with the gray
calibration object are not included in any of the training, validation, nor testing
sets.

During training, we optionally augment training data using chromatic adap-
tation. Specifically, we employ clustering on the training data using our DEF as
query feature. We use K-means [34] with L2 to create 80 clusters. Subsequently,
we augment the training data by generating three additional images for each
sample. For each augmented image, we randomly select an illuminant color from
the cluster to which the original image belongs. We then apply Von Kries trans-
form [18] to remove the original illuminant from the image, using the actual
ground truth, and apply the newly selected illuminant color to the image using
the diagonal scaling operator. This new illuminant serves as the ground truth for
the augmented image. As our method is designed to handle two images, namely
Is and Il, we use, without loss of generality, a single exposure factor, e, for both
images, such that Is was captured with 1/e of the auto-exposure time, while
Il was captured with ×e of the auto-exposure time, for simplicity. In Sec. 4.3,
we present an ablation study on the impact of different values of e on our final
results.

4.2 Training

We trained EMLP and ECCC using the Adam optimizer [40] with a mini-batch
size set to 32 for 1000 and 200 epochs, respectively. For EMLP, the learning rate
was 10−3, while ECCC was trained with an incremental mini-batch size (similar
to [4]) with a learning rate of 5×10−3 with a cosine annealing schedule [46], and
the weight decay (i.e., L2 regularization penalty) was set to 10−5. For ECCC,
the filter weights were initialized to zeros, and the biases were initialized to n
2D histograms of training ground-truth illuminant colors after clustering into
n clusters using our DEF as a query feature with K-means. The n histograms
of training ground-truth illuminants were first processed by morphological di-
lation using a 3×3 diamond-shaped structuring element before being used as
initial values for our learnable biases. This initialization improves the results,
as it assists in establishing reasonable “candidate” illuminant priors linked to
the corresponding DEFs (see Sec. 4.3 for an ablation study). Both models were
trained using the angular error, L (·), between the predicted illuminant color ℓ̂
and the ground-truth illuminant ℓ, as described in the following equation [19]:

L(ℓ, ℓ̂) = cos−1

 ℓ · ℓ̂

∥ℓ∥
∥∥∥ℓ̂∥∥∥

 , (14)
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where ∥·∥ denotes the Euclidean norm, and (·) represents the vector dot product.
For ECCC, we further added two smoothness loss terms to encourage smoothness
in the learned filters and biases, similar to [4]. See supplemental materials for
more details.

4.3 Results

We conducted a comprehensive comparison of our proposed methods against var-
ious existing techniques, which include: training-free statistical methods [13,14,
25,50], camera-independent learning-based methods [4,5], and camera-dependent
learning-based methods [6, 9, 29, 41, 42, 54, 63, 64]. For the camera-dependent
learning-based methods, we trained each model on our data using the provided
code and recommended parameters by the respective authors. Meanwhile, for
sensor-independent learning methods, we utilized the provided pre-trained mod-
els on other datasets (e.g., [7, 14,27]).

For the sake of conducting realistic experiments, we assessed all methods,
including ours, on 384×256 images—a suitable size for evaluating illuminant
estimation methods designed for embedded hardware devices; such devices may
utilize even smaller image sizes in white-balance modules [9]. For CCC methods
[4,9], including the ECCC, 64×64 histograms were used. The ECCC incorporates
the proposed DEF into the CCC by generating an interpolated bias map based
on the DEF. This can be seen as a spatial case analogous to C5 [4], where C5
utilizes a neural network to emit bias and convolution filters based on additional
images taken by the same camera to enhance generalization across cameras. To
validate our modification against C5, we trained different versions of C5 not
aimed at improving cross-camera generalization (as our method also focuses on
a single camera). We refer to these modified versions as follows:

– C5 (model A): We use the histogram of the averaged short and long expo-
sure images without additional images. That is, the C5 network uses a single
histogram to generate CCC model parameters.

– C5 (model B): We use histograms of both images taken by long and short
exposures as input to the C5 network to generate CCC model parameters.
The CCC mode is then applied to the histogram of the averaged long-short
images.

– C5 (models C and D): Both Model C and Model D use histograms of
both images taken by long and short exposures to feed the C5 network and
generate CCC model that is then applied to histogram of short exposure
image (model C) and long exposure image (model D).

The results are given in Tables 1 and 2 on the validation and testing sets,
respectively. We report the mean, median, tri-mean, best 25%, worst 25%, worst
5%, and max angular errors in each set. We also report the total number of pa-
rameters for other methods, including ours. Additionally, we present the results
of a set of ablation studies conducted to examine the impact of the exposure
factor e in both EMLP and ECCC. We also studied the impact of different color
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Table 1: Angular errors on the validation set. ♢ and ⋆ denote camera-independent
models and training-free statistical methods, respectively. Methods are listed chrono-
logically by publication year, with the top and second-best results highlighted in yellow
and red. We present the results of camera-dependent trained models for various ver-
sions of C5 [4], identified as models A, B, C, and D (see main text for more details). Our
results are reported using EMLP, ECCC, and the ensemble model (EMLP + ECCC).
Ablation studies are included using different mapping matrices (CM: 3× 3 color map-
ping matrix, TM: 3× 4 affine transformation matrix, HM: 3× 3 homography matrix),
different color representations (rgb: raw RGB triplet as used in [2, 21–23, 26], rg/rgb-
chroma: rg-chromaticity/rgb-chromaticity of the raw RGB triplet), different exposure
ratios (e ∈ {2, 4, 8}), different input image sizes and histograms (s indicates 48×32
input images, s2 indicates 48×32 input images and 32×32 histograms), using different
input histograms for ECCC of both long and short exposure images, average image,
and long/short image, different number of learned biases (n), and results with (w/)
and without (w/o) augmentation, w/ and w/o the covariance matrix’s parameters (for
EMLP), w/ and w/o DEF and bias initialization (BI) (for ECCC).

Method Validation set Params
Mean Med. Tri. Best

25%
Worst
25%

Worst
5% Max

Grayworld⋆ [13] 5.54 3.13 4.11 0.97 12.83 19.45 28.82 -
Shades of Gray⋆ [25] 7.16 6.21 6.43 0.99 15.06 18.39 19.21 -
PCA⋆ [14] 6.13 4.53 5.02 0.91 13.66 18.28 20.33 -
Gamut (pixels) [29] 7.53 7.38 7.03 2.04 13.96 18.34 21.01 636
Gamut (edges) [29] 7.03 6.06 6.16 1.49 14.54 19.51 21.98 324
FFCC [9] 3.77 1.73 2.32 0.54 9.56 16.08 28.99 12,288
Gray Index⋆ [50] 6.00 3.62 4.28 0.58 15.44 24.91 31.72 -
APAP-LUT [6] 4.84 3.30 3.87 1.12 10.84 16.92 27.53 289
SIIE♢ [5] 4.70 4.04 4.23 1.35 9.21 13.27 16.24 1,008,044
BoCF [41] 4.84 3.30 3.87 1.12 10.84 16.92 27.53 59,354
C4 [63] 3.91 3.26 3.24 1.06 8.50 12.76 17.35 5,115,657
CWCC [42] 4.49 3.35 3.48 1.61 9.21 13.31 16.11 100,830
C5♢ [4] 4.01 2.81 3.14 1.08 8.51 12.47 21.81 411,711
C5 (model A) [4] 3.93 2.29 2.90 1.01 9.40 13.33 18.75 171,511
C5 (model B) [4] 4.49 2.84 3.24 0.88 10.52 15.23 20.55 213,831
C5 (model C) [4] 4.25 2.67 3.19 0.93 10.12 14.57 19.82 213,831
C5 (model D) [4] 4.51 2.94 3.38 0.87 10.74 16.01 20.74 213,831
TLCC [54] 4.16 2.72 3.15 0.81 9.35 14.05 21.39 32,910,186
PCC [64] 4.61 4.19 4.15 1.75 8.50 12.06 17.86 450
EMLP (e = 8, rg-chroma, HM, w/o cov) 5.86 4.26 4.96 1.36 12.3 16.36 20.44 300
EMLP (e = 8, rgb-chroma, TM, w/o cov) 4.78 3.94 4.27 1.14 9.57 13.20 16.54 363
EMLP (e = 8, rgb, CM, w/o cov) 4.54 3.53 3.87 1.26 9.51 13.74 19.22 300
EMLP (e = 8, rg-chroma, CM, w/o cov) 4.81 3.98 4.22 1.29 9.32 12.75 14.99 255
EMLP (e = 2, rgb-chroma, CM, w/o cov) 4.35 3.33 3.57 1.11 9.44 13.60 17.14 300
EMLP (e = 4, rgb-chroma, CM, w/o cov) 4.16 3.56 3.77 1.00 8.38 12.16 16.79 300
EMLP (e = 8, rgb-chroma, CM, w/o cov) 4.07 3.51 3.64 1.23 7.77 10.38 13.29 300
EMLP (e = 8, rgb-chroma, CM, w/ cov) 3.77 2.89 2.92 0.86 8.59 11.48 12.71 354
EMLP-s (e = 8, rgb-chroma, CM, w/ aug, w/ cov) 3.83 2.82 3.27 0.88 8.23 11.29 12.81 354
EMLP (e = 8, rgb-chroma, CM, w/ aug, w/ cov) 3.52 2.43 2.85 0.86 8.68 11.32 13.11 354
ECCC (e = 8, n = 5, w/ DEF, both) 3.69 2.78 3.11 0.79 7.83 10.62 13.27 2,166
ECCC (e = 8, n = 10, w/ DEF, both) 3.66 2.69 2.92 0.95 8.03 11.06 12.32 3,496
ECCC (e = 8, n = 15, w/ DEF, both) 3.58 2.71 2.91 0.91 7.96 11.85 13.51 4,826
ECCC (e = 2, n = 20, w/ DEF, both) 3.91 2.99 3.23 1.07 8.33 11.84 15.23 6,156
ECCC (e = 4, n = 20, w/ DEF, both) 4.28 3.19 3.36 0.99 9.63 13.72 14.72 6,156
ECCC (e = 8, n = 20, w/o DEF, both) 4.02 3.23 3.69 1.22 9.17 12.14 14.47 4,608
ECCC (e = 8, n = 20, w/o BI, both) 3.99 3.13 3.51 0.97 8.53 11.41 13.66 6,156
ECCC (e = 8, n = 20, w/ DEF, avg) 4.03 2.97 3.34 1.03 8.68 12.09 14.71 5,900
ECCC (e = 8, n = 20, w/ DEF, short) 3.71 2.74 2.93 1.00 8.07 12.20 15.43 5,900
ECCC (e = 8, n = 20, w/ DEF, long) 3.66 2.58 2.85 0.79 8.20 11.34 12.22 5,900
ECCC (e = 8, n = 20, rgb-chroma, w/ DEF, both) 3.79 2.73 3.23 0.82 8.41 11.63 15.44 6,156
ECCC (e = 8, n = 20, w/ DEF, both, w/ aug) 3.61 2.97 3.14 0.79 7.77 10.54 11.41 6,156
ECCC-s (e = 8, n = 20, w/ DEF, both) 3.69 2.62 3.07 0.9 8.12 10.95 15.1 6,156
ECCC-s2 (e = 8, n = 20, w/ DEF, both) 4.04 3.34 3.50 0.66 8.75 11.28 12.96 1,932
ECCC (e = 8, n = 20, w/ DEF, both) 3.56 2.50 2.79 0.87 7.93 11.32 13.47 6,156
EMLP + ECCC 3.24 2.37 2.53 0.84 7.11 10.64 12.06 6,510

spaces of input images before computing our DEF. Specifically, we used the rg-
chromaticity and raw RGB values (similar to [2, 21–23, 26]), in addition to our
main design that uses rgb-chromaticity. We also studied different mapping ma-
trices, in addition to the 3×3 color matrix we used in Sec. 2. Specifically, we
examined using the geometric 3×4 affine transformation matrix and the 3×3
homography matrix.

We report results of our EMLP with and without the covariance matrix pa-
rameters in addition to the results of ECCC with different numbers of learnable
biases, n, and with and without the proposed bias initialization. Furthermore, we
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Table 2: Angular errors on the testing set. See caption of Table 1 for abbreviations.

Method Testing set

Mean Med. Tri. Best
25%

Worst
25 %

Worst
5% Max

Grayworld⋆ [13] 5.32 3.70 4.51 0.95 11.34 14.41 17.75
Shades of Gray⋆ [25] 6.77 5.77 6.08 1.07 14.24 16.64 17.50
PCA⋆ [14] 5.91 4.99 5.22 1.07 12.62 17.10 19.08
Gamut (pixels) [29] 7.49 7.25 7.37 2.30 12.96 16.62 19.00
Gamut (edges) [29] 5.90 4.80 4.93 1.13 12.20 17.61 20.09
FFCC [9] 3.18 1.83 2.28 0.39 7.97 13.13 20.58
Gray Index⋆ [50] 5.18 3.47 4.18 0.60 12.32 16.90 19.67
APAP-LUT [6] 3.94 2.82 3.32 0.81 8.54 11.90 16.36
SIIE♢ [5] 3.51 2.35 2.74 0.80 7.56 11.06 12.39
BoCF [41] 3.91 3.31 3.40 1.18 7.72 11.24 12.81
C4 [63] 3.79 2.76 3.06 1.05 7.93 11.33 13.39
CWCC [42] 3.71 2.85 3.06 1.11 7.79 11.21 12.83
C5♢ [4] 3.45 2.93 3.03 0.95 7.00 10.38 14.01
C5 (model A) [4] 3.82 2.33 2.81 0.72 9.08 15.69 20.68
C5 (model B) [4] 3.30 2.05 2.42 0.69 7.58 11.23 14.02
C5 (model C) [4] 3.31 2.01 2.40 0.63 7.67 12.00 14.23
C5 (model D) [4] 3.33 2.20 2.54 0.73 7.53 10.83 13.33
TLCC [54] 3.73 2.89 3.21 0.95 7.54 11.55 14.78
PCC [64] 4.37 3.66 3.64 0.89 9.14 15.17 23.34
EMLP (e = 2, w/ aug) 3.64 2.66 2.97 0.88 7.82 11.5 13.82
EMLP (e = 4, w/ aug) 3.50 2.63 2.78 0.92 7.57 11.62 13.42
EMLP-s (e = 8, w/ aug) 3.37 2.34 2.74 0.67 7.24 10.16 14.10
EMLP (e = 8, w/ aug) 3.36 2.73 2.84 0.76 7.03 9.53 11.85
ECCC-s (e = 8) 3.33 2.92 2.92 0.96 6.56 9.38 10.26
ECCC-s2 (e = 8) 3.41 2.87 3.03 0.81 6.87 9.12 11.03
ECCC (e = 2) 2.94 2.10 2.38 0.69 6.31 8.13 9.25
ECCC (e = 4) 3.18 2.39 2.60 0.81 6.99 10.01 10.56
ECCC (e = 8) 3.00 2.31 2.45 0.74 6.66 9.85 12.23
ECCC (e = 8, w/ aug) 2.95 2.09 2.37 0.76 6.06 8.14 9.32
EMLP + ECCC 2.91 2.33 2.44 0.72 6.11 8.38 8.93

show the results of ECCC without utilizing the DEF feature. Lastly, we demon-
strate the influence of different sizes of input sizes on the inference accuracy of
both EMLP and ECCC. The results show that the best results are obtained with
e = 8. This choice is intuitively sensible, as a higher exposure factor increases
the differences between the dual-exposure images, resulting in greater distinc-
tion based on scene lighting conditions. The augmentation is found to be useful
for EMLP; however, we did not observe consistent improvement in the case of
ECCC. This is likely because EMLP has a limited number of input features,
making it more susceptible to overfitting. Thus, augmentation helps in gener-
alization. Conversely, in the case of ECCC, the inclusion of histogram features
alongside the small DEF feature suggests that the model may not consistently
derive benefits from augmentation. We also noted that in ECCC, using raw RGB
colors of dual-exposure images (without chromaticity conversion) tends to yield
better results, while in EMLP, the chromaticity conversion tends to enhance per-
formance (see Table 1). Results presented in Table 2 default to rgb-chromaticity
for EMLP and raw RGB values for ECCC.

From the results presented in Tables 1 and 2, it is evident that our proposed
DEF serves as a promising feature for guiding illuminant estimators. This is
demonstrated by the performance of our lightweight EMLP model (354 param-
eters) compared to complex models that rely solely on raw RGB image colors
(e.g., TLCC [54] with 32 million parameters). Moreover, incorporating DEF into
ECCC reduces the maximum error by over 50% and achieves comparable results
across various evaluation metrics when compared to FFCC [9].

Since both models – namely, EMLP and ECCC – have a reasonable number
of parameters, we can combine their predictions to create an ensemble model
by averaging the predicted illuminant colors from both models. The results of
this ensemble model are reported in Tables 1 and 2 under ‘ECCC + EMLP’.
The combined efforts of EMLP and ECCC, guided by our DEF, demonstrate
promising results, outperforming several state-of-the-art approaches across vari-
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4.81° 5.56° 5.44° 1.64° 5.21°

6.52° 5.45° 8.54° 1.72° 5.12°

12.6° 13.5° 15.2° 6.29° 8.94°

20.6° 10.2° 6.46° 0.82° 4.97°

(A) Input (B) FFCC (C) C5 (D) TLCC (E) EMLP (F) ECCC (G) Ground-truth

Long Short

Long Short

Long Short

Long Short

Fig. 5: Randomly selected examples from our worst 25% results of ECCC (top two
rows are from validation set and remaining rows are from testing set). (A) Input pair
of raw images captured with long and short exposures (note that other methods use a
single image captured with auto exposure). (B-G) Images corrected with the estimated
illuminant by: (B) FFCC [9], (C) C5 [4] (chosen the best results among all variations
discussed in Sec. 4.3), (D) TLCC [54], (E) EMLP, (F) ECCC, and (G) Ground-truth
illuminant. The estimated illuminant of each method is shown on the right side of each
image, along with the angular error written in the top-left corner of the image.

ous evaluation metrics while utilizing considerably fewer parameters. Qualitative
examples of our results, randomly selected from the worst 25% of ECCC results,
are presented in Fig. 5 alongside results from other methods.

5 Conclusion and Future Work

In this paper, we introduced DEF, a feature derived from dual exposure im-
ages to enhance illuminant estimation. Our DEF achieves comparable results
with state-of-the-art methods that employ thousands or millions of parame-
ters (e.g., [54, 63]), using only 354 parameters in a straightforward MLP net-
work. We further discuss incorporating the proposed DEF into the established
CCC framework, referred to as ECCC. ECCC achieves comparable or better re-
sults on different evaluation metrics than classic CCC approaches while remain-
ing lightweight, requiring only 6,156 parameters (50% reduction compared to
FFCC [9]), approximately 30 KB of memory, and running in ∼0.25 milliseconds
per image on CPU. Our solution focuses on the single-camera case, intending
testing on the same camera used for training. Future work includes studying
the stability of this feature across different cameras. We discussed integrating
the proposed DEF into the CCC framework. Further exploration may involve
examining DEF’s benefits for other illuminant estimation techniques that rely
on convNets and raw image pixels as input. Another research direction could
involve developing a spatially varying version of DEF, rather than our global
feature, to utilize for spatially varying illuminant estimation and image white
balancing.
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