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1 Formulation of Saliency Losses

As mentioned in the main paper, we adopt saliency losses for effective multimodal
alignment in the encoder as in the common practice [3, 5]. In specific, our total
saliency-based loss is composed of three losses, i.e., Lsal = Lmargin+Lcont+Lneg.
The margin-based loss Lmargin, defined in Eq. (2) of the main paper, aims to en-
courage the model to produce higher saliency scores for the clips relevant to
the given sentence compared to less related clips. Meanwhile, the rank-aware
contrastive loss Lcont is utilized to preserve the ground-truth clip ranking in pre-
dicted saliency scores. To be concrete, we first define the positive and negative
sets based on an arbitrary reference score r, i.e., clips whose saliency score labels
are higher than r belongs to the positive set B+

r , and the remaining clips con-
stitute the negative set B−

r . The rank-aware contrastive loss is then formulated
using a set of reference scores R as follows.

Lcont = −
∑
∀r∈R

log

∑
∀v̂∈B+

r
exp(S(v̂)/τ)∑

∀v̂∈(B+
r ∪B−

r ) exp(S(v̂)/τ)
, (1)

where S(·) is a learnable saliency score predictor and τ is a temperature (set to
0.5). We define R to be the set of saliency score labels of positive clips within
ground-truth moments.

The negative relation loss is based on the assumption that all video clips
should exhibit low saliency scores when paired with unmatched (negative) sen-
tences. Formally, the loss can be defined as follows.

Lneg = −
∑

∀v̂neg∈V̂neg

log(1− S(v̂neg)), (2)

where V̂neg denotes the memory features obtained by processing the video with
a negative sentence through the encoder. In our implementation, a negative
sentence is sampled from a different video-sentence pair in the mini-batch.
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Table 1: Results on the QVHighlights validation split.

R1 mAP
Method

@0.5 @0.7 @0.5 @0.75 Avg.

Deformable DETR 60.52 49.35 62.53 46.41 44.73
BAM-DETR (Ours) 65.10 51.61 65.41 48.56 47.61
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Fig. 1: Offset histogram on the QVHighlights validation split.

2 Comparison with Deformable DETR

The proposed boundary-focused attention layer incorporates deformable atten-
tion, which is first proposed in Deformable DETR [6]. It was originally designed
for computationally efficient global attention with multi-scale features in ob-
ject detection. In contrast, we employ deformable attention for local aggregation
of neighbor features, aiding precise boundary prediction in temporal sentence
grounding. To elucidate the discrepancy in their roles, we conduct a comparative
experiment. For this study, we implement a 1D variant of single-scale Deformable
DETR, tailored for temporal sentence grounding. We apply the proposed quality-
based scoring to this model for a fair comparison. Its key differences with our
BAM-DETR lie in the moment formulation (center-based vs. boundary-oriented)
and the design of decoding layers (single-pathway vs. dual-pathway).

To analyze the behavior of deformable attention, we look into the absolute
values of predicted offsets, i.e., how distant features are referenced during the
attention process. These offsets can indicate whether the attention is responsible
for global or local interaction. Fig. 1 presents a visual comparison between the
normalized histograms of predicted offsets from two comparative methods. In
our BAM-DETR, the deformable attention primarily concentrates on the neigh-
bor features near the boundaries, e.g ., over 80% of offsets are shorter than 5
seconds. Conversely, in the case of Deformable DETR, the deformable attention
strives to aggregate global information, e.g ., about 45% of offsets are longer than
10 seconds. These results clearly confirm the different roles of deformable atten-
tion in the two models. In addition, we compare the grounding performance in
Table 1, where our BAM-DETR substantially outperforms Deformable-DETR.
This underscores the importance of our boundary-oriented moment modeling as
well as the design of dual-pathway decoding layers.
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Table 2: Ablation study on the loss functions on QVHighlights.

R1 mAP
Lloc Lcls Lqual Lsal Lregul

@0.5 @0.7 @0.5 @0.75 Avg.

✓ ✓ 56.77 41.03 58.63 39.25 39.12
✓ ✓ ✓ 60.58 46.65 62.09 43.83 42.94
✓ ✓ ✓ ✓ 63.61 50.26 63.01 44.98 44.16

✓ ✓ 59.23 46.13 60.52 44.80 43.48
✓ ✓ ✓ 63.23 50.00 64.03 47.42 46.64
✓ ✓ ✓ ✓ 65.10 51.61 65.41 48.56 47.61

3 Details of Boundary Alignment Evaluation

We provide more details regarding the experimental setup of boundary align-
ment evaluation performed in Fig. 4a of the main paper. Inspired by the trimap
evaluation of DeepLab [1], we propose a novel metric of boundary hit rate under
varying band widths to evaluate the degree of boundary alignment. In detail, we
expand boundary points of the n-th ground truth {tsn , ten} with a given band
width of lw to form boundary zones. We can denote the starting and ending
zones by Zsn = [tsn − 0.5lw, tsn + 0.5lw] and Zen = [ten − 0.5lw, ten + 0.5lw],
respectively. Then, for the m-th proposal {t̂sm , t̂em}, we check whether both of
its boundaries fall in the corresponding zones. We iterate this process for all
combinations of ground truths and predictions, and mark a video as correct if
any pair is positive. Formally, the binary variable of h of a video is defined as:

h =max
∀n,m

[
Hits(n,m) · Hite(n,m)

]
,

where Hitz(n,m) = 1
[
|t̂zm − tzn | ≤ 0.5lw

]
, z ∈ {s, e}.

Note that we measure the hit rate over the whole validation set.

4 More Analyses

Ablation study on loss functions. Our model employs several loss functions
for training. We conduct an ablative experiment to diagnose their effects. Table 2
summarizes the results, where the upper part adopts the typical classification-
based scoring whereas the lower one leverages our proposed quality-based scor-
ing. We first examine the benefit of saliency losses. Consistent with the recent
findings [3], we observe that the saliency losses effectively guide the cross-modal
alignment in the encoder, leading to notable performance improvements. Then
we investigate the importance of our regularization loss designed for boundary-
sensitive feature construction (cf ., Eq. (5) of the main paper). It can be observed
that regardless of the choice of scoring methods, the boundary regularization
leads to significant performance boosts. Putting together the results in Table 6b
of the main paper, it becomes clear that boundary-sensitive features are essential
for precise boundary updating. Lastly, the comparison between the two separate
parts validates the efficacy of our quality-based scoring, especially in terms of
mAPs.
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Table 3: Generalizability evaluation of quality-based scoring on the QVHighlights
validation split.

R1 mAP
Method

@0.5 @0.7 @0.5 @0.75 Avg.

Moment-DETR‡ [3] 53.23 34.00 54.80 29.02 30.58
+ quality-based scoring 56.77 38.65 55.09 35.30 34.98

QD-DETR‡ [5] 62.90 46.77 62.66 41.51 41.24
+ quality-based scoring 64.26 50.32 63.79 46.03 44.50

EaTR‡ [2] 57.74 42.71 59.40 39.34 39.06
+ quality-based scoring 59.42 45.61 60.24 42.29 41.61

‡All models are reproduced by official codebase

(a) Classification-based scoring (b) Quality-based scoring

Fig. 2: Correlation between scores and IoUs with ground truths: (a) the classification
scores show a moderate correlation (Pearson’s r of 0.44); (b) the quality scores exhibit
a stronger correlation (Pearson’s r of 0.67).

Comparison between scoring methods. We present the quality-based scor-
ing method to replace the conventional classification-based one. To compare two
scoring methods, we draw scatter plots of scores vs. IoUs with ground truths
using all predictions on the QVHighlights validation set. Fig. 2a shows that clas-
sification scores correlate with IoUs to an extent. On the other hand, we observe
in Fig. 2b that our quality-based scoring shows a much stronger correlation with
IoUs. These results validate its efficacy in estimating the localization qualities
of proposals, indicating that it is more appropriate for proposal ranking.
Generalizablity of the quality-based scoring. By design, our quality-based
scoring method is generalizable to any query-based approach. To investigate this
property, we conduct experiments by adopting the quality-based scoring on top of
three representative models: Moment-DETR [3], QD-DETR [5], and EaTR [2].
The results are shown in Table 3, where the proposed scoring method brings
consistent improvements over different baselines. Noticeably, we can observe the
pronounced gains at high IoU thresholds, which indicates better alignment of
proposals with the ground truths. This corroborates our claim that moment
proposals ought to be ranked based on their localization qualities rather than
the degree of matching.

Efficiency comparison. We perform an efficiency comparison with previous
state-of-the-art methods in terms of computational costs (# of FLOPs) and
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Table 4: Efficiency comparison results on the QVHighlights validation split.

R1 mAP
Method

@0.5 @0.7 @0.5 @0.75 Avg.
FLOPs Params

QD-DETR‡ [5] 62.90 46.77 62.66 41.51 41.24 0.59G 7.7M
UniVTG†‡ [4] 59.74 40.90 58.61 36.76 36.13 0.98G 43.4M
EaTR‡ [2] 60.90 46.13 62.01 42.17 41.43 0.47G 9.1M

BAM-DETRslim 63.94 50.19 64.51 48.51 47.03 0.43G 7.2M
BAM-DETR 65.10 51.61 65.41 48.56 47.61 0.65G 9.5M
†The hidden dimension is four times larger than that of competitors
‡All models are reproduced by official checkpoints

memory (# of Parameters). The comparison results on the QVHighlights val-
idation set are shown in Table 4. We can observe that our BAM-DETR has a
comparable model size with EaTR [2]. In terms of localization performance, it
outperforms all the existing approaches by large margins, especially under strict
evaluation metrics, which is consistent with the test split results (cf ., Table 2 of
the main paper). To make a fairer comparison, we also implement a small variant
of our model equipped with slimmer encoding layers, namely BAM-DETRslim.
In detail, we halve the hidden dimension of the encoder and reduce the number of
fully-connected layers within each attention block. As a result, BAM-DETRslim

can achieve better efficiency with a cost of slightly sacrificing localization perfor-
mance. Nevertheless, it is shown that BAM-DETRslim suffices to largely surpass
the existing approaches even with fewer parameters and FLOPs. These results
confirm the effectiveness of the proposed method.

5 Further Qualitative Results

We perform further qualitative comparisons with previous query-based methods
in Fig. 3 and Fig. 4. The comparison results across various scenarios demonstrate
the superiority of our BAM-DETR over the strong competitors.
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Fig. 3: Qualitative comparison on the QVHighlights validation split.
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Fig. 4: Qualitative comparison on the QVHighlights validation split.
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