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Abstract. Recently, implicit neural representations (INRs) have at-
tracted increasing attention for multi-dimensional data recovery. How-
ever, INRs simply map coordinates via a multi-layer perceptron (MLP)
to corresponding values, ignoring the inherent semantic information of
the data. To leverage semantic priors from the data, we propose a novel
Superpixel-informed INR (S-INR). Specifically, we suggest utilizing gen-
eralized superpixel instead of pixel as an alternative basic unit of INR
for multi-dimensional data (e.g., images and weather data). The coor-
dinates of generalized superpixels are first fed into exclusive attention-
based MLPs, and then the intermediate results interact with a shared
dictionary matrix. The elaborately designed modules in S-INR allow us to
ingenuously exploit the semantic information within and across general-
ized superpixels. Extensive experiments on various applications validate
the effectiveness and efficacy of our S-INR compared to state-of-the-art
INR methods.

Keywords: Multi-Dimensional Data · Implicit Neural Representation ·
Superpixel

1 Introduction

Implicit neural representations (INRs) [39] have attracted significant research
interest in recent years as a novel method for representing multi-dimensional
data, such as images [21, 44, 48], point clouds [3, 9], videos [5, 24, 53], and audio
signals [20, 40]. INR utilizes a coordinate-based multilayer perceptron (MLP),
which takes spatial coordinates as input and outputs corresponding values. Es-
sentially, INR implicitly represents data via deep neural networks to achieve a
continuous representation. The strong representation capacity of INR opens up
new possibilities for multi-dimensional data modeling and analysis, overcoming
the limitations of traditional discrete representations that rely on fixed mesh-
grids or matrices.
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Fig. 1: Illustration of the overall processing of the traditional INR and our proposed
Superpixel-informed INR (S-INR) on image denoising task. In the proposed S-INR,
generalized superpixels are used as basic units. The coordinates of generalized super-
pixels are fed into the exclusive attention-based MLPs, and then the intermediate
results interact with a shared dictionary matrix to obtain recovery results.

INR has achieved success in a variety of applications on multi-dimensional
data recovery tasks with its strong representation capacity, including image
super-resolution [6, 25,52], completion [47,49], generation [33,41], and enhance-
ment [51], 3D shape representation [10, 29, 46], novel view synthesis [18, 19,
32], and physics-based simulation and inference [12, 50]. Recently, INR, i.e.,
coordinate-based MLP, has been shown to perform poorly in encoding signals
with high-frequency components, due to the corresponding neural tangent kernel
(NTK) of MLPs being prone to high-frequency fall-offs [17, 30]. To address the
above issue, researchers have focused on improving the expressiveness of the INR
via two primary aspects: positional encoding and nonlinear activation functions.
For positional encoding, the prevalent methods used Fourier features to project
low-dimensional inputs into higher-dimensional space by applying a positional
encoding layer before the MLP [28,42]. Later, Long et al. [26] proposed a phase-
varying positional encoding module that exploits the relationship between phase
information in sinusoidal functions and their displacements. For nonlinear activa-
tion functions, Sitzmann et al. used a periodic activation function, Ramasinghe
et al. [31] proposed a unified framework for activation, Saragadam et al. [35]
used a continuous Gabor wavelet activation function, Shen et al. proposed [38]
a novel function TRIDENT for INR characterized by a trilogy of nonlinearities,
and Danzel et al. [37] introduced the hyperbolic oscillation function, which is
designed to capture high-frequency information of the underlying data. Other
improvement methods such as band-limited coordinate networks [23] and multi-
plicative filter networks [8] have also been proven effective.

Although INR and its variants have achieved success in various applica-
tions [4, 13, 27, 34, 36], previous INR methods ignore the rich inherent semantic
information of the data, which could be beneficial for data representations and
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subsequent applications. A natural question followed: can we develop a novel
data representation that efficiently exploits the inherent semantic information of
the data under the INR framework?

To address this challenge, we first suggest utilizing generalized superpixels
instead of pixels as alternative basic units of INR for multi-dimensional data,
which encode rich semantic information. The generalized superpixels, going be-
yond traditional superpixels, are not limited to image data, but can also be
applied to point data arising from real-world applications in general. Then, to
fully exploit the semantic information within and across generalized superpixels,
we propose a novel Superpixel-informed INR (S-INR). Specifically, we elabo-
rately design two key modules in S-INR, i.e., exclusive attention-based MLPs
and a shared dictionary matrix. The exclusive attention-based MLP enhances
the expressiveness of S-INR in feature dimensions within each generalized super-
pixel. The shared dictionary matrix allows us to capture correlations between
generalized superpixels. Fig. 1 clearly illustrates the superior representation ca-
pacity of our proposed S-INR when compared to traditional INR. Our proposed
S-INR effectively exploits the semantic information within and across general-
ized superpixels, resulting in outstanding performance. The contributions of this
paper are as follows:

(i) We suggest utilizing generalized superpixels instead of pixels as alternative
basic units of INR, which encode rich semantic information. The generalized
superpixels are not limited to image data, but also suitable for more general
point data arising from real-world applications than traditional superpixels.

(ii) To exploit the semantic information within and across generalized su-
perpixels, we propose a novel superpixel-informed implicit neural representation
(termed as S-INR). The key modules in S-INR, i.e., exclusive attention-based
MLPs and the shared dictionary matrix, are elaborately designed to respect
the individuality of each generalized superpixel and capture the commonalities
between them.

(iii) Extensive experiments including image reconstruction, image comple-
tion, image denoising, weather data completion, and 3D surface completion,
validate the broad applicability and superiority of S-INR compared to state-of-
the-art INR methods.

2 The Proposed Model

Notation. x, x, and X denote the scalar, vector, and matrix, respectively. Here,
∥ · ∥ denotes the vector norm.

2.1 Definition of Generalized Superpixel

Pixels5 are considered as the basic unit of INR for multi-dimensional data. How-
ever, existing INRs, utilizing pixels as the basic unit, do not effectively exploit

5 For point data, pixels correspond to a feature value vector.
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the inherent semantic information of the data. To address this problem, we pro-
pose a generalized superpixel and employ it as an alternative basic unit to enable
the exploitation of the inherent semantic information of multi-dimensional data
as priors under the INR framework.

Definition 1 (Generalized Superpixel). Given a point data O ∈ Rs×n con-
sisting of n points, i.e., {oi ∈ Rs}ni=1, where s is the number of feature di-
mensions, and the number of generalized superpixels K. {Ok = {ok

i }
nk
i=1}Kk=1,

n1 + · · ·+ nK = n, representing assigned groups of data points are called gener-
alized superpixels if and only if they satisfy the following two conditions:

1. Disjointness. {Ok}Kk=1 are pairwise disjoint, i.e., Ok ∩ Ok′
= ∅ for all

k ̸= k′.
2. Spatial Connectivity. Each {Ok}Kk=1 forms a spatially connected blob,

meaning that all data points within a generalized superpixel are contiguous
or proximate in the spatial domain.

Remark 1. The traditional superpixel is limited to image data. In contrast, our
proposed generalized superpixel is beyond image data. It is also suitable for more
general point data arising from real-world applications, such as 3D surface data
and weather data, as illustrated in Figs. 2b and 2c.

(a) Image data (b) 3D surface data (c) Weather data

Fig. 2: Illustration of generalized superpixel segmentation on the (a) image data, (b)
3D surface data, and (c) weather data.

Next, we will introduce our method for finding generalized superpixels from
point data. General clustering algorithms (e.g., k-means++ [2]) can be deployed
to find groups. However, they do not satisfy the above condition of general-
ized superpixels (i.e., spatial connectivity). To ensure the resulting partitioning
of generalized superpixel satisfies both the two above conditions, we develop a
generalized superpixel segmentation algorithm (GSSA) in Algorithm 1. Specifi-
cally, we consider the importance of corresponding coordinates X ∈ Rc×n (i.e.,
{xi ∈ Rc}ni=1) of the point data O ∈ Rs×n (i.e., {oi ∈ Rs}ni=1) to satisfy the
spatial connectivity. Our example results are shown in Fig. 2.

With GSSA, the generalized superpixels that encode rich semantic informa-
tion are ready as basic units instead of pixels in INRs.
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Algorithm 1 The Generalized Superpixel Segmentation Algorithm (GSSA)
Input: The point data {oi ∈ Rs}ni=1 and its coordinate {xi ∈ Rc}ni=1, weight α, and

the number of generalized superpixels K.
Initialization: Set initial clustering centers µ1, . . . , µK using the k-means++ initial-

ization method and {xµk
}Kk=1 are their corresponding coordinates.

1: repeat
2: for i = 1 to n do

3: mik =

{
1 if k = argmink ∥oi − µk∥2 + α∥xi − xµk

∥2

0 otherwise
4: end for
5: for k = 1 to K do
6: µk =

∑n
i=1 mikoi∑n
i=1 mik

7: xµk
=

∑n
i=1 mikxi∑n
i=1 mik

8: end for
9: until Convergence

Output: Generalized superpixels Ok = {oi|mik = 1, i = 1, . . . , n} and coordinates
Xk = {xi|mik = 1, i = 1, . . . , n}, k = 1, . . . , K.

2.2 The Proposed S-INR

To fully exploit the semantic information within and across the generalized su-
perpixels, we propose a novel superpixel-informed implicit neural representation
with elaborately designed modules, i.e., exclusive attention-based MLPs and a
shared dictionary matrix. Next, we first introduce the basic structure of INR
and then elaborate on our proposed S-INR.

INR maps input coordinates to corresponding output values parameterized
by an MLP, which is typically continuous and differentiable. Specifically, for a
given data O ∈ Rs×n (i.e., {oi ∈ Rs}ni=1), INR uses the MLP with the sinusoidal
activation function to map its coordinate X ∈ Rc×n (i.e., {xi ∈ Rc}ni=1) to
corresponding values Ô ∈ Rs×n (i.e., {ôi ∈ Rs}ni=1), serving as the recovery
results. The INR, mapping Rc to Rs, can be formulated as follows:

Φθ(x) = WL(sin(WL−1(· · · (sin(W0x+ b0)) · · · ) + bL−1)) + bL, (1)

where θ ≜ {Wl,bl}Ll=0 denotes the learnable parameters, {Wl ∈ Rcl+1×cl}Ll=0

are weight matrices, and {bl ∈ Rcl+1}Ll=0 denote bias vectors. Here, cL+1 = s is
the output dimension and L denotes the number of layers in INR.

Different from using pixels as basic units in INR, we suggest utilizing general-
ized superpixels as the basic units of S-INR, which encode rich inherent semantic
information of the data. The details of S-INR are presented below.

First, we propose a standard S-INR to exploit the semantic information
within and across generalized superpixels. Specifically, we suggest utilizing the
shared dictionary matrix D ∈ Rs×r, which can interact with each generalized
superpixel. With D, the mathematical expression of the standard S-INR is as
follows:

ôk = D(Φθk(x
k)), k = 1, . . . , K, (2)



6 J. Li et al.

where our proposed S-INR maps the corresponding coordinate of the k-th gen-
eralized superpixels Xk ∈ Rc×nk (i.e., {xk

i ∈ Rc}nk
i=1) to corresponding values

Ôk ∈ Rs×nk (i.e., {ôk
i ∈ Rs}nk

i=1), which is then aggregated to obtain recovery
results Ô ∈ Rs×n (i.e., {ôi ∈ Rs}ni=1), n1 + · · · + nK = n. Here, Φθk : Rc → Rr

denotes the k-th INR representing the k-th generalized superpixel with learn-
able parameters θk ≜ {Wk

l ,b
k
l }Ll=0 and K denotes the number of generalized

superpixels. Note that in our work we set the dictionary matrix D to be a learn-
able parameter matrix, which allows for more flexible representation learning
compared to using a predefined coding matrix in the dictionary learning field.

Second, we develop an advanced S-INR that significantly enhances the ex-
pressiveness of S-INR in representing each generalized superpixel. Concretely,
we propose an exclusive attention-based MLP Ψθk , which is tailored to capture
correlations across feature dimensions within each generalized superpixel. With
Ψθk , the formal formulation of S-INR is formulated as follows:

ôk = D(Ψθk(x
k)), k = 1, . . . , K. (3)

Specifically, for the proposed exclusive attention-based MLP Ψθk , we add a self-
attention function ψk

l : Rcl+1 → Rcl+1 [14] after the l-th layer in the the k-th
INR Φθk , so that the output of the original l-th layer is further processed by ψk

l .
Thus, the parameters of the advanced S-INR can be denoted as {D, {θk}Kk=1},
where θk ≜ {Uk

l , Vk
l , Wk

l , bk
l }Ll=0 denotes the learnable parameters. The

mathematical expression of Ψθk is formulated as follows:

Ψθk(x
k) =ψk

L(W
k
L(ψ

k
L−1(sin(W

k
L−1(· · ·ψk

0 (sin(W
k
0x

k + bk
0)) · · · )

+ bk
L−1))) + bk

L),
(4)

where ψk
l (z

k
l+1) = η(Uk

l (δ(V
k
l (τ(z

k
l+1)))) ⊗ zkl+1, l = 0, . . . , L. Here, if l =

0, zk1 = sin(Wk
0x

k + bk
0), if l = 1, . . . , L − 1, zkl+1 = sin(Wk

l z
k
l + bk

l ), and
if l = L, zkl+1 = Wk

l z
k
l + bk

l . The symbol τ(·) denotes channel-wise average
pooling, δ(·) denotes the ReLU activation function, η(·) denotes the sigmoid
function, ⊗ denotes the channel-wise product, and {Uk

l ∈ Rcl+1×cl+1}Ll=0 and
{Vk

l ∈ Rcl+1×cl+1}Ll=0 are learnable parameter matrices.
In summary, our proposed S-INR fully exploits the semantic information

within and across generalized superpixels. The elaborately designed S-INR suc-
cessfully as an effective tool exploits the inherent semantic information of the
data under the INR framework.

2.3 The Proposed Recovery Model

To examine the representation capacity of our proposed S-INR, we propose an
S-INR-based data recovery model tailored for multi-dimensional data recovery
tasks. This model can be formulated as follows:

min
D, {θk}K

k=1

L(O, Ô) =

K∑
k=1

nk∑
i=1

L(ok
i , D(Ψθk(x

k
i ))), (5)
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where Ψθk(·) denotes the exclusive self-attention MLP to fully exploit semantic
information within corresponding generalized superpixel, D denotes the shared
dictionary matrix that interacts with each generalized superpixel to capture
commonalities between them, the generalized superpixel Ok ∈ Rs×nk (i.e., {ok

i ∈
Rs}nk

i=1) is obtained from the observation O ∈ Rs×n (i.e., {oi ∈ Rs}ni=1), xk
i is

corresponding coordinate of the ok
i , K is the number of generalized superpixels,

and L denotes the loss function. The aggregation of {Ôk = {D(Ψθk(x
k
i ))}

nk
i=1}Kk=1

is the final recovery result Ô. Next, with our proposed S-INR-based data recovery
model, we consider three specific data recovery tasks:

1. Data reconstruction aims at approximating the ground truth. The loss
function is

∑K
k=1

∑nk

i=1 ∥oi
k−D(Ψθk(x

k
i ))∥2, where ok

i is the i-th point from
k-th clean generalized superpixel.

2. Data completion aims at recovering the underlying patterns and struc-
tures from incomplete observations. The loss function is

∑K
k=1

∑nk

i=1 ∥(oi
k −

D(Ψθk(x
k
i )))Ω∥2, where ok

i is the i-th point from k-th incomplete generalized
superpixel and Ω is the support of the observed data.

3. Data denoising aims at recovering the underlying patterns and structures
from noisy corrupted observation. We consider Gaussian noise with different
standard deviations. The loss function is

∑K
k=1

∑nk

i=1 ∥oi
k −D(Ψθk(x

k
i ))∥2,

where ok
i is the i-th point from k-th noisy corrupted generalized superpixel.

The proposed S-INR-based data recovery model is unsupervised which solely
requires the observed data without training dataset. To solve the highly noncon-
vex and nonlinear problem Eq. (5), we use prevalent gradient descent methods,
i.e., the efficient adaptive moment estimation algorithm (Adam) [22], to update
the parameters D and {θk}Kk=1. Note that in the data completion, we utilize our
proposed GSSA to find generalized superpixels from the incomplete observation
after interpolation.

3 Experiments

In this section, we evaluate the representation capacity of our proposed S-INR
on a range of multi-dimensional data recovery tasks. We first evaluate image
data for tasks such as image reconstruction, image completion, and image de-
noising. Then, we extend the evaluation to more general point data arising from
real-world applications, including weather data completion and 3D surface com-
pletion tasks. All experiments are conducted on a computer equipped with an
Intel(R) UHD Graphics 630 CPU and an RTX 2080 Ti GPU.

3.1 Experimental Settings

To evaluate the performance of S-INR in different tasks, we use several evaluation
metrics in experiments. For tasks involving image data, we evaluate the results
using the peak signal-to-noise ratio (PSNR) [16] and the structural similarity
index (SSIM) [45]. For tasks involving point data, we report the normalized root
mean square error (NRMSE) and the R-Square for evaluations.
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Image Data. To comprehensively evaluate the performance of our proposed S-
INR on image data, we conduct experiments on three important image process-
ing tasks: image reconstruction, image completion, and image denoising. These
tasks allow us to assess different capabilities of S-INR, including reconstructing
complex data, completing missing data, and recovering noisy corrupted data. (1)
Image Representation: We utilize a RGB image Kodim (512×768×3) from Kodak
dataset6 and a hyperspectral image (HSI) Pavia (256× 256× 32) from dataset7
as testing data. (2) Image Completion: We use a multispectral image (MSI) Mor
(256 × 256 × 31) in the ICVL dataset8 as testing data. We adopt the random
sampling rates of 0.025 and 0.05, labeled as Case1 and Case2, respectively. (3)
Image Denoising: We adopt a MSI Lehavim (256 × 256 × 31) also in the ICVL
dataset as testing data. We consider Gaussian noise with standard deviations of
0.15 and 0.2, labeled as Case1 and Case2, respectively. We compare our method
with state-of-the-art INR methods including Fourier [42] (i.e., ReLU+Pos.Enc),
Gauss [31], WIRE [35], and SIREN [39]. The image reconstruction task is also
compared with DIP [43].

Point Data. We further evaluate S-INR on processing point data tasks: weather
data completion and 3D surface completion. These allow us to assess the abil-
ity of S-INR to model unstructured point data under real-world conditions. (1)
3D Surface Completion: We consider the 3D surface completion task with a
six-dimensional point set (x, y, z) − (R,G,B) formed by n points, to estimate
the color information of a given point cloud O ∈ R3×n from its corresponding
coordinate X ∈ R3×n. We use three scenes, i.e., Scene1, Scene2, and Scene3,
acquired with spacetime stereo [7], from the SHOT website9. We adopt the ran-
dom sampling rates of 0.025, 0.05, 0.075, and 0.1 as four cases, respectively.
(2) Weather Data Completion: The weather data we utilize includes five val-
ues, namely precipitation (Prcp), soil water evaporation (SWE), vapor pressure
(VP), and extreme temperatures (Tmax and Tmin). We utilize three datasets10
from the North America located at (63◦N, 157◦W), (61◦N, 141◦W), and (62◦N,
149◦W), respectively. We adopt the random sampling rates of 0.1, 0.15, 0.2, and
0.25 as four cases, respectively. For the above two tasks, we report the average
quantitative results for their corresponding four cases, respectively. We compare
our method with standard regression methods including K-neighbors regressor
(KNR) [1], decision tree (DT) [15], and random forest (RF) [11]. Additionally,
we compare our method with the classical INR method, i.e., SIREN [39].

Hyperparameters Settings. The configuration of hyperparameters is crucial
for both our proposed S-INR method and other comparison methods. For WIRE,
6 https://r0k.us/graphics/kodak/
7 https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes

8 https://icvl.cs.bgu.ac.il/hyperspectral/
9 http://www.vision.deis.unibo.it/research/80-shot

10 https://daac.ornl.gov/cgi-bin/dsviewer.pl?dsid=2130

https://r0k.us/graphics/kodak/
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://icvl.cs.bgu.ac.il/hyperspectral/
http://www.vision.deis.unibo.it/research/80-shot
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=2130
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as in the original paper, we set the size of the hidden layer to 300. For other INR
methods, we set the size of the hidden layer to 256. Regarding the number of
hidden layers, we set it to 5 for all INR methods. To ensure a fair comparison, we
apply other hyperparameters from the original papers when available. Otherwise,
we select optimal values within the ranges stated in the papers. For DIP, we set
its hyperparameters as in the original paper. To be fair, we reduce the size of
the hidden layer to keep its parameter size similar to other INR methods.

For our S-INR, we set the size of the hidden layer to 35 and the number
of hidden layers to 5. Other important hyperparameters include the number of
superpixels K, the weight α of GSSA, the initialization parameter ω0, the learn-
ing rate, and the size of the dictionary matrix r. The number of superpixels
K, depending on the scale of the input data, is chosen from {15, 25, 50}. The
weight α is selected from the set {1, 5, 20}, with the specific choice dependent on
the data type. The initialization parameter ω0, uses the same weight initializa-
tion scheme for ω0 as SIREN [39], but the tunable value of ω0 is selected from
{30, 150, 300}, which is influenced by K. The learning rate is searched within
{1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3}. The size of the dictionary
matrix r is set to a multiple of s, where s is the output dimension of the data,
and the scale factor is set to 5 for RGB images, 4 for point data, and {2, 3, 4}
for HSIs.

3.2 Experimental Results

Image Reconstruction Results. The quantitative and qualitative results of
image reconstruction are illustrated in Table 1 and Fig. 3. We can observe that
S-INR achieves superior PSNR and SSIM values compared to other comparison
methods in Table 1. Meanwhile, we can observe that DIP, SIREN, and Fourier
fail to represent image details, and the results of Gauss and WIRE are difficult to
remove noise. In contrast, our method preserves rich textures and details without
introducing noise, as shown in Fig. 3. The promising reconstruction performance
of our method can be largely attributed to the inherent semantic information
captured by using the proposed generalized superpixels as basic units.

Table 1: The quantitative results for image reconstruction task. The best and
second best values are highlighted. (PSNR ↑, SSIM ↑)

Data Metrics DIP Fourier Gauss SIREN WIRE S-INR

Kodim PSNR 30.154 32.101 30.188 33.052 33.199 36.077
SSIM 0.882 0.899 0.862 0.932 0.918 0.965

Pavia PSNR 36.283 37.982 36.413 37.727 38.455 39.102
SSIM 0.919 0.935 0.923 0.937 0.941 0.949
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DIP Fourier Gauss

SIREN WIRE S-INR

Fig. 3: The results of image reconstruction by different methods on RGB image Kodim.

Image Completion Results. The quantitative and qualitative results of image
completion are shown in Table 2 and the first row of Fig. 4. We can observe
that our method obtains better quantitative results as compared with other
INR methods in terms of PSNR and SSIM. From the visual results in Fig. 4,
we can see that Fourier and SIREN fail to represent image details and produce
blurry results, Gauss and WIRE show artifacts in the form of green discoloration
and extraneous patterns. Meanwhile, S-INR can capture fine details without
artifacts, validating the effectiveness of our method in image completion tasks.
The superior performance of S-INR is attributed to its elaborately designed
components to jointly exploit the inherent semantic information of the data.

Table 2: The quantitative results for image completion task. The best and second best
values are highlighted. (PSNR ↑, SSIM ↑)

Data Cases Metrics Observed Fourier Gauss SIREN WIRE S-INR

Mor
Case1 PSNR 9.056 27.835 28.064 27.918 28.087 29.068

SSIM 0.030 0.801 0.808 0.763 0.804 0.823

Case2 PSNR 9.169 31.017 31.026 30.929 31.609 32.281
SSIM 0.047 0.886 0.895 0.860 0.897 0.900

Image Denoising Results. The qualitative and quantitative results of image
denoising are shown in the second row of Fig. 4 and Table 3. The visual qual-
ity of our method is apparent, particularly in its ability to represent intricate
details and remove heavy noise, such as the split on the wall reflected in the
zoomed views, as shown in Fig. 4. On the contrary, Gauss, SIREN, and WIRE
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Observed Fourier SIREN Gauss WIRE S-INR Original

Fig. 4: From top to bottom list the results of image completion and image denoising
by different methods on Mor in Case2 and Lehavim in Case1, respectively.

Table 3: The quantitative results for image denoising task. The best and second best
values are highlighted. (PSNR ↑, SSIM ↑)

Data Cases Metrics Observed Fourier Gauss SIREN WIRE S-INR

Lehavim
Case1 PSNR 16.479 32.514 32.853 30.536 33.196 33.696

SSIM 0.224 0.832 0.856 0.784 0.863 0.867

Case2 PSNR 13.977 31.333 31.303 29.348 30.123 32.394
SSIM 0.144 0.796 0.819 0.745 0.792 0.831

fail to remove all the noise, while Fourier has chromatic aberration and intro-
duces background noise. In addition, as compared with other INR methods, our
method achieves competitive PSNR and SSIM values in Table 3. This indicates
that S-INR is not only superior in the accuracy of visual quality but also in the
quantitative metrics compared to other comparison methods. We attribute the
ability to recover noisy images even without any regularization to the expres-
siveness and robustness of S-INR. It is achieved by respecting the individuality
of each generalized superpixel and capturing the commonalities between them.

Table 4: The average quantitative results by different methods for point data recovery
tasks. The best and second best values are highlighted. (NRMSE ↓, R-Square ↑)

Data Weather Data Completion 3D Surface Completion

(63◦N, 157◦W) (61◦N, 141◦W) (62◦N, 149◦W) Scene1 Scene2 Scene3

Method NRMSE R-Square NRMSE R-Square NRMSE R-Square NRMSE R-Square NRMSE R-Square NRMSE R-Square

DT 0.101 0.698 0.149 0.484 0.131 0.486 0.171 0.703 0.126 0.761 0.141 0.721
KNR 0.072 0.849 0.099 0.766 0.093 0.739 0.112 0.868 0.093 0.867 0.094 0.874
RF 0.076 0.829 0.111 0.712 0.099 0.705 0.107 0.880 0.090 0.875 0.092 0.879

SIREN 0.078 0.818 0.096 0.776 0.093 0.741 0.109 0.878 0.090 0.886 0.087 0.885
S-INR 0.058 0.900 0.070 0.877 0.062 0.889 0.074 0.944 0.063 0.945 0.060 0.945
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Fig. 5: From top to down respectively list the results of 3D surface completion recovery
by different methods for the 3D surface data Scene1 , Scene2 , and Scene3 with the
random sampling rate of 0.025.

3D Surface Completion Results. The quantitative and qualitative results
of the 3D surface completion are shown in Table 4 and Fig. 5. We can observe
that our S-INR achieves higher performance than other comparison methods in
terms of NRMSE and R-Square. From the visual results, we can see that SIREN
and other regression methods have difficulty in accurately recovering intricate
details. In contrast, the proposed method can better represent the details due to
its ability to exploit the inherent semantic information of the data, as evidenced
by the patterns of the bottle in Fig. 5. These results confirm the effectiveness and
superiority of our S-INR for complex point data recovery tasks beyond images.

Observed DT KNR RF SIREN S-INR Original

Fig. 6: From top to down respectively list the results of weather data completion
by different methods on Prcp, SWE, and VP for the weather data located at (63◦N,
157◦W) with the random sampling rate of 0.25.
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Weather Date Completion Results. The results on weather data comple-
tion are shown in Table 4 and Fig. 6. Compared with other INR methods, our
proposed S-INR achieves superior performance in quantitative results in terms
of NRMSE and R-square in Table 4. Visually, we can observe that the results
of the proposed method are generally closest to the true values in Fig. 6. In
contrast, other regression methods struggle to recover the complex structure of
weather data, resulting in their results being quite different from the original re-
alistic results. The superior performance of our method can be attributed to the
elaborately designed components in S-INR to exploit the semantic information
within and across generalized superpixels.

3.3 Discussions

The Role of Generalized Superpixels. To better understand the roles of
basic units, we compare two categories of basic units (i.e., pixels and generalized
superpixels) based INR, namely the traditional pixel-based INR [39] and the
superpixel-based INR. For fairness, we adopt the same INR architecture11 that
uses MLP with the sinusoidal activation function to map the coordinates to
corresponding values. Both model parameter scales are kept on the same scale
by adjusting certain model hyperparameters.

Observed Pixel-based INR Superpixel-based INR Original
PSNR: 13.977 dB PSNR: 29.348 dB PSNR: 31.475 dB PSNR: Inf

Fig. 7: The results of image denoising by pixel-based INR [39] and superpixel-based
INR on MSI Lehavim in Case1. When utilizing our proposed generalized superpixels
as basic units, INR can restore finer details and remove more noise by exploiting the
inherent semantic information of the data. The best values are highlighted.

We conduct quantitative and qualitative comparisons between the pixel-
based INR and the superpixel-based INR, with results presented in Fig. 7. We
can observe that superpixel-based INR performs better than pixel-based INR
as evidenced by higher PSNR. Visually, we can observe that superpixel-based
INR preserves finer details with fewer artifacts than pixel-based INR, e.g., we
can find in the zoomed region that superpixel-based INR can represent more

11 Specifically, the superpixel-based INR is based on using K INRs to represent K
superpixels, where K is the number of generalized superpixels.
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Table 5: Quantitative results of image denoising on Lehavim in Case2. The best
values are highlighted.

Components Lehavim Parameters (Mb)
Generalized Superpixels Exclusive MLPs Shared Dictionary Matrix PSNR SSIM

% % % 29.348 0.745 0.786
! % % 31.475 0.817 0.741
! % ! 31.997 0.818 0.797
! ! % 31.012 0.787 0.902
! ! ! 32.394 0.831 0.995

intricate details, while its background contains less noise. The superior perfor-
mance of superpixel-based INR is attributed to utilizing our proposed basic unit,
namely generalized superpixel, which encode rich inherent semantic information
of the data.

Ablation Experiment. To understand the roles of S-INR’s key components,
we perform an ablation experiment on the image denoising task. The important
components include the use of generalized superpixels as basic units (generalized
superpixels), exclusive attention-based MLPs (exclusive MLPs), and a shared
dictionary matrix.

Table 5 shows the recovery results of quantitative comparisons with different
components in S-INR. We can observe that the three components in S-INR all
contribute to the superior performance of S-INR. The results of S-INR with-
out the generalized superpixels as basic units, exclusive attention-based MLPs,
and the shared dictionary matrix show the performance degradation of approx-
imately 3.0dB, 0.4dB, and 1.4dB in terms of PSNR, respectively, compared to
the performance of our proposed S-INR. This demonstrates that all three com-
ponents are important to S-INR, and by working together, they can effectively
exploit the inherent semantic information of the data to achieve state-of-the-art
performance.

4 Conclusion

In this work, we first suggested utilizing generalized superpixels instead of pixels
as alternative basic units of INR for multi-dimensional data that encode rich
semantic information. Then, to fully exploit the semantic information within
and across generalized superpixels, we proposed a novel superpixel-informed im-
plicit neural representation (termed as S-INR), which includes two elaborately
designed modules, namely the exclusive attention-based MLPs and a shared dic-
tionary matrix. Extensive experiments have validated consistent improvements
in our proposed S-INR over state-of-the-art INR methods in terms of quanti-
tative metrics and visual quality. We believe that S-INR is a potential tool for
more versatile multi-dimensional applications.
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