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Abstract. In this paper, we present a groundbreaking spectrally mul-
tiplexed photometric stereo approach for recovering surface normals of
dynamic surfaces without the need for calibrated lighting or sensors,
a notable advancement in the field traditionally hindered by stringent
prerequisites and spectral ambiguity. By embracing spectral ambigu-
ity as an advantage, our technique enables the generation of training
data without specialized multispectral rendering frameworks. We in-
troduce a unique, physics-free network architecture, SpectraM-PS, that
effectively processes multiplexed images to determine surface normals
across a wide range of conditions and material types, without relying on
specific physically-based knowledge. Additionally, we establish the first
benchmark dataset, SpectraM14, for spectrally multiplexed photometric
stereo, facilitating comprehensive evaluations against existing calibrated
methods. Our contributions significantly enhance the capabilities for dy-
namic surface recovery, particularly in uncalibrated setups, marking a
pivotal step forward in the application of photometric stereo across var-
ious domains.

Keywords: Spectrally Multiplexed Photometric Stereo · Dynamic Sur-
face Recovery · Multispectral Photometric Stereo

1 Introduction

Recovering detailed normals of dynamic surfaces is essential for monitoring var-
ious processes: in manufacturing, it helps in tracking wear and tear of machine
parts; in agriculture, it allows for the observation of crop growth through changes
in leaf geometry; and in sports engineering, it aids in improving equipment design
and safety by analyzing how surfaces deform upon impact.

Photometric Stereo (PS) [57,64] derives object surface normals from observa-
tions under different lighting conditions at a fixed viewpoint. Despite decades of
progress, the requirement for objects to stay stationary during lighting changes
challenges the recovery of dynamic surfaces, essential for analyzing temporal sur-
face deformations. PS researches have employed spectral multiplexing for dynamic
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Fig. 1: (Left) Illustration of our SpectraM-PS. Our method recovers a surface nor-
mal map from a spectrally multiplexed image. The spectral/spatial composition for
generating the observations is unknown. There is potential for a mismatch between
the sensor’s spectral sensitivity and the light source’s spectral distribution, which may
lead to crosstalk. (Right) By applying our method to individual frames of a video, the
normal map of dynamic surfaces can be recovered.

surface recovery [10,20,32,37,51,62]—a technique originally used in telecommu-
nications and spectroscopy [31]. This technique utilizes the varying wavelengths
of light to multiplex and subsequently demultiplex signals within a single sensor,
thereby increasing the capacity for information transmission.

Historically, spectrally multiplexed photometric stereo is often referred to as
color photometric stereo [7,14,20,32,33], specifically when objects are illuminated
with monochromatic red, green, and blue lights from various angles, captured in
the camera’s RGB channels. Each channel is then treated as an observation under
a distinct lighting for PS analysis. This technique has been further extended to
not only RGB but also any number of spectral bands and is specifically referred to
as multispectral photometric stereo [17,18,46]. These techniques enable dynamic
surface recovery by processing each temporal multi-channel frame separately.

Despite their potential in dynamic surface recovery, current spectrally mul-
tiplexed photometric stereo methods face stringent prerequisites that limit their
practicality. These include the necessity for precisely calibrated directional light-
ing in controlled environments [7, 14, 17, 20, 46] and sensors with aligned spec-
tral sensitivities [32,33]. Furthermore, they make strong assumptions about the
surface, requiring it to be convex, integrable, Lambertian, and exhibit uniform
chromaticity [20,37]. By contrast, recent PS methods without spectral multiplex-
ing support non-Lambertian surfaces [29,55], spatially-varying materials [12,23],
and the use of uncalibrated lighting [11,25,26,54]. This disparity arises from the
challenge where identical observations are produced by different spectral com-
positions of light, surface and sensor [22, 50], a phenomenon absent in conven-
tional PS due to constant spectral compositions of them across images. Recently,
Guo et al . [17,18] thoroughly explored how the spectral ambiguity renders spec-
trally multiplexed photometric stereo ill-posed, necessitating severely unpractical
conditions on light, surface, and sensor to resolve the ambiguity.

In this work, we propose a spectrally multiplexed photometric stereo method
that recovers normals directly from multiplexed observations produced by un-
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known composition of lights, surface, and sensor (See Fig. 1-left), drawing inspi-
ration from recent data-driven photometric stereo methods [25,26]. While prior
works [18, 46] have considered the spectral ambiguity harmful and something
that must be resolved, we demonstrate that it can even be beneficial for a data-
driven approach as it compacts the input space and allows for the generation
of training data without a multispectral rendering framework. Trained on spec-
trally composed observations, our generic, physics-free architecture directly maps
a single multiplexed image with an order-agnostic, arbitrary number of channels
to object surface normals without the need for calibrating lights and sensors,
and without imposing severe constraints on surface reflectance and geometry.
By applying our method to individual frames of a video, dynamic surface recov-
ery via spectrally multiplexed photometric stereo in uncalibrated, uncontrolled
scenarios is achieved as illustrated in Fig. 1 (right).

While numerous benchmarks exist for conventional photometric stereo [52,56,
63], not a single benchmark is available for spectrally multiplexed PS. Therefore,
we have created the first real benchmark dataset, namely SpectraM, for this
task. For comparative evaluations with calibrated methods such as [18, 46], we
carefully calibrated directional light sources of different wavelengths, including
their directions. We implemented five different difficulty settings by varying the
type of light sources (RGB vs NIR) and whether individual light sources were
illuminated independently or simultaneously, catering to both ideal conditions
without channel crosstalk and more realistic conditions with channel crosstalk.

Our contributions are summarized as follows: (1) We pioneer the use of spec-
trally multiplexed photometric stereo for recovering dynamic surfaces in uncali-
brated setups, employing a data-driven approach to overcome spectral ambiguity,
a significant barrier in prior work. (2) We introduce a unique, physics-free neural
network, SpectraM-PS (Spectrally Multiplexed PS), that recovers surface nor-
mals from a spectrally multiplexed image, capable of handling images with any
number of order-agnostic channels. (3) We demonstrate how spectral ambigu-
ity restricts the input space for training data generation, offering a strategy for
efficient dataset creation without the need for multispectral rendering. (4) We
create the first evaluation benchmark, SpectraM, for this domain, showing our
method’s superiority over current calibrated spectrally multiplexed photometric
stereo techniques.

2 Related Work

Temporally Multiplexed Photometric Stereo (Conventional). From a
communication perspective, conventional photometric stereo, as originally pro-
posed by Woodham [64], employs a time multiplexing strategy to recover static
surfaces. This method involves temporally varying lighting conditions while cap-
turing images from a fixed viewpoint. Since the same light sources and sensor
always provide observations, image differences stem solely from changes in light
direction and intensity. This approach simplifies addressing complex conditions
such as cast shadows [27, 28], non-Lambertian surfaces [16, 29], non-convex sur-
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faces [23], and uncalibrated lighting [11, 36, 54]. Recently, learning-based meth-
ods [11–13, 23–25, 34, 36, 39–42, 44, 53, 58, 59, 68, 69] have emerged as an effec-
tive alternative, addressing challenges faced by traditional, physics-based ap-
proaches [6, 8, 16, 19, 21, 28, 45, 65]. These data-driven methods regress normal
maps from observations utilizing techniques such as observation map regres-
sion [23, 30], set pooling [12, 13], graph neural networks [68], Transformer [24],
and neural rendering for inverse rendering optimization [40,41,58]. Notably, the
introduction of universal photometric stereo methods [25, 26] has enabled the
handling of unknown, spatially-varying lighting in a purely data-driven frame-
work. Inspired by these advancements, our work aims to regress normals from
observations under unknown light, surface, and sensor conditions.
Spectrally Multiplexed Photometric Stereo. Despite its potential for dy-
namic surface recovery, spectrally multiplexed photometric stereo [15, 37] has
remained less explored than its mainstream counterpart, primarily due to no-
table limitations.

Lighting Constraints: Existing methods necessitate multiple directional
lights in controlled settings, contrasting the flexibility of temporally multiplexed
techniques that adapt to diverse lighting conditions [26, 47, 49]. They typically
require pre-calibrated light directions and distinct light source spectra to prevent
channel crosstalk. In contrast, our approach accommodates uncontrolled lighting
scenarios without the need for predefined or calibrated setups.

Surface and Sensor Constraints: Prior works assume significant limita-
tions on surfaces, such as Lambertian, convex, and uniform properties [15,20,37].
Recent advances like Lv et al . [46] extend to non-Lambertian surfaces but still
require uniform materials. Sensor requirements typically involve narrow-band
spectral responses and a fixed number of channels, limiting flexibility. Our ap-
proach leverages a data-driven model, training neural networks on synthetic data
to handle complex surfaces and varied spectral sensor responses.

Data-driven Methods: To our knowledge, there are few data-driven meth-
ods for this task [32,33,46]. Previous studies, such as those by Ju et al . [32,33],
require identical spectral and spatial lighting conditions during both training and
testing, greatly restricting their practicality. ELIE-Net [46] permits variability
in training and test setups; however, strong assumptions on both light and sur-
faces prohibitively limit its applications. Our model, on the other hand, eschews
explicit lighting models in favor of learning direct input-output relationships, al-
lowing for accurate predictions under varied and unknown spectral compositions
and supporting materials with spatially diverse properties. Furthermore, unlike
ELIE-Net’s reliance on spectral BRDF datasets, our training approach utilizes
assets akin to those employed in conventional photometric stereo.

3 Problem Statement

Given a single image I ∈ Rh×w×k captured by a static k-channel orthographic
sensor, along with an optional object mask M ∈ Rh×w, the objective of spec-
trally multiplexed photometric stereo is to recover the surface normals of the
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Fig. 2: SpectraM-PS involves decomposing a spectrally multiplexed image into in-
dependent channels. The Global Feature Encoder extracts a feature map from each
channel. The surface vector is then recovered by the Dual-scale Surface Normal De-
coder at each pixel. We adopt a dual-scale approach to preserve the entire shape, while
employing patch-embedding techniques to enhance local surface details.

object, N ∈ Rh×w×33. The object is supposed to be illuminated by multiple
light sources, each with unique spatial and spectral properties. Previous studies
have typically assumed an equal number of light sources and sensor channels,
with each light source’s wavelength precisely matching the spectral response of
a single channel, thereby precluding any channel crosstalk, and with the di-
rections of lights predetermined. In contrast, we do not presuppose the spatial
distribution of illumination nor require the spectrum of each light source to be
exclusively aligned with the spectral responses of the sensor channels, thus per-
mitting channel crosstalk. This distinction is elaborated in subsequent sections.

4 Method

We propose and tackle the problem of spectrally multiplexed photometric stereo
from a single image with multiple channels, produced by an unknown spec-
tral/spatial composition of the sensor, light, and surface. To build such a method,
we train neural networks to directly infer the normal map from an image.

Our method addresses two challenges: (1) a physics-free architecture that
accepts a varying number of spectral channels and is agnostic to their order, and
(2) an effective approximation of the spectrally multiplexed image for efficient
training. We consider (2) to be of significant importance, yet it remains largely
unexplored. Synthesizing spectrally multiplexed images in a physically accurate
manner is prohibitively challenging, owing to the increased complexity of their
parameter spaces and the scarcity of 3D assets with detailed spectral properties,

3 It should be noted that unlike conventional PS, reflectance recovery generally falls
outside the scope of spectrally multiplexed PS due to its inherently ill-posed nature.
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as well as the complex nature of light-surface interactions across different wave-
lengths. To address this issue, developing an efficient approximation method for
rendering spectrally multiplexed images using common RGB image rendering
techniques is crucial.

4.1 Physics-free Spectrally Multiplexed PS Network (SpectraM-PS)

The architecture of SpectraM-PS is illustrated in Fig. 2. Drawing inspiration
from established Transformer-based photometric stereo networks [24–26], we in-
tegrate an encoder to first extract the global features and a decoder to estimate
per-pixel surface normals. The architecture derives normals solely from the in-
put image and mask, without prior light information. This indicates that the
architecture focuses the network’s learning objective on the relationship between
input and output without relying on physics-based principles, unlike prior works.

In our model, all the interactions among features from different sensor chan-
nels are employed by näive Transformer [61] in similar to [24–26]. Transformer
functions by mapping input features to query, key, and value vectors of equal di-
mensions. These vectors are processed through a multi-head self-attention mech-
anism, utilizing a softmax layer, followed by a feed-forward network comprising
two linear layers. Both the input and output layers maintain identical dimension-
ality, with the inner layer having twice the dimension of the input. Each layer
is surrounded by a residual connection, succeeded by layer normalization [67].
The advantage of employing Transformers in photometric stereo networks lies in
their capability to facilitate complex interactions among intermediate features,
a task unachievable with simple operations like pooling [11–13, 46] and obser-
vation map [23, 30]. Additionally, the token-based attention mechanism allows
for different number of input tokens (i.e., sensor channels) between training and
test phases and ensures that the results are independent on the order of tokens.

Building on the established Transformer-based architecture [26] for tempo-
rally multiplexed photometric stereo, we extend its scope to a spectrally multi-
plexed one. To accommodate a variable number of channels and eliminate de-
pendency on their order, an input spectrally multiplexed image is first split into
individual channels, each of which is concatenated with an object mask (If no
mask is provided, replace with a matrix of ones.) and then input into the same
encoder of a neural network. This approach is distinctly different from tradi-
tional methods that encode an input image as it is in neural networks [32, 33].
Then, at Preprocessing, we normalize each channel by dividing it by a ran-
dom value between its maximum and mean. Each channel and mask are resized
or cropped to a resolution (c × c) that is a multiple of 32 to be input into the
multi-scale encoder. Global Feature Encoder first applies a backbone network
(i.e., ConvNeXt-T [43]) to individualy encode the concatenation of each channel
and mask, then uses Transformer layers for channel-axis (i.e., sensor channel)
feature communication across scales (the number of Transformer layers is {0, 1,
2, 4} at {1/4, 1/8, 1/16, 1/32} scales, hidden dimensions are same with input
dimensions), and finally, a feature pyramid network [66] for integrating features
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at different levels. Note that the design of encoder is almost the same as [25,26],
except that images are replaced by sensor channels, so details are omitted.

Given global features ∈ Rk×c/4×c/4×256, our novel Dual-scale Surface
Normal Decoder adopts a dual-scale strategy for predicting point-wise sur-
face normals at m (i.e., 2048) sampled locations at the original resolution within
the object mask. The first branch recovers low-frequency surface normals at the
feature map resolution ( c

4 × c
4 ). Concretely, all global features corresponding to

each sample location are processed by five channel-axis Transformer layers (with
a 256 hidden dimension) and are pooled via Pooling-by-Multihead-Attention
(PMA) [38] using an additional channel-axis Transformer layer (with a 384 hid-
den dimension). To enhance spatial communication, two spatial -axis Transformer
layers (with a 384 hidden dimension) inspired by Ikehata [26] are employed (i.e.,
Transformer is employed among samples at different locations), with a final MLP
(384→192→3) predicting the low-frequency normals at sampled locations. The
second branch focuses on high-resolution normal recovery, using patch embed-
ding for local context at the same m locations, with w × w patches (w = 21)
processed by an MLP (with a 256 hidden dimension) and two layer norms. These
patches, concatenated with bilinearly interpolated global features, pass through
five channel-axis Transformer blocks (with a 256 hidden dimension), PMA (with
a 384 hidden dimension), and are merged with the first branch output nor-
mals into 387-dimensional vectors. Two additional spatial-axis Transformer lay-
ers (with a 384 hidden dimension) enable non-local interactions, culminating
in a final MLP (384→192→3) for high-resolution normals, normalized to unit
vectors. The complete normal map is formed by merging all the vectors from
different sample sets.

It should be noted that while SDM-UniPS [26] targets temporally multiplexed
PS with tens of images, and its decoder performs normal estimation purely on
a pixel basis. In contrast, spectrally multiplexed PS deals with fewer channels
(e.g ., three with RGB sensors), making a pixel-basis architecture less effective.
Therefore, we use patch embedding at the patch-basis decoder to capture fine
details with a dual-scale architecture for preserving overall shape. Without a
dual-scale design, the recovery of surface normals becomes overly influenced by
local image textures captured through patch embedding. This leads to a failure
in preserving the entire shape, resulting in a significant reduction in accuracy.
Our motivation is supported by Fig. 3 (left), where SDM-UniPS [26] fails to re-
cover fine details with six temporally multiplexed images, while our architecture
produces a more plausible normal map.

4.2 Efficient Training Strategy Utilizing Spectral Ambiguity

Aligning the training and test data domains in neural networks is essential for op-
timal model performance [9,60]. However, rendering spectrally multiplexed data
poses challenges due to the scarcity of multispectral Bidirectional Reflectance
Distribution Functions (BRDFs). In reality, ELIE-Net [46] was trained using
only 51 measured isotropic spectral BRDFs. On the other hand, given the avail-
ability of various large isotropic BRDF databases [1–3,5,48], we seek to explore
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Fig. 3: (Left) Comparison of SpectraM-PS and SDM-UniPS [26] on six temporally
multiplexed PS images. Due to the patch-wise basis of SpectraM-PS, fine details are
better recovered. (Right) Illustration of different lighting conditions in PS-Multiplex.

utilizing these datasets for training our model, leveraging the fact that our net-
work does not distinguish images based on their physically-based principles. In
this section, we highlight how RGB images serve as a practical approximation,
simplifying the complexity inherent in multispectral imaging.

We begin the discussion by characterizing multispectral imaging. Assuming
that the surface doesn’t emit light and only reflections on surface are considered,
the image formation model is described as follows [35]:

I(s,p) =

∫
Ω

(ωT
i np)

∫ ∞

0

Ss(λ)fp(ωi, ωo, λ)Lp(ωi, λ)dλdωi. (1)

In this equation, I(s,p) denotes the incoming spectral radiance at the sensor s
(or s-th channel) from a surface point p. The term fp represents BRDF, Lp the
incident light intensity at the surface point, and λ the wavelength of the incident
light. The symbols ωi and ωo denote the directions of incident and reflected light,
respectively. Ss(λ) refers to the spectral sensitivity of the sensor s at wavelength
λ, np is the surface normal, and Ω represents the hemisphere over which incident
light directions are possible. The integral sums over all incident directions and
wavelengths. It is important to note that the incident light intensity Lp depends
not only on the direct contribution from light sources but also on the visibility
of light (e.g., attached and cast shadows) and indirect illuminations.

Eq. (1) illustrates the concept of spectral ambiguity, showing that an infinite
number of combinations of Ss(λ), fp(ωi, ωo, λ), and Lp(ωi, λ) can result in the
same spectral radiance, including narrowband compositions. In other words, with
spectral ambiguity, a single observation I(s,p) can encompass the observations for
all spectral compositions that satisfy the equation (i.e., metamerism [22, 50]).
This perspective justifies the theory of substituting multispectral images, which
possess a broad parameter space, with narrowband RGB images. It is worth
mentioning that channel crosstalk primarily affects the incident light intensity,
consequently distorting the product of Ss(λ) · fp(ωi, ωo, λ) ·Lp(ωi, λ) in Eq. (1).
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This implies that observations influenced by spectral crosstalk can still be equiv-
alently represented using a narrowband setup under spectral ambiguity. In the
experiments, we demonstrate that our model, trained on three narrowband ob-
servations can be applied to multiplexed data with channel crosstalk. To realize
this approximation, we rendered a large number of three-channel narrowband
images using the path-tracing algorithm in Blender [4], where up to 10-bounce
reflections are permitted, based on common 3D assets [2] for RGB rendering.
Following the rendering pipeline described in [26], we rendered objects by com-
bining three different lighting models: directional, point, and environmental (five
combinatorial settings in total as shown in Fig. 3). To simulate spectrally multi-
plexed images, we defined R, G, and B light sources and illuminated the surface
in a multiplexed manner. It is important to note that the rendered RGB images
are decomposed into three grayscale images, each of which was independently fed
into the network; therefore, any wavelength-dependent information is masked.
For material diversity, we adopted the method from [26], categorizing 897 Adobe-
Stock texture maps into three groups: 421 diffuse, 219 specular, and 257 metallic
textures. Four objects from a set of 410 3D AdobeStock models were randomly
selected and textured with these materials. This structured approach led to the
rendering of 106,374 multiplexed images along with their ground truth surface
normal maps, forming the ‘PS-Multiplex’ dataset.

5 SpectraM14 Benchmark Dataset

Due to the lack of a benchmark for spectrally multiplexed PS, the first com-
prehensive evaluation dataset, named SpectraM14, is created. This dataset in-
cludes 14 objects, each exhibiting a range of optical properties such as monochro-
matic or multicolored appearances and diffuse or specular reflections, as depicted
in Fig. 4. Our benchmark encompasses tasks under five distinct conditions, as
described later.
Imaging Setup. To acquire our dataset, we utilized a color camera (FLIR GS3-
U3-123S6C-C) and an NIR camera (FLIR GS3-U3-41C6NIR-C), both equipped
with a 50mm lens. For the NIR camera, we used narrowband filters with wave-
lengths of 750nm, 850nm, 880nm, 905nm, and 940nm, and the acquired images
were manually merged. Objects were placed 0.8m from the camera to approxi-
mate orthographic projection. Following conventional PS benchmarks [52,56,63],
data capture occurred in a controlled, dark environment with the scene draped
in black cloth to mitigate interreflection. The camera’s ISO sensitivity was min-
imized to enhance image quality. The imaging area was further isolated using
low-reflectance cloths to suppress inter-reflection. For each illumination condi-
tion, we collected six images under varying exposures to produce HDR input
images. For the evaluations throughout this paper, the images are cropped using
an object mask and resized to 512px × 512px.
Lighting. Six LED and three halogen light sources, positioned roughly 1 meter
from the object, provided illumination. We used the “Weeylite S05 RGB Pocket
Lamp” and the “NPI PIS-UHX-AIR” for lighting. This setup enabled the use of
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Fig. 5: Illustration of six conditions in SpectraM14.

red, green, blue, yellow, magenta, cyan, and NIR lighting, with spectra validated
using a Hamamatsu Photonics Multichannel Analyzer C10027-01.

Calibration and Ground Truth Data. We measured the directions of lights
using specular reflections from a mirror sphere. Light intensity was standardized
across the visible spectrum by averaging RGB values from reflected light on a
white target. The ground truth normals were captured with a SHINING 3D
EinScan-SE scanner.

Evaluation Procedure. The design philosophy of this benchmark is to assess
the robustness and adaptability of spectrally multiplexed PS methods under re-
alistic lighting conditions, accounting for variations in channel numbers and the
presence of spectral crosstalk. For a comprehensive evaluation, we designed tasks
under five distinct conditions as shown in Fig. 5: Condition 1: Color sensor, no
crosstalk condition: Six colors of light (red, green, blue, cyan, yellow, magenta)
were each independently illuminated and observed with an RGB sensor. After-
ward, the channels of RGB were averaged. Condition 2: Color sensor, weak
crosstalk condition: Three colors of light (red, green, blue) were simultaneously
illuminated and observed through each channel of the RGB sensor. Condition
3: Color sensor, strong crosstalk condition: Three colors of light (cyan, yellow,
magenta) were simultaneously illuminated and observed through each channel
of the RGB sensor. Condition 4: NIR sensor, no crosstalk condition: Light at
wavelengths of 750 nm, 850 nm, 880 nm, 905 nm, and 940 nm were each inde-
pendently illuminated and observed with a monochrome sensor corresponding to
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each wavelength. Condition 5: NIR sensor, spatially-varying lighting condition:
New images were created by averaging two images taken under the conditions
mentioned above. The combinations were (750 nm, 850 nm), (850 nm, 880 nm),
(880 nm, 905 nm), (905 nm, 940 nm), and (940 nm, 750 nm).

6 Experiment

In this section, we evaluate our method on our SpectraM14. Our method is com-
pared with one SOTA optimization-based method [17] and one SOTA learning-
based method [46]. The former introduces a closed-form solution for spectrally
multiplexed photometric stereo applied to monochromatic surfaces with spa-
tially varying (SV) albedo. The latter presents a Spectral Reflectance Decompo-
sition (SRD) model, which disentangles spectral reflectance into geometric and
spectral components for surface normal recovery under non-Lambertian spectral
reflectance conditions. Unlike the compared methods, our approach does not as-
sume a specific lighting setup, whereas both methods presume the presence of
calibrated single directional light sources.
Training details. SpectraM-PS was trained from scratch on the PS-Multiplex
dataset until convergence using the AdamW optimizer, with a step decay learn-
ing rate schedule that reduced the learning rate by a factor of 0.8 every ten
epochs. We applied learning rate warmup during the first epoch and used a
batch size of 16, an initial learning rate of 0.0001, and a weight decay of 0.05.
Each batch consisted of three input training multiplexed images with three chan-
nels each. The training loss was computed using the Mean Squared Error (MSE)
loss function to measure ℓ2 errors between the predicted surface normal vectors
and the ground truth surface normal vectors. We measured the reconstruction
accuracy of our method by computing the mean angular errors (MAE) between
the predicted and true surface normal maps, expressed in degrees.
Computational Cost. The inference time of PS methods varies with the num-
ber of pixels and channels in the input image. For Condition 2 and 3 with a
512 × 512 × 3 image, the mean and standard deviation of inference times (in
sec) over 14 objects in SpectraM14 benchmark were: our method (3.42/0.85),
Lv et al . [46] (0.46/0.24) and Guo et al . [17] (2.38/1.10). Our architecture leads
to higher computational costs; however, none of the methods were suitable for
real-time processing (e.g ., 15 fps requires 0.06 sec/frame).
Ablation Study. We firstly validate the individual technical contributions of
our training dataset (i.e., PS-Multiplex) and the physics-free architecture (i.e.,
SpectraM-PS) using a synthetic evaluation dataset. Firstly, we validate the ef-
ficacy of our training dataset, PS-Multiplex, by adapting an existing universal
photometric stereo architecture designed for the conventional task (i.e., SDM-
UniPS [26]) to the spectrally multiplexed photometric stereo task. Since both
ours and SDM-UniPS take multiple observations and an object mask as input,
this adaptation straightforwardly involves training the model on PS-Multiplex
by treating each channel of an image as an individual image. Subsequently, we
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Table 1: Ablation analysis of the contributions of SpectraM-PS and PS-Multiplex.

Method
Non-

Lambertian Lambertian

Non-

Lambertian Lambertian

Non-

Lambertian Lambertian

SDM-UniPS [26] 12.9 (4.5) 12.4 (4.7) 15.0 (5.0) 21.7 (7.0) 14.4 (5.1) 15.2 (5.9)

[26] trained on PS-Multiplex 11.1 (3.6) 11.0 (3.9) 10.5 (2.9) 12.3 (3.9) 10.6 (3.9) 11.2 (3.7)

SpectraM-PS (Ours) 8.0 (2.7) 8.4 (2.7) 7.9 (2.4) 8.9 (2.9) 8.2 (3.2) 8.0 (2.5)

MAE (Piece-wise uniform) MAE (Uniform) MAE (Non-uniform) 

compare this model against our proposed SpectraM-PS to demonstrate the effi-
cacy of our dual-scale design with local patch embedding.

For evaluating the contribution of our architecture (SpectraM-PS) and train-
ing dataset (PS-Multiplex), we additionally rendered three-channel spectrally
multiplexed images representing six distinct surface material categories: (a) uni-
form, Lambertian; (b) piece-wise uniform, Lambertian; (c) non-uniform, Lam-
bertian; (d) uniform, non-Lambertian; (e) piece-wise uniform, non-Lambertian;
and (f) non-uniform, non-Lambertian. In uniform materials, every point on the
surface within a scene exhibits the same material properties. For piece-wise
uniform materials, each object in a scene is composed of the same material,
yet different objects possess distinct materials. Non-uniform materials feature
unique PBR textures assigned to each object. The rendering process for these
images was identical to that used for the PS-Multiplex datasets in each cate-
gory. We generated 100 scenes for each surface material category, and MAEs
(stds) are averaged over them. The results are presented in Tab.1. In summary,
SDM-UniPS [26] trained on our PS-Multiplex dataset demonstrates proper adap-
tation to the spectrally multiplexed photometric stereo task. Nonetheless, our
SpectraM-PS method significantly enhanced reconstruction accuracy, showcas-
ing an architecture-level improvement over SDM-UniPS for the spectrally multi-
plexed photometric stereo task, where the number of input channels is typically
much fewer than that of input images for conventional PS.

Comparative Evaluation on SpectraM14. The results are illustrated in Tabs. 2
to 6 and Fig. 6. Despite the fact that all existing spectrally multiplexed pho-
tometric stereo methods assume calibrated light sources and known directional
light source conditions, our proposed method significantly outperformed them.
This is because most of the real objects used in our experiment are neither
Lambertian nor convex, and do not conform to their assumptions. However,
our non-physical-based method successfully restored the normals very stably for
these objects. Furthermore, our proposed method enabled robust reconstruction
for all objects, despite having been trained only with RGB color images. This
result supports the efficacy of our approximation. Furthermore, unlike existing
methods that suffer from reduced estimation accuracy with increasing spectral
crosstalk, our approach demonstrates only minimal performance degradation.
Remarkably, our method excels in recovering a more realistic structure with
spatially-varying surface materials. This breakthrough implies that our network
can effectively achieve dynamic surface reconstruction across video frames in a
universal setting. We will detail this groundbreaking application in the next sec-
tion. Due to space constraints, not all results can be included here. However, all
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Table 2: Comparison in condition 1. The values are mean angular errors in degrees.

Method Object ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

Ours 8.6 11.2 13.0 7.3 12.2 6.1 11.5 5.0 5.7 7.5 10.3 5.1 6.1 12.2 8.9
Lv et al. [46] 20.4 17.0 21.1 13.9 23.1 10.7 21.2 16.6 10.9 15.9 19.0 16.4 13.2 18.6 17.1

Guo et al. [17] 22.6 15.2 20.7 13.4 27.1 7.2 31.3 24.8 8.0 18.2 24.5 11.4 10.2 29.3 18.9

Table 3: Comparison in condition 2. The values are mean angular errors in degrees.

Method Object ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

Ours 10.1 11.5 13.5 9.0 12.8 7.0 10.9 5.5 6.3 9.3 12.7 5.3 9.8 14.7 10.0
Lv et al. [46] 22.8 26.0 27.0 19.4 30.3 19.5 22.1 18.9 14.3 19.8 23.5 20.8 19.0 21.4 21.7

Guo et al. [17] 31.1 27.5 29.2 20.1 38.0 19.0 33.4 23.5 13.6 26.6 32.7 14.7 17.1 39.3 25.7

Table 4: Comparison in condition 3. The values are mean angular errors in degrees.

Method Object ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

Ours 12.0 12.8 15.8 11.0 16.5 5.9 12.3 9.8 6.9 9.8 14.6 6.3 7.5 20.1 11.6
Lv et al. [46] 38.5 34.1 38.2 32.4 40.1 38.2 36.6 29.6 38.2 35.1 38.2 36.6 38.4 30.9 36.0

Guo et al. [17] 46.0 42.6 56.3 37.6 57.1 45.6 76.0 48.0 29.9 62.1 49.8 50.2 52.8 73.7 51.7

Table 5: Comparison in condition 4. The values are mean angular errors in degrees.

Method Object ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

Ours 10.9 11.3 9.7 6.3 10.8 5.3 12.4 4.3 7.8 6.6 9.1 4.0 7.4 10.6 8.4
Lv et al. [46] 24.1 19.8 20.7 12.0 19.8 12.4 15.1 18.7 11.4 17.1 21.2 17.5 19.1 16.7 17.5

Guo et al. [17] 30.7 16.0 18.3 9.9 29.6 8.4 23.1 25.7 10.2 14.6 24.5 13.9 29.6 13.8 19.1

Table 6: Comparison in condition 5. The values are mean angular errors in degrees.

Method Object ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

Ours 10.9 11.0 9.9 7.3 11.0 4.7 13.3 4.8 7.9 6.5 9.8 4.2 7.4 10.4 8.6
Lv et al. [46] 29.8 26.2 28.9 22.8 28.9 25.8 21.9 24.6 18.7 24.7 27.6 24.8 22.3 27.6 25.0

Guo et al. [17] 40.0 27.3 29.2 23.2 33.3 25.0 29.3 30.1 20.0 26.7 31.6 26.3 25.0 27.2 27.8

results are comprehensively presented in the supplementary materials. Addition-
ally, the supplementary materials evaluate the impact of the spatial distribution
of light sources on the performance of the proposed method. We also offer an
in-depth discussion of each experimental condition therein.

7 Conclusion

In this work, we introduce an innovative approach to spectrally multiplexed
photometric stereo under unknown spatial/spectral composition. Turning spec-
tral ambiguity into a benefit, our method allows for the creation of training
data without the need for complex multispectral rendering. Our work signifi-
cantly broadens the scope for dynamic surface analysis, establishing a critical
advancement in the utilization of photometric stereo across multiple sectors. Our
proposed method exhibits several limitations. Firstly, there is unstable temporal
variation in the normal maps reconstructed by our method for dynamic surface
reconstruction. This instability arises from factors such as motion blur in certain
frames, image noise, or the influence of cast/attached shadows, which become
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Cond. 1 (separate, 6ch, no crosstalk), ID 1 

Ours Guo2022Lv2023
8.6° 20.4° 22.6°GT GT Ours Lv2023 Guo2022

Ch.1 Ch.2 Ch.3 Ch.4 Ch.5 Ch.6

Cond. 2 (multiplex, 3ch, low crosstalk), ID 5

Ours Guo2022Lv2023
12.8° 30.3° 38.0°GT

Split

Ch.1 Ch.2 Ch.3

GT Ours Lv2023 Guo2022

Ours Guo2022Lv2023
12.3° 36.6° 76.0°GT

Cond. 3 (multiplex, 3ch, high crosstalk), ID 7 

Split

Ch.1 Ch.2 Ch.3

GT Ours Lv2023 Guo2022

Ch.1 Ch.2 Ch.3 Ch.4 Ch.5

Ours Guo2022Lv2023
GT 9.1° 21.2° 24.5°

Cond. 4 (separate, 5ch, no crosstalk), ID 11 

GT Ours Lv2023 Guo2022

Ours Guo2022Lv2023
GT 7.4° 22.3° 25.0°

Ch.1 Ch.2 Ch.3 Ch.4 Ch.5

Cond. 5 (separate, 5ch, high crosstalk), ID 13

GT Ours Lv2023 Guo2022

INPUT

INPUT

INPUT

INPUT

INPUT

Fig. 6: Evaluation on SpectraM14. Full results are available in the supplementary.

more pronounced compared to conventional photometric stereo methods that
utilize numerous images. To recover clean and temporally stable normal maps,
we may need to consider temporal consistency and more actively utilize monoc-
ular cues. Additionally, while our method targets dynamic surfaces, it currently
requires several seconds to up to ten seconds per RGB image, which is far from
real-time processing. Considering industrial applications in the future, acceler-
ating the processing speed is a crucial challenge.
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