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Abstract. Digitizing 3D static scenes and 4D dynamic events from
multi-view images has long been a challenge in computer vision and
graphics. Recently, 3D Gaussian Splatting (3DGS) has emerged as a
practical and scalable reconstruction method, gaining popularity due to
its impressive reconstruction quality, real-time rendering capabilities, and
compatibility with widely used visualization tools. However, the method
requires a substantial number of input views to achieve high-quality scene
reconstruction, introducing a significant practical bottleneck. This chal-
lenge is especially severe in capturing dynamic scenes, where deploying
an extensive camera array can be prohibitively costly. In this work, we
identify the lack of spatial autocorrelation of splat features as one of the
factors contributing to the suboptimal performance of the 3DGS tech-
nique in sparse reconstruction settings. To address the issue, we propose
an optimization strategy that effectively regularizes splat features by
modeling them as the outputs of a corresponding implicit neural field.
This results in a consistent enhancement of reconstruction quality across
various scenarios. Our approach effectively handles static and dynamic
cases, as demonstrated by extensive testing across different setups and
scene complexities.
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1 Introduction

Building a realistic replica of static and dynamic environments can revolutionize
the world by transforming the way we interact, work, and engage online [67].
This ambitious vision has motivated a surge in recent research to develop new
representations and rendering techniques that allow for comprehensive and pho-
torealistic capture and reconstruction of scenes from multi-view imagery.

Recent advancements, notably the introduction of Neural Radiance Fields
(NeRF) [46], have shown exceptional quality in photorealistic 3D reconstruction
from casually captured images. This success comes from modeling a 3D scene as
a neural field [77] and optimizing it through volume rendering techniques. The
parameterization of the rendering volume using a continuous differentiable field
presents several benefits. It enables a compact representation of the scene’s geom-
etry and appearance through neural network weights, offering a more practical
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Fig. 1: SplatFields regularizes 3D Gaussian Splatting (3DGS) [28] by predicting the
splat features and locations via neural fields to improve the reconstruction under un-
constrained sparse views. We measure spatial autocorrelation (Moran’s I [47]) of splat
features in the local neighborhoods to assess their similarity and observe that better
reconstruction quality achieved by our method corresponds to higher Moran’s I. The
figure presents the results of a static reconstruction from ten calibrated images from
Blender dataset [46]. Metrics are reported on the full test set; the rendered view is a
novel view.

alternative to explicit volume modeling, which is often unfeasible. Crucially, for
the focus of this work, the continuous nature and the spectral bias [59] of Multi-
Layer Perceptrons (MLPa) introduce a spatial bias—nearby primitives are likely
to exhibit similar features as predicted by the neural field MLP. This concept
of implicitly modeling spatiotemporal signals has captured the research commu-
nity’s attention in recent years [19], marking a significant shift in methods for 3D
scene reconstruction and novel view synthesis. A substantial portion of research
has also focused on adapting these methods for sparse view setups [49, 87] and
enhancing training and rendering efficiency [8, 48,53].

3D Gaussian Splatting (3DGS) [28] offers an alternative 3D reconstruction
framework using point-based rasterization rather than computationally demand-
ing volume rendering. The method quickly gained traction within both the com-
puter vision and graphics communities due to its real-time rendering capabilities,
potential compatibility with the standard rasterization pipelines, and the intu-
itive way of editing and combining the reconstructed scenes. This makes 3DGS
a practical and scalable solution that is currently being rapidly adopted and
supported by many 3D development platforms and visualization tools [9,18,70].

3D Gaussian Splatting represents the 3D scene as a set of unordered 3D
Gaussian primitives, rendered from arbitrary views via rasterization, akin to
traditional point splatting techniques [4, 92, 93]. Each rendering primitive com-
prises trainable parameters such as position, orientation, scale, color, and opac-
ity, which are optimized by rendering the representation with respect to multi-
view input images. The flexible parameterization, coupled with the efficient ras-
terization framework, is key to high-quality novel view synthesis results at scale.
However, the flexibility of rendering primitives comes at the cost of requiring a
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large number of input views to fully constrain the optimization process, making
Gaussian splatting unsuitable for more practical captures from sparse views.

We analyze the performance of 3DGS and its 4D variants [82, 83] in sparse
input view scenarios. We first show that splat-based techniques, with their in-
dependently modeled set of rendering primitives, are particularly vulnerable to
the training view overfitting in such cases (see Fig. 1). In contrast, volumetric
rendering techniques [69] which imply shared feature representations appear to
be more robust in such scenarios as demonstrated in [44], at the expense of a
significantly increased training time and suboptimal rendering efficiency. This
key observation provides the basis for the method introduced in this work.

Our key idea is to regularize the behavior of independent Gaussian primi-
tives by utilizing neural networks that regress splat features at different levels.
First, inspired by [66], we aim to enforce the spatial bias through a hierarchical
convolutional decoder [54] that outputs a tri-plane representation [7] of deep
features associated with each splat. Please note that the tri-plane representation
and the associated network are utilized only during the optimization phase to
constrain the attributes of the Gaussian primitives; both are discarded thereafter
for accelerated rendering and compatibility with established splat rasterization
pipelines. The produced deep splat features are then utilized to condition neu-
ral fields [77] that model the geometric and appearance properties of Gaussian
splats at various locations and time steps. This design is equipped with posi-
tional encoding [46] to represent high-frequency details while retaining the good
spatial properties required to regularize Gaussian splatting.

We thoroughly analyze our representation (dubbed SplatFields) and demon-
strate its superior reconstruction quality under sparse input views compared to
alternative 3D Gaussian splatting techniques [16, 21, 28, 89]. We further present
an effective extension of our optimization framework to model dynamic 4D scenes
and propose a new forward-flow field formulation to model the dynamics of Gaus-
sian splats, warping rendering primitives into the observation space. We observe
that existing techniques that model 3D splat deformations either lack the mod-
eling capacity due to simplified assumptions on scene motion [83] or have an
insufficient spatial bias in the model [76], leading to suboptimal performance
in sparse setups. Therefore, we introduce a forward-flow neural network for 3D
Gaussians based on the recent ResFields MLP architecture [44]. Our method
outperforms recent baselines [76, 82, 83] while retaining the key properties of
Gaussian splatting, such as rendering efficiency and compatibility with existing
frameworks. In summary, our key contributions are:
– We propose a novel optimization strategy, named SplatFields, which intro-

duces spatial bias into the 3D Gaussian Splatting technique to stabilize the
optimization process under sparse views.

– We extend our formulation to dynamic scenes, demonstrating superior re-
construction quality compared to recent state-of-the-art methods [76,82,83].

– We provide a detailed analysis of various modeling strategies, confirming the
optimality of our framework for the tasks of sparse multi-view reconstruction.

The code is publicly available: markomih.github.io/SplatFields.

https://markomih.github.io/SplatFields


4 M. Mihajlovic et al.

2 Related Work

Implicit volumetric rendering [14]. Novel View Synthesis (NVS) enables the
generation of new images from arbitrary viewpoints using a given set of input
images [46, 69]. Over the past few years, the predominant method of choice for
NVS has been the Neural Radiance Field (NeRF) [46], which represents a 3D
scene as a continuous neural field [77]. This field takes as input a location and
view direction and predicts color and density. Then, the color of a pixel from an
arbitrary viewpoint is rendered by casting a ray and employing volume rendering,
which requires sampling multiple points along the ray and converting them into
color and density values by querying the neural field. Numerous extensions have
been proposed to handle various scenarios and setups such as sparse view recon-
struction [10,12,13,26,43,49,87,90], dynamic [5,36,51,52,56,72] and large scale
unbounded scenes [3,68]. However, the implicit volume rendering process is inher-
ently expensive due to the large number of sampled points whose predictions need
to be integrated. Despite recent efforts to accelerate NeRFs [7, 8, 35, 48, 60, 64],
achieving interactive rendering capabilities for regular scenes remains challenging
without additional post-processing or compression [15,61,84,86].

Point-based rendering. The limitations of volumetric rendering methods
have led to a resurgence in point-based techniques [1]. The seminal work by [20]
introduced the rasterization of fixed-size, unstructured point samples for NVS.
However, this naive rendering approach often results in aliasing artifacts and
images with holes. These issues have been partially addressed by employing
splatting techniques, where points are rendered with extended sizes to cover
multiple pixels, using shapes like circular ellipsoids or surfels [4, 92,93]. The era
of deep learning led to a new wave of point-based neural rendering methods which
allowed differentiable point rendering [33, 62, 75, 85] and combined point-based
rasterizers with 2D convolutional networks [2, 32,45].

3D Gaussian Splatting (3DGS [28]) utilizes the volumetric composition of
ordered splats to merge the advantages of volumetric representations with excep-
tional real-time rendering capabilities. Gaining rapid popularity due to its effi-
ciency, 3DGS has been incorporated into a wide range of downstream tasks [9,18].
Modifications to the original framework have enhanced its robustness to novel
views [89], improved geometry reconstruction [21], and reduced model size [16].
Nevertheless, 3DGS’s dependence on numerous independent splatting primitives
necessitates a large number of views for effective optimization, impacting its per-
formance in sparse view reconstructions. Our work introduces neural networks
to regularize splat behavior by regressing splat features based on their 3D loca-
tion, introducing the spatial autocorrelation bias which substantially enhances
reconstruction in sparse scenarios, as demonstrated in our experiments.

Dynamic Gaussian splatting. Several recent modifications of 3DGS have
been proposed to extend its capabilities to dynamic sequences. The dynamic
3DGS [42] extends the basic pipeline by optimizing the motion of each splatting
primitive and the change in its corresponding features. Although regularizations
such as the enforcement of local rigidity and isometry losses [29,55] help stabilize
the learning process to a certain extent, the overall pipeline still requires a large
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number of input views for each step and struggles to reconstruct scenes faithfully
from sparse observations. The works closest to ours are [82, 83], which utilize
MLPs to model time-dependent deformations of Gaussian splats. However, the
single MLP used for modeling deformation in [83] lacks the capacity to represent
non-trivial scene dynamics, while the parameterizations used in [76, 82] lack
a substantial spatial and temporal autocorrelation bias, leading to suboptimal
reconstructions in sparse view scenarios. We thoroughly analyze the behavior of
the aforementioned methods and compare them with our approach on several
dynamic scenes of varying complexity and view sparsity. We demonstrate that
our model, which combines a triplane-based CNN generator [7] for splat features
with ResFields-based [44] dynamics modeling, offers the optimal combination of
expressivity and robustness in sparse capture scenarios.

A growing body of work also addresses dynamic scenes [11, 25, 37, 39, 41, 88]
and template-based approaches [34] for modeling full-body [22, 23, 31, 50, 58,
79] and head avatars [57, 63]. In contrast, our model is capable of handling
unbounded, topologically varying generic dynamic scenes.

3 Preliminaries: 3D Gaussian Splatting

In the following, we provide a brief overview of the Gaussian splatting rendering
technique, which is a fundamental building block of our model.

Scene representation. 3DGS [28] parametrizes the 3D scene via static
3D Gaussian primitives {Gk}Kk=1 that contain the geometric and appearance
information. These rendering primitives are utilized for efficient differentiable
rasterization-based volume splatting.

The geometry of each Gaussian splat Gk is defined by the mean location
pk ∈ R3×1, the opacity value αk ∈ [0, 1], and the covariance matrix Σk ∈ R3×3

defined in the world space. Each splatting primitive Gk then induces the following
Gaussian distribution in 3D space:

Gk(x) ∝ exp

(
−1

2
(x− pk)

TΣ−1
k (x− pk)

)
, (1)

where the covariance matrix is modeled by the scaling vector sk ∈ R3 and the
rotation matrix Ok ∈ R3×3 (parameterized via quaternions) to ensure positive
semi-definiteness:

Σk = Oksks
T
kO

T
k . (2)

The appearance of splats is view-dependent and described by C coefficients
that are converted to color ck ∈ R3 via spherical harmonics, similar to [86].

Rendering. Given an arbitrary camera viewpoint described by the rotation
R ∈ R3×3 and translation t ∈ R3×1, we can obtain the 2D coordinates of the
splat center p′

k ∈ R2 on the image plane:

p′
k = (Rpk + t)1:2/(Rpk + t)3. (3)
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Further, we can obtain the 2D projection Σ2D
k of the covariance matrix on

the image plane:

Σ2D
k =

(
JkΣ

′
kJ

T
k

)
1:2,1:2

∈ R2×2, where Σ′
k = RΣkR

T , (4)

and the Jacobian Jk ∈ R3×3 is an affine approximation to the projective transfor-
mation (see [92] for details). The subscript 1:2 denotes row and column selection.

Using the image-space splat center and 2D covariance matrix, we obtain the
2D image-space Gaussian distribution induced by the corresponding splat:

G2D
k (x′) ∝ exp

(
−1

2
(x′ − p′

k)
T (Σ2D

k )−1(x′ − p′
k)

)
, (5)

Finally, we can predict the color c(x′) ∈ R3 at each pixel location x′ ∈ R2

by blending the splats, sorted according to their projection depth:

c(x′) =
∑K

k=1
ckαkG2D

k (x′)
∏k−1

j=1

(
1− αjG2D

j (x′)
)
, (6)

where αk is the learned opacity of the splat.
Training. The collection of splats {Gk}Kk=1 is optimized by minimizing the

following rendering loss w.r.t the input images via the Adam [30] optimizer:

L = (1− λ)L1 + λLD-SSIM, (7)

where the first term is a standard L1 loss between the target and rendered im-
ages, and LD-SSIM is a differentiable version of structural similarity index [74].
As this optimization is highly sensitive to a local minima, 3DGS additionally em-
ploys periodic adaptive densification and pruning of splats through randomized
sampling. We refer to [28] for further details.

4 SplatFields: Neural Gaussian Splats

Limitations of 3DGS. Modeling 3D scenes with irregularly spaced point prim-
itives offers significant flexibility and facilitates rapid and efficient optimization
when an extensive number of training views is provided. However, with limited
views, these independent point primitives are prone to overfitting. Therefore, we
advocate for integrating a spatial autocorrelation bias within the splats. This
can be accomplished by deriving splat features through implicit neural models,
presenting a viable method to constrain and regularize the otherwise ill-posed
optimization in sparse-view environments.

Key insight. We analyze the optimization procedure of 3DGS under sparse
view inputs and observe (Fig. 1) that the splats do not exhibit any local structure
and display incoherent patterns. To quantify the local spatial autocorrelation of
each splat, we select the five nearest neighbors and measure Moran’s I [47] of the
splat’s attributes (color, opacity, covariance). We note that a low level of spatial
autocorrelation is associated with overfitting to training views, which impedes
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Fig. 2: Overview. SplatFields takes as input a point cloud (e.g., initialized from
SfM [65]), for which it models the geometric (position pk, scale sk, rotation Ok) and
appearance attributes (color ck, opacity αk). These attributes represent the point set
as 3D splats that are then rendered with the 3DGS rasterizer [28]. First, the point
location set {pk ∈ R3}Kk=1 is encoded into features {fk}Kk=1 by sampling the tri-plane
representation generated by a CNN generator gθ to provide a deep structural prior [71]
on the feature values. These values are then propagated through a deformation MLP
fΘ to refine the point locations p̂k. The new point set, along with the features, is
then propagated through a series of compact neural fields to predict the properties of
rendering primitives {Gk}Kk=1 that are rendered with respect to arbitrary viewpoints.
During the optimization, we adopt the adaptive density control [28] to periodically
prune and densify the point set. SplatFields seamlessly adapts to 4D reconstruction by
conditioning neural fields on the time step t and introducing an extra time-conditioned
flow field. Gray blocks indicate learnable modules.

the learning of a structured 3D representation. This correlation is further show-
cased in our discussion and empirical evidence presented in Tab. 1.

The core idea of our method is to introduce a spatial bias during the opti-
mization phase, which encourages nearby primitives to share similar features,
thereby emulating the more continuous behavior characteristic of widely used
implicit representations for volumetric rendering [44, 46, 69]. However, directly
enforcing this constraint—ensuring local neighborhoods exhibit common pat-
terns—yields sub-optimal performance (Tab 2) for volumetric point represen-
tations. To overcome this, we propose a novel neural framework, termed Splat-
Fields, designed to adaptively regularize the optimization of 3DGS. Importantly,
SplatFields straightforwardly extends to 4D, facilitating the reconstruction of
dynamic scenes.

SplatFields (Fig. 2) builds on the core property of neural networks to discover
local patterns and fit low frequencies of a signal first [59, 71]. To that end, we
implement SplatFields as a neural generator that infers the attributes of Gaus-
sian splats. The neural generator combines key properties of convolutional neural
networks, which model local structured patterns, with multi-layer perceptrons
that serve as global approximators. This approach straightforwardly extends to
4D reconstruction by conditioning the MLP networks on time t.

Deep structural prior. First, we follow the idea of a deep image prior [66,
71] and aim to utilize CNNs to model locally structured patterns of splat fea-
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Table 1: Impact of the spatial autocorrelation on static scene reconstruction.
Results on Owlii [78] dataset. See Section 5.1 for discussion

Train Test Spatial Autocorrelation
View Synthesis Novel View Synthesis (Moran’s I) ↑

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ Color Opacity Covariance

3DGS [28] 99.85 44.07 0.493 91.68 27.50 8.881 0.547 0.670 0.232
SplatFields3D 98.87 37.58 3.274 96.13 30.33 5.973 0.935 0.874 0.431

tures. In the original work [71], the CNN takes as input low-dimension Gaussian
noise ϵ ∼ N (0, I) and gradually upsamples it into the desired image resolution;
the weights of the network are then optimized to fit the observed noisy image. In
our case, we aim to generate a 3D field of splat features; as 3D CNNs are com-
putationally prohibitive, we use 2D CNNs that generate axis-aligned tri-plane
representations [7,54]. Overall, the step is a splat-based variation of the approach
utilized in [66] for a fully volumetric NeRF-based sparse rendering.

Specifically, given a randomly initialized noise ϵ, the convolutional network
gθ regresses the three H ×W -resolution planes F:

F = gθ(ϵ) ∈ R3×H×W×l , (8)

where l denotes the feature dimension and θ indicates learnable network weights.
The overall CNN structure resembles the one originally proposed in [66].

Neural splat fields. Next, the splat center pk is projected onto each of the
three feature planes to obtain feature vectors via bilinear interpolation. These
features are then concatenated along the feature dimension and denoted as fk ∈
R3l. The feature and the initial point are propagated through a deformation
MLP fΘ which refines the position of the input point:

p̂k = fΘ(pk, fk, t), (9)

where t indicates an optional time step input provided in the case of dynamic
4D reconstruction. Finally, the updated point location, along with the inferred
feature vector, is provided as input to a set of compact (5-6 layers, 64-128 neu-
rons) neural fields {fΘc , fΘs , fΘα

, fΘO
} to obtain properties of Gaussian splats.

Rather than using spherical harmonics to model color, we directly predict view-
dependent color. The obtained splats are then rendered w.r.t. the input views
to optimize the learnable modules by minimizing the photometric loss (Eq. 7).

Splat norm regularization. For static reconstruction, we add additional
norm regularization ||p̂k||2 to the loss function to bias the resulting splats to not
deviate significantly from the origin, similar to the floor loss considered in [42].

4D reconstruction. SplatFields is a flexible representation that straight-
forwardly extends to 4D reconstruction of dynamic scenes. It models temporal
variations in the splat features by conditioning the corresponding neural field
MLPs {fΘ, fΘc , fΘs , fΘα

, fΘO
} on the time step t. Additionally, we add a time-

conditioned flow field fp to warp the center of Gaussians pk to the desired time
step t. To enhance the expressivity of the neural fields and allow for complex ge-
ometry changes, we utilize the recently proposed ResField MLP architecture [44].
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Table 3: Ablation study of SplatFields. Blender dataset [46], setup from Tab. 2

12 Views 10 Views 8 Views 6 Views 4 Views
SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

basic (MLP-only) 89.63 24.82 88.69 23.93 87.79 23.32 85.70 21.58 81.98 19.07
+L2-norm reg. 89.66 24.98 88.81 24.21 87.98 23.64 85.93 21.79 82.44 19.46
+tri-CNN 90.83 25.23 90.04 24.66 88.01 23.19 85.91 21.46 81.28 18.72

full model 91.18 25.80 90.32 24.94 88.94 23.98 86.62 22.26 82.27 19.16

5 Experiments

5.1 Static Scene Reconstruction

Impact of the spatial autocorrelation. First, we conduct a toy experiment
to verify our intuition that the absence of the spatial bias hampers the recon-
struction quality from sparse views. We utilize four sequences from the Owlii
dynamic dataset [78]1 and select the first frame from each. Each scene comprises
nine training views and one validation view, on which we report training and
test metrics. We compare 3DGS [28] and SplatFields (both initialized from vi-
sual hulls) and observe (Tab. 1) that 3DGS demonstrates extremely high fitting
quality on the training views while poorly generalizing to the novel views. In con-
trast, SplatFields demonstrates a slightly lower training quality while achieving
higher reconstruction quality on novel views. This observation is followed by
computing the Moran’s I metric [47] which shows the amount of spatial corre-
lation between nearby splat features; as hypothesized, the lower test-time error
is in line with the increased level of spatial consistency of all groups of splat
features. Fig. 1 presents both qualitative and quantitative results from the same
experiment conducted on a scene from the Blender dataset [46].

Static reconstruction from sparse views. We benchmark SplatFields on
Blender [46] under 6 and 12 input views (see Sup. Mat. for more extensive bench-
marking). The main goal of this section is to showcase the efficiency of the utilized
spatial regularization for 3DGS methods. We, therefore, focus on comparison
against the recent splat-based techniques [16, 21, 28, 89] and SparseNeRF [73],
leaving the comprehensive comparison against a broader range of NeRF-based
methods for more challenging dynamic scenarios considered in Sec. 5.2.

Extensive quantitative results presented in Tab. 2 demonstrate that Splat-
Fields consistently outperforms the respective baselines across varying numbers
of input views. The achieved improvement is also verified by visually sharper re-
constructions outlined in Fig. 3. More importantly, we observe that the relative
gap in performance between our method and the baselines is increasing as the
input views become more scarce, which confirms our intuition of the spatial bias
as a powerful regularizer in such scenarios. We further validate our improvement
on the real-world DTU dataset [27] for the challenging task of 3-view recon-

1All experiments presented in this publication were performed by ETH Zürich. ETH
Zürich obtained the licenses for the data used in such experiments.
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Fig. 3: Static reconstruction of Blender [46] scenes for the setup from Tab. 2
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12 Input Views
mean Toy Ficus Hotdog Chair Mic Ship Drums Materials

SparseNeRF [73] - 23.02 18.19 - 26.20 23.26 20.81 19.21 20.80
SparseNeRF wo. depth 22.92 24.00 18.84 27.52 27.11 23.35 21.84 19.17 21.50
SuGaR [21] 21.78 23.77 23.08 22.36 25.72 18.72 21.09 19.55 19.94
ScaffoldGS [40] 23.82 23.65 22.78 26.34 25.80 28.28 21.17 20.47 22.06
Mip3DGS [89] 24.86 24.65 25.62 26.53 26.25 28.40 22.52 21.98 22.94
3DGS [28] 25.29 25.14 25.92 27.51 27.10 29.02 22.79 22.10 22.71
Light3DGS [16] 25.39 25.08 27.53 27.10 27.40 28.04 23.02 22.07 22.90
2DGS [24] 25.62 25.50 25.62 29.24 28.52 28.07 23.08 22.19 22.75

3DGS w. LMoran 25.44 25.26 26.55 28.96 27.91 27.87 22.33 21.98 22.65
SplatFields3D 25.80 26.98 26.27 29.45 27.42 27.60 23.78 22.55 22.32

6 Input Views
SparseNeRF [73] - 20.86 18.03 - 22.75 22.40 19.33 16.24 19.54
SparseNeRF wo. depth 20.86 22.62 17.63 25.84 22.65 20.72 19.85 17.25 20.30
SuGaR [21] 19.07 19.89 20.61 20.80 21.92 18.26 17.72 16.86 16.53
ScaffoldGS [40] 19.65 18.21 20.72 19.48 22.20 24.31 16.47 17.21 18.62
Mip3DGS [89] 20.04 19.39 21.81 19.70 21.72 24.44 17.02 17.72 18.52
3DGS [28] 20.62 19.80 22.25 21.16 22.75 25.21 17.58 17.77 18.48
Light3DGS [16] 20.76 20.25 23.12 20.66 22.69 24.89 17.83 18.02 18.63
2DGS [24] 20.74 19.38 21.93 23.85 23.26 24.48 16.92 17.91 18.17

3DGS w. LMoran 21.03 20.34 23.05 23.92 22.50 24.64 17.20 18.14 18.48
SplatFields3D 22.26 22.41 22.26 26.19 25.03 24.84 19.33 18.97 19.05

Table 2: Sparse static scene reconstruction of Blender [46] scenes. Reported
numbers indicate PSNR metric on the novel views (“-” denotes failed runs). Colors
denote the 1st , 2nd , and 3rd best-performing model. See Sec. 5.1 for discussion
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Table 4: Monocular reconstruction of dynamic sequences from the NeRF-DS
dataset [80] with recent state-of-the-art methods. The forward slash in FPS indicates
the rendering speed without the neural network inference when the rendering primi-
tives are extracted and stored for each frame vs. with the neural network inference

Resources mean↑ LPIPS↓ (×102)
FPS ↑ t ↓ PSNR SSIM mean Sieve Plate Bell Press Cup As Basin

3D-GS [28] 120+ 15 m. 20.29 78.16 29.20 22.47 40.93 25.03 29.04 25.48 29.94 31.53
TiNeuVox [17] < 1 30 m. 21.61 82.34 27.66 31.76 33.17 25.68 30.01 36.43 39.67 26.90
4DGaussians [76] 120+/50 30 m. 23.68 83.22 21.06 16.39 23.80 21.84 21.68 19.06 22.06 22.57
HyperNeRF [52] < 1 1 d. 23.45 84.88 19.90 16.45 29.40 20.52 19.59 16.50 17.77 19.11
Deformable3DGS [83] 120+/30 1 h. 23.54 84.05 19.79 15.30 25.04 15.93 29.89 15.38 17.88 19.10
NeRF-DS [80] < 1 1 d. 23.60 84.94 18.16 14.72 19.96 18.67 20.47 17.37 17.41 18.55
SplatFields4D 120+/30 1 h. 23.84 85.17 17.86 14.72 22.43 16.10 19.26 15.67 17.71 19.11

4DGaussians [76] Deformable3DGS [83] SplatFields4D Ground Truth

P
re

ss
P
la

te

Fig. 4: Monocular reconstruction of sequences from [80] on the setup from Tab. 4.

struction (Fig. 5) and demonstrate consistent improvement over NeRF- [66] and
splatting-based [24,28] baselines. See Sup. Mat. for more extensive evaluation.

Please note that all the methods, including ours, demonstrate real-time ren-
dering performance with high interactive rates (120+FPS) during test time since
the generator gθ is discarded after the training completion. We refer the reader
to the supplementary for further details.

Ablation of the triplane CNN generator. We validate the impact of the
proposed triplane CNN generator on the performance of the SplatFields model
in Tab. 3. Here, the basic pipeline implies using only the set of MLPs to directly
predict the splat rendering features (opacity, scale, etc.) and point displacements
from the initial splat locations, without conditioning on the deep features pro-
duced by the triplane CNN. Results indicate that utilizing the deep features
regressed by a CNN improves the quality, with the splat L2-norm regularization
term further benefiting the reconstruction. Note that the regularization has a
marginal improvement on the results of our pipeline that does not utilize the
CNN feature generator, demonstrating the synergy of both modeling strategies.

5.2 Dynamic Scene Reconstruction

Monocular dynamic reconstruction. We further evaluate our method on
seven sequences of varying lengths (ranging from 424 to 881 frames) from the
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GT SplatFields3D 2DGS [24] 3DGS [28] ZeroRF [66]

Mean PSNR↑ 21.07 20.70 19.40 19.10

Fig. 5: Three-view reconstruction on DTU [27]; PSNR are averaged across all
15 scenes. See Tab. ?? for the individualized scores.

NeRF-DS dataset [80] and compare our method against both NeRF- [17,52,80]
and 3DGS-based [76,83] dynamic reconstruction baselines.

The results are reported in Tab. 4, and the qualitative comparison of the
3DGS-based methods is presented in Fig. 4. The results demonstrate that our
method achieves competitive or superior reconstruction quality across all se-
quences, while also maintaining real-time rendering capabilities and facilitating
accelerated training processes. However, we observed that the sequences in the
dataset involve relatively small motion and large static parts. Therefore, we
further analyze SplatFields on multi-view sequences with more challenging dy-
namics.

Multi-view dynamic reconstruction. Following [44], we use 4 sequences
from Owlii [78]. We opt for the dataset as it has realistic and more complex
motion compared to the commonly utilized synthetic sequences [56]. Each se-
quence is 100 frames long and comprises multi-view video streams, where we
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Table 5: Multi-view reconstruction of dynamic sequences from the Owlii dataset
[46] under varying number of input views. The reported metric is PSNR averaged
across novel views. The forward slash in FPS indicates the rendering speed without
the neural network inference when the rendering primitives are extracted and stored
for each frame vs. with the neural network inference.

Resources 10 Input Views
FPS↑ t↓ mean Dancer Exercise Model Basketball

4D
N

eR
F
s DyNeRF [36,44]

<1

1 day 29.70 28.22 30.64 29.95 30.00
TNeRF [36,44] 1 day 30.39 29.12 31.00 30.71 30.71
DNeRF [44,56] 1.5 day 30.25 29.39 30.63 30.63 30.35
Nerfies [44,51] 1.5 day 30.70 29.57 31.08 30.53 31.60
HyperNeRF [44,52] 2 days 30.36 30.09 30.39 30.88 30.08

Sp
la

tt
in

g

4D-GS [82] 120+ 10h 28.05 28.11 29.09 29.06 25.94
Deformable3DGS [83] 120+/30 8h 27.76 27.86 28.78 26.47 27.95
4DGaussians [76] 120+/50 2h 29.80 28.46 30.21 30.69 29.82

SplatFields4D (30k it) 120+/30 2h 30.88 30.46 30.78 31.14 31.15
SplatFields4D (40k it) 120+/30 3h 30.96 30.57 30.85 31.20 31.24
SplatFields4D (100k it) 120+/30 7h 31.12 30.79 30.99 31.33 31.39
SplatFields4D (200k it) 120+/30 14h 31.32 31.05 31.16 31.50 31.58

8 Input Views

Sp
la

tt
in

g

4D-GS [82] 120+ 10h 26.20 26.99 26.34 27.41 24.07
Deformable3DGS [83] 120+/30 8h 26.06 26.77 26.24 25.61 25.62
4DGaussians [76] 120+/50 2h 28.16 27.34 28.10 29.60 27.62

SplatFields4D (30k it) 120+/30 2h 29.46 29.38 28.84 29.80 29.83
SplatFields4D (40k it) 120+/30 3h 29.53 29.46 28.90 29.85 29.90
SplatFields4D (100k it) 120+/30 7h 29.66 29.66 29.01 29.96 30.02
SplatFields4D (200k it) 120+/30 14h 29.84 29.92 29.16 30.10 30.18

6 Input Views

Sp
la

tt
in

g

4D-GS [82] 120+ 10h 21.42 22.89 20.80 21.60 20.40
Deformable3DGS [83] 120+/30 8h 24.46 25.37 24.31 24.12 24.02
4DGaussians [76] 120+/50 2h 26.52 26.13 26.27 27.34 26.36

SplatFields4D (30k it) 120+/30 2h 28.04 28.36 27.31 28.44 28.07
SplatFields4D (40k it) 120+/30 3h 28.10 28.43 27.35 28.48 28.13
SplatFields4D (100k it) 120+/30 7h 28.22 28.61 27.44 28.56 28.25
SplatFields4D (200k it) 120+/30 14h 28.36 28.84 27.54 28.67 28.39

4 Input Views

Sp
la

tt
in

g

4D-GS [82] 120+ 10h 17.40 17.70 16.86 18.35 16.71
Deformable3DGS [83] 120+/30 8h 20.04 21.42 19.56 19.71 19.45
4DGaussians [76] 120+/50 2h 21.31 21.49 21.05 21.90 20.80

SplatFields4D (30k it) 120+/30 2h 21.88 22.60 20.73 21.83 22.34
SplatFields4D (40k it) 120+/30 3h 21.89 22.63 20.74 21.83 22.35
SplatFields4D (100k it) 120+/30 7h 21.92 22.73 20.75 21.82 22.36
SplatFields4D (200k it) 120+/30 14h 21.95 22.83 20.76 21.83 22.39

Table 6: Flow model ablation study. Multi-view reconstruction task from Tab. 5.
See Sec. 5.2 for discussion. Symbol “-” denotes failed runs

10 Views 8 Views 6 Views 4 Views
SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑

DCT [72] 95.10 28.72 94.53 27.34 94.00 26.42 90.94 21.68
DCT+ResFields [44] 96.56 30.99 96.05 29.66 95.46 28.22 91.47 22.12
offset [76] 95.20 28.91 94.74 27.83 94.15 26.73 90.85 21.63
offset+ResFields [44] 96.75 31.24 96.28 29.83 95.68 28.38 91.41 21.62
SE3 [83] 95.33 29.05 94.78 27.95 94.39 27.09 91.13 22.09
SE3+ResFields [44] 96.81 31.32 96.28 29.84 95.69 28.36 91.60 21.95
scaled SE3 [91] 95.05 28.78 92.42 23.88 - - - -
scaled SE3+ResFields [44] 96.74 31.30 96.08 29.83 95.63 28.64 92.54 23.55
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vary the number of input views from 4 to 10 to study the robustness of our and
baseline models. For evaluation, we use 100 images of a rotating camera around
the performer, where each image comes from a different time step.

We provide a comprehensive comparison of the SplatFields4D against the
respective baselines in Tab. 5. Dynamic NeRF methods [36,51,52,56] improved
with ResFields [44] generally require significantly longer training times, while
recent dynamic 3DGS-based methods [76, 82, 83] showcase suboptimal model-
ing capabilities and performance in the considered sparse scenario. Our method
demonstrates a clear metric improvement over the baselines while retaining the
key properties of 3DGS, such as interactive rendering speed and compatibility
with the existing visualization pipelines. We specifically emphasize the difference
in performance between our and the recent closely related method [82], where
our combination of the triplane features and MLP-based dynamics modeling
proves to be more robust compared to the HexPlane-based [6] approach in the
case of rapid motion and sparse camera setups.

Splat flow model ablation. We compare the flow field fp modeling defor-
mations via DCT basis [38], translation vectors [56], SE(3) transformation [51],
and via scaled SE(3) transformation [91]. We also ablate the impact of imple-
menting neural fields via ResFields [44] to further increase the modeling capacity
of our pipeline without affecting its training speed. The results (Tab. 6) suggest
that modeling flow as SE(3) achieves slightly better quality when the number of
views is large. We further observe that implementing neural fields via ResFields
further boosts the reconstruction quality across all setups.

6 Conclusion

In this work, we proposed an effective optimization strategy that introduces
spatial and connectivity biases into the 3D Gaussian splats during optimization
process by modeling them through a continuous neural field. We demonstrated
that our optimization strategy considerably enhances reconstruction quality in
the sparse setups, without the need for any external, data-driven priors. Fur-
thermore, we introduced an effective extension of our method for reconstructing
dynamic sequences and demonstrated state-of-the-art results under sparse views.

Limitations and future work. The performance of our method notice-
ably diminishes in extremely sparse and highly dynamic scenarios, such as those
involving rapid motion with as few as four views, exemplified by the Owlii
dataset [78]. This performance is inferior when compared to the best-performing
NeRF-based methods in similar sparse configurations [44]. Therefore, further ex-
ploration is required to narrow the performance gap between 3DGS- and NeRF-
based methods in sparse settings. Future work should also consider incorporating
learning-based priors [10,26,81,87] as promising directions for advancement.
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