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1 Training Details

Emu Video Fine-tuning. Following the EMU Video [3], we freeze the spatial
convolutional and attention layers of Emu Video, while only fine-tuning the
temporal layers. We use the standard diffusion loss for this fine-tuning process.
The Emu Video model is fine-tuned over a period of 5 days using 80 A100 GPUs,
with a total batch size of 240 and a learning rate of 1 x 1075. Although the 3D
consistency continues to improve with extended fine-tuning, we do not observe
any decline in visual quality. One possible explanation is the static nature of
the spatial layers and the image-conditioned network, which ensures that the
generated 360° videos maintain high fidelity with the high-frequency texture
components of the input.

VFusion3D. The architecture of VFusion3D is identical to that of LRM [1],
except for two minor modifications. The first is the use of DINOv2 [§] instead
of DINO [1] to enhance image feature extraction capabilities. The second mod-
ification is that we have reduced the number of NeRF MLP layers to 4 instead
of 10, as empirically suggested by the LRM ablation study.

In addition to the training details provided in the main paper, we use 0.95
as the second beta parameter of the AdamW optimizer [7]. We apply a gradient
clipping of 1.0 and a weight decay of 0.05. This weight decay is only applied to
weights that are neither bias nor part of normalization layers. We use Bfloat16
precision for training and inference.

Fine-tuning with 3D Data. We use 32 GPUs to fine-tune the pre-trained
VFusion3D model with 3D data. At this stage, we also employ the L2 loss func-
tion for novel view supervision. The model undergoes fine-tuning with a dataset
of 100K rendered multi-view images over 10 epochs, adhering to a cosine learning
rate schedule. We set the initial learning rate as 1 x 10~4. All other parameters
remain consistent with the VFusion3D pre-training phase.
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2 Visualizations and Test-time Processing

Video Comparison Results. We provide video comparison results in the
project page that cover all the qualitative results presented in the main paper.
Our project page also includes additional comparisons. These additional results
are based on the Single Image 3D Reconstruction and Text-to-3D Generation
experiments discussed in the main paper. All input images used were never seen
by the model during training.

Test-time Processing. Following standard procedures [4, 10], we utilize a
heuristic function to process all input images during testing. The initial steps
involve eliminating the image background using rembg with isnet-general-use [9],
then extracting the salient object. Following this, we adjust the size of the salient
object to an appropriate scale and position it in the center of the input image.

3 Benchmarking on Public Datasets

We present a comparison using the GSO [2] dataset, from which we render 996
objects (excluding some redundant or very similar objects) with each object
having 16 rendered views. These views are rendered with a fixed elevation angle
of 20°. The azimuth angle is sampled uniformly between 0° and 360°. The input
image is the first rendered view, namely, the view with an azimuth of 0°.
Results are shown in Table 1, which demonstrates that VFusion3D signif-
icantly outperforms the baselines by large margins. This further demonstrates
that utilizing synthetic data to scale 3D generative models holds great promise.

Method ~ PSNRt SSIM{ LPIPS|

OpenLRM 14.21 0.820 0.226
LGM 13.53 0.811 0.254
VFusion3D 20.89 0.848  0.127

Table 1: Performance Comparison on the GSO Dataset: VFusion3D significantly out-
performs the baselines by substantial margins.

4 Discussions on Limitations and Potential Solutions

The limitations section of the main paper presents that the fine-tuned video
generator does not always yield flawless results. This is particularly noticeable
in scenarios involving vehicles and texts, where the model sometimes generates
multi-view results that lack 3D consistency. Additional examples of this are
presented in Figure 1.

One way to assess the failure rate and check the pixel-level multi-view corre-
spondence is to run Structure from Motion (SfM) algorithms, which require pixel-
level correspondences, on generated multi-view frames. We run VGGS{M [13] on
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Fig. 1: Samples of failure cases generated by the fine-tuned video diffusion
model. In these instances, our fine-tuned video diffusion model struggles to generate
high-quality multi-view sequences of text-related content and vehicles, resulting in dis-

tortions and 3D inconsistencies. Most of these failure cases are subsequently filtered
out by the designed filter.

we

1000 fine-tuned EMU Video-generated multi-view sequences. Among these se-
quences, VGGS{M is able to obtain reasonable pose estimations (at least accurate
poses for 8 views) over 70% of the time. Examples are presented in Figure 2. This
demonstrates that the generated sequences generally have reasonable pixel-level
3D correspondence, but there is significant room for further improvements. En-
forcing stronger multi-view consistency constraints [5,11,12,14] during the video
fine-tuning stage is a plausible solution. This could involve the use of epipolar
constraints and 3D-aware Pliicker ray embeddings.

5 Conversation to Meshes

We use the marching cubes algorithm [6] to extract meshes from the generated
NeRF results. Visualizations of sample converted meshes are shown in Figure 3.
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Fig.2: VGGSfM reconstruction on all 16 generated frames. Our fine-tuned
EMU Video typically produces multi-view sequences with reasonable pixel-level corre-
spondences.
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Fig. 3: Samples of converted meshes. We can create detailed and accurate meshes
from the generated NeRF results in seconds.

11. Tang, S., Zhang, F., Chen, J., Wang, P., Yasutaka, F.: Mvdiffusion: Enabling
holistic multi-view image generation with correspondence-aware diffusion. arXiv
preprint 2307.01097 (2023) 3

12. Voleti, V., Yao, C.H., Boss, M., Letts, A., Pankratz, D., Tochilkin, D., Laforte, C.,
Rombach, R., Jampani, V.: Sv3d: Novel multi-view synthesis and 3d generation
from a single image using latent video diffusion. arXiv preprint arXiv:2403.12008
(2024) 3

13. Wang, J., Karaev, N., Rupprecht, C., Novotny, D.: Vggsfm: Visual geometry
grounded deep structure from motion (2023) 2

14. Yang, J., Cheng, Z., Duan, Y., Ji, P., Li, H.: Consistnet: Enforcing 3d consistency
for multi-view images diffusion. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 7079-7088 (2024) 3



	Supplementary Material of VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models

