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We present training details, and additional quantitative and qualitative re-
sults in the following sections.

1 Training Details

1.1 Network Architecture

We employ a ResNet50 encoder similar to other approaches, IPDF [1], Spyro-
Pose [3], and Normalizing Flow [4]. We employ two 4-layer MLPs with ReLU
activations with 256 dimensional hidden layers each for predicting SDF proba-
bility and feat probability. Cube positional encoding comprises encoding trans-
formed vertices of a cube with a rotation matrix. The positional encoding is
applied on eight 3D vertices of the cube with 3 frequencies and concatenated
to create a 144-dimensional embedding to represent the rotation matrix. The
encoder takes the image and predicts a 2048-dimensional image embedding. We
employ two linear layers to convert rotation embedding and image embedding
to 256 dimensional embeddings which are then added and passed through two
MLPs to predict the probabilities. Symsol dataset doesn’t provide CAD models.
It was easier to get models for Symsol-I as they are readily available in any 3D
library and are canonically aligned with the dataset. For Symsol-II, we employed
differentiable rendering initially using silhouettes to estimate camera intrinsics
because the shapes were canonically aligned. We employ differentiable rendering
to transfer texture from images to the CAD models using the learned intrinsics
and the rotation labels.

1.2 SurfEmb Network

We follow the default configuration provided in SurfEmb [2] and train using
PBR-rendered data from the CAD models for 100k iterations. We extract the
SurfEmb feature MLP which is employed in our pipeline to estimate feature
based probability. SurfEmb Feature MLP employs a 4-layer Siren MLP which
takes a single 3D point and predicts the corresponding feature vector.
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1.3 SDF Network

We employ a 4-layer Siren MLP with 256 dimensional hidden layers which takes a
single 3D point and predicts the corresponding SDF value. We randomly generate
3D points and estimate SDF values for those 3D points using the CAD model.
The 3D points and SDF values are used for training the SDF network which
remembers the CAD model implicitly by learning SDF values for 3D points.

1.4 Training

We render a NOCS image for every input image using the CAD model and
rotation label. We sample 100 pixels inside the mask to extract a 3D point
cloud with 100 points. We rotate this with the inverse of ground truth rotation
to get the image-aligned point cloud. We employ 4096 rotations to pair with
each image to learn the distribution for that specific image. We sample 3000
rotations from the top 20000 rotations in the precomputed distribution. We
sample 1095 rotations randomly from a uniform distribution. We also add the
ground truth rotation in the employed rotations. We can precompute the scores
for every image before the start of training or we can compute them online. We
prefer to compute them online so that we can sample randomly without getting
restricted to a grid. For each rotation, we compute both SDF probability and
feature probability and use them as supervision for probabilities predicted from
the network. We employed a batch size of 128 for the network to train on the
Symsol dataset and 64 for the T-Less dataset and ModelNet10-SO3.

1.5 Mode Focused Sampling

For each image, we sample 4K rotations to learn the pose distribution. Since we
can precompute the distribution for a given training image, we can sample more
rotation matrices near the modes to learn a much sharper distribution. Mode
focused sampling helps in learning sharper distribution which is possible because
of the precomputable distribution from CAD model through SurfEmb features
and SDF based shape networks.

2 Additional Quantitative results

2.1 ModelNet-SO3

We perform experiments on ModelNet-SO3 to understand the category level gen-
eralization capabilities of our approach. ModelNet-SO3 comprises 10 categories
which contain synthetic renderings of around 100 CAD models for each cate-
gory as the training set. The test set comprises synthetic renderings of unseen
instances of the same categories. We choose a single CAD model per category
which acts as a 3D representation of the category for training our Shape and
Feature experts. During training, we employ distribution supervision from the
chosen single CAD model per category. While we employ images from all the
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Table 1: Evaluations on ModelNet-SO3.

Metric IPDF NF Ours

AR@30◦ 0.735 0.774 0.705

Table 2: Evaluations on occluded real scenes of T-Less BOP using the Log-Likelihood
(LL) trained for 100k iterations.

Metric IPDF NF Ours

LL 5.31 6.23 6.64

provided synthetic renderings, the distribution supervision comes from the cho-
sen CAD model. Ideally, we would employ the same CAD model as the instance
present in the image, but it is difficult to train SurfEmb and SDF networks for
so many CAD models. Despite using distribution supervision from a single CAD
model per category, we achieve closer to the benchmark approaches, NF and
IPDF. We trained a separate model per category and presented the results in
Table 1.

2.2 T-Less BOP

We evaluate IPDF, our approach, and NF on T-less scenes with occlusions by
training on synthetic PBR data from the BOP challenge rendered from CAD
models. We trained both our approach and NF for 100k iterations. We achieve
better log-likelihood compared to NF as shown in in Table 2. Note that we
only trained and evaluated using allocentric rotation representation and ignored
translation component.

2.3 Spread on SYMSOL-I

Spread measures the expected angular deviation from all ground truth symmetric
annotations which measures the angular deviation and uncertainty around them.
We present spread results on SYMSOL-I dataset in Table 3. WE observe that
we have lower spread compared to NF at 100k while NF performs better than
us after 900k iterations.

2.4 Performance on SYMSOL-II

Our LL on SYMSOL-II is impacted by a domain gap as we had to texture the
CAD models using differentiable rendering of images. Moreover, LL in SYMSOL-
II considers only a single valid mode(the pose the image is rendered) for evalua-
tion even though there are multiple valid modes. This contrasts with SYMSOL-I,
where all valid modes are evaluated. Additionally, LL metric inherently favors
NF since NF can provide exact LL estimation. In contrast, both IPDF and our
approach evaluate LL on a discrete grid of rotations, making our methods limited
by finite resolution.
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Table 3: Spread on Symsol-I dataset in degrees. Spread measures the expectation of
median angular error over all the ground truth rotations. NF-100k, NF-900k refers to
Normalizing flow trained for 100k and 900k iterations respectively.

Spread Deng IPDF NF-100k NF-900k Ours

cone 10.1 1.4 0.9 0.5 0.5
cube 40.7 4.0 2.0 0.6 0.6
cyl 15.2 1.4 0.9 0.5 0.5
icosa 29.5 8.4 9.2 1.1 3.5
tet 16.7 4.6 1.7 0.6 1.0
avg 22.4 4.0 2.9 0.7 1.4

3 Efficiency

Inferring rotation distributions takes 10ms at a grid of 2 million rotations on
NVIDIA Titan X. NF takes 210ms for rotation estimation, but longer to con-
struct the distribution as the full base distribution is mapped onto the target.

4 Qualitative results

We present more distribution visualization results for all objects in the Symsol
dataset. We follow the IPDF approach to visualize the top-k probabilities on a
2D sphere where each point on the sphere represents an axis of rotation and the
color of the point indicates the tilt about that axis. We visualize distribution on
Symsol-I and Symsol-II as described in IPDF in Figures 1 and 2 respectively.
We also visualize the SurfEmb features of tetX object in 3. We also visualize
distribution by rotating coordinate reference frames with top-k rotations and
projecting them on the image as shown in Figure 4.

Fig. 1: Pose distribution visualization for different objects in Symsol-I. Each row cor-
responds to a single object from Symsol. The distributions for cylinder, tetrahedron,
cube, and cone objects are visualized. Cylinder and cone express continuous symmetries
indicated by smooth curves, unlike tetrahedron and cube which have discrete modes.
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Fig. 2: Pose distribution visualization for different objects in Symsol-II. Each row
corresponds to images from SphereX, TetX and CylO objects respectively. The middle
column indicates the distribution when the markers are not visible. The left and right
columns indicate the sharper distribution when the markers are visible. This shows
that our approach can capture the distribution based on the texture component and
make it sharper based on the marker when it is visible. This is possible because of
the surfemb features which learn different features for textured regions and different
features for untextured regions as shown in Figure 3.
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Fig. 3: Feature visualization of SurfEmb features for tetX object where a face of tetra-
hedron is textured with orange color. The first column shows the point cloud from the
textured CAD model. The second column shows the per-point feature visualization
of the point cloud from different viewpoints. Note that the features are computed in
canonical orientation. The visualization indicates different rotations to illustrate the
difference in features on the orange face and non-textured faces. The features are clearly
different on the non-textured sides compared to the textured side. Also, all of the non-
textured sides have similar features.
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Fig. 4: Pose distribution visualization for different objects in Symsol-I. Each row cor-
responds to a single object starting from a Cylinder, Cone, Cube, Tetrahedron, and
Icosa. The first column shows the input image. The second column shows the coor-
dinate reference frame transformed with ground truth rotation and rendered on the
input image. In the third column, we transform the coordinate reference frame with
top 500 rotations in the distribution and render on the image. Our approach captures
the distribution sharply and captures all the modes. This is clearly indicated in cylinder
and cone where the red axis is very sharp without much deviation which indicates that
the symmetric axis is correctly detected and the variation around the symmetric axis
is properly captured in top 500 rotations instead of focusing on some specific modes.
The sharpness is also clearly visible in cube, tetrahedron, and icosa where the axes
have less blur around them.
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