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Abstract. Object pose distribution estimation is crucial in robotics for
better path planning and handling of symmetric objects. Recent dis-
tribution estimation approaches employ contrastive learning-based ap-
proaches by maximizing the likelihood of a single pose estimate in the ab-
sence of a CAD model. We propose a pose distribution estimation method
leveraging symmetry respecting correspondence distributions and shape
information obtained using a CAD model. Contrastive learning-based
approaches require an exhaustive amount of training images from differ-
ent viewpoints to learn the distribution properly, which is not possible in
realistic scenarios. Instead, we propose a pipeline that can leverage cor-
respondence distributions and shape information from the CAD model,
which are later used to learn pose distributions. Besides, having access
to pose distribution based on correspondences before learning pose dis-
tributions conditioned on images, can help formulate the loss between
distributions. The prior knowledge of distribution also helps the network
to focus on getting sharper modes instead. With the CAD prior, our ap-
proach converges much faster and learns distribution better by focusing
on learning sharper distribution near all the valid modes, unlike con-
trastive approaches, which focus on a single mode at a time. We achieve
benchmark results on SYMSOL-I and T-Less datasets.

Keywords: Object Pose Estimation · Pose Distribution · 6D Pose Es-
timation · Uncertainty · Ambiguity

1 Introduction

Real world is quintessentially VUCA, i.e., volatile, uncertain, complex and am-
biguous [26], significantly complicating the task of any methodology aimed at
perceiving and interpreting our natural environments. In fact, this inherent na-
ture renders the quest for a universally applicable, unique solution to computer
vision, elusive. Still, modern AR/VR systems and robotics applications require
to navigate in our VUCA world with a high degree of accuracy, robustness, safety
and reliability [44]. In such cases, it becomes more pragmatic to reason about
uncertainty and ambiguities rather than seeking a one-size-fits-all solution.

In the realm of computer vision, uncertainty often stems from incomplete,
insufficient, or noisy data, while ambiguity arises when visual information can
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Fig. 1: Training and Inference Pipeline: We employ a training mechanism where su-
pervision is generated from pre-trained SurfEmb(fSE) and SDF( fSDF) blocks. The
CAD model, X0, undergoes a projection to render an image aligned point cloud, X.
The image aligned point cloud, X, is rotated with ground truth rotation, Rgt, and
passed through fSE block to estimate canonical features. Similarly, X, is rotated with
a random rotations, Rk, and passed through fSE block to generate features that are
compared with canonical features to estimate the score µSE for the rotation. Similarly,
the rotated point cloud with a random rotation is passed through fSDF to estimate the
SDF values of the point cloud. An L0 norm is applied to the SDF values to compute
µSDF score for the rotation. These scores are used to supervise the Dual-branch MLP.
The Dual-branch MLP network takes an image and the same rotation matrix, Rk, as
input and infers two scores µθ and µϕ. This process is carried out for K rotations
for a given image and a Generalized KL divergence loss (GKL) is formulated between
inferred scores from the right block and estimated scores from the left block to train
the Dual-branch MLP network. The Dual-branch MLP is part of both training and
inference. During inference, an image and rotations sampled from a grid are passed
through the network to estimate the full distribution on the grid.

be interpreted in multiple ways. For example, a shadow might be mistaken for
an object, or a partially occluded object might be hard to identify. Both of
these notions can be captured by a multi-modal probability distribution, whose
modes correspond to ambiguous yet probable solutions, and the variation cap-
tures a notion of uncertainty. This motivated a plethora of pose estimation ap-
proaches [8, 16, 40] to infer densities over the pose space rather than predicting
point estimates as done classically [17,56].

The rotational components of the 6D pose are particularly impacted by ambi-
guities, which mostly arise due to symmetry or self-occlusions [38]. Consequently,
state-of-the-art approaches aim to characterize the density over SO(3) (rota-
tions), either directly in the form of mixtures of matrix distributions [8, 60, 62]
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or through implicit neural fields [40] and invertible neural networks [37]. These
methods generally assume that the training data consists of posed images, and,
in one way or another, learn to infer densities conditioned on an input image.
Such an approach necessitates a large amount of training data, as the networks
need to encounter the same appearance under various rotations.

In this paper, we introduce, Alignist, a new way of learning distributions
over SO(3), leveraging the CAD model that is readily available for a major-
ity of 3D pose tasks and provided with typical datasets together with object
poses either in instance or category form. To make use of this additional piece
of shape information, we first establish the proportionality of image-conditional
densities over rotations to densities over the visible parts of the CAD model.
With this change of variables, we can sample the space of rotations during train-
ing and obtain a sharp and full density over the entire SO(3) in the form of an
unnormalized, empirical measure (scores). In particular, we model the desired
density over the model as a products of experts [18], reflecting the spatial and
feature-space alignment to the original CAD model. We choose two expert prob-
abilities to follow Bolzmann densities induced by (i) the distance to the original
CAD model measured by the of norm of signed distances, (ii) the similarity
of symmetry-respecting features obtained from SurfEMB [15]. The first expert
specifies to 3D geometric alignment whereas the second one is additionally in-
formed by the appearance, as SurfEMB is trained also using the image cues. The
final product-probability supervises a dual-branch MLP, which, given an input
image, infers both of the distributions in the form of empirical distributions or
measures by sampling over SO(3). As a loss between the computed and inferred
distributions, we utilize the recently proposed generalized KL divergence [39],
capable of comparing unnormalized probability measures. This training scheme,
illustrated in Fig. 1, is agnostic to the network architecture and not only fa-
cilitates stronger cues for learning but also aids in generalization in a low-data
regime, as the available CAD model is exploited to generate densely sampled
distributions. Lastly, as classical positional encoding methods do not generalize
to the manifold of SO(3) [11], we introduce a new rotation encoding method by
transforming the vertices of a unit cube under the given rotation.

In summary, our contributions are:

– To the best of our knowledge, we present the first method to use a CAD model
to train an implicit network in order to infer densities over SO(3).

– We propose to utilize geometry-aware (SDF) and symmetry-aware (SurfEMB)
experts to obtain rich and informative supervision cues during training.

– Backed by a novel positional encoding, we propose a dual-branch MLP to infer
two distributions, one on the SDF and one on the surface features.

– Experiments demonstrate the advantages of our approach in capturing ambi-
guities and uncertainties on textureless objects, especially in low-data regimes,
thanks to powerful 3D object priors our method utilizes.

We make our implementation publicly available here.

https://github.com/shishirreddy/Alignist
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2 Related Work

While a plethora of 6D object pose estimation exist [17,24,35,52–54,56], we will
specifically review works which deal with rotational symmetries in the context
of deep learning.
Rotation representations for deep networks. Deep neural networks typ-
ically produce feature vectors in a Euclidean space, making it hard to reason
on nonlinear manifolds, such as that of SO(3). Early deep learning models
opted for rather classical parameterizations for regressing rotations, like Euler-
angles [30, 48], direction cosine matrices (DCM) [23, 59], axis-angle [10, 51], and
quaternions [28,56,63]. Some scholars [5,27,49] instead discretize the space and
classify, however, pose space represents a continuous Riemannian manifold [4].
Recently, [64] showed that the typical representations are discontinuous, i.e., do
not admit homeomorphic maps to SO(3). Instead, 6D [64], 9D [34] and even
10D [42] representations were proposed to resolve the discontinuity issue and
improve the regression accuracy. Brégier [2] has thoroughly examined different
manifold mappings, finding out that SVD orthogonalization [34] performs the
best when regressing arbitrary rotations.

Besides considering rotations as manifold-valued labels, there are multiple
ways they are used in deep networks. Regressing rotations lead to geometric
gradients, which require rethinking of backpropagation [6, 50]. When used as
input data, the sinusoidal basis functions that are used to encode Euclidean co-
ordinates become ill-suited for SO(3) [11]. In this work, we also contribute a
symmetry-respecting positional encoding for rotations, inspired by the metrics
in [1] and also follow a regression approach, however, we investigate pose distri-
bution prediction rather than single pose estimation to incorporate multimodal
solutions induced by object or projection ambiguities.
Representing belief over rotations in deep networks. Extending Bui et
al . [3] to object pose estimation, Deng et al . [8], along with [12], were the first to
address pose ambiguity and uncertainty prediction via deep networks. In these
works, as well as extensions such as [42], a Bingham distribution was used to
represent the belief over SO(3). The suitability of Bingham distribution was
later questioned by follow-up works, proposing Matrix-Fisher distributions [60]
or heavy-tailed variants such as Laplace distributions [61, 62] for increased ro-
bustness. Implicit-PDF (iPDF) [40] used a rotation-conditioned neural network
to implicitly learn the orientation distribution and SpyroPose [16] proposed a
coarse-to-fine version of iPDF using a hierarchical grid. HyperPosePDF [22]
learned the weights of an iPDF via a hyper-network and spherical convolutions
are used in I2S [29] to map a deep feature-map onto a distribution over SO(3).
Recently, Liu et al . [37] proposed a normalizing flow based approach to map an
initial distribution to a target one. This approach has later been generalized to
manifolds other than SO(3) via free-form flows [47].

We follow the ideas of implicit distribution learning by incorporating a signed
distance function [41] alongside a method for ambiguity aware pose descrip-
tion [15] into our approach.
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Uncertainty and ambiguity aware object pose estimation. Object shape,
symmetry, or occlusions can cause ambiguities in object poses given only the
perspective projection. Corona et al . [7] and Pitteri et al . [43] assumed the
availability of object symmetry information during training. As obtaining this
information is challenging, others tried to explicitly learn it from data [33]. State-
of-the-art approaches bypass the requirement of prior knowledge about object
symmetries. Manhardt et al . [38] modeled the ambiguity in object pose estima-
tion by predicting multiple hypotheses, for a given object’s visual appearance,
and Shi et al . [46] utilize an ensemble of object pose estimators to derive un-
certainties. SurfEmb [15], EPOS [19] and NeRF-Feat [52] learned a dense dis-
tribution of 2D-3D correspondences. EPOS [19] handled symmetries implicitly
by discretizing the surface and predicting a probability distribution over frag-
ments per pixel, whereas SurfEmb, NeRF-Feat estimated a continuous distribu-
tion over the object surface. Similarly, Ki-pode [25] used object keypoints as an
intermediary to derive the probability density, explicitly and [57] makes use of
the conformal prediction framework to propagate uncertainties from keypoints
to object poses.

In our pipeline, we incorporate a learned continuous distribution [15] of 2D-
3D correspondences between object model and image.

3 Method

Problem setting. We consider an input image crop I ∈ RM×N×3 parameter-
ized by coordinates p ∈ R2 on the image lattice, containing the projection of
a 3D object M = (X,T) represented in normalized object coordinate space
(NOCS) [55] X = {xi ∈ [−1, 1]3 | i = 1, . . . , NX} together with triangle faces
T = {ti ∈ Z3 | i = 1, . . . , NT }. We formulate the rotation estimation problem as
a probabilistic inference, where we are interested in the following two quantities:
1. Single-best orientation obtained by the maximum a-posteriori (MAP) esti-

mate: R⋆ = argmaxR p(R | I), where p(R | I) models the conditional proba-
bility distribution for the orientation of I.

2. Multi-modal orientation estimate in the form of a full posterior distribution:
p(R | I) ∝ p(I |R)× p(R) = p(I,R).

A plethora of the 6D object pose estimation methods solve (1) (excluding trans-
lations) to get a point estimate [21, 27, 49]. While solving (2) can provide im-
portant additional information, such as uncertainty and ambiguity, perhaps not
surprisingly it is a much harder task. Note that, in addition to the usual diffi-
culties associated with posterior characterization, in our context we are facing
extra challenges due to the Riemannian nature of SO(3) [4]. This is arguably
the reason why the task of multiple simultaneous rotation estimations remains
unsolved, to date. In this work, we focus on estimating posterior densities over
rotations, which are the main sources of ambiguity.
Model. Inspired by the energy based models [31,32], we write down the posterior
density of interest as p(R | I) = exp (−U (R))/p(R) where U is the potential
energy with the form U(R) = − (log p(R | I) + log p(R)). Estimating p(R) by
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discretizing the SO(3) by NV partitions of volume V and marginalizing, leads
to the following approximate posterior density [40]:

p(R | I) ≈ 1

V
exp (−U (R)) /

NV∑
i=1

exp (−U (Ri)) =
1

V
softmax (−U(R)) . (1)

To design U(R), we assume the availability of a X0, s.t. X′ = RΠ(R⊤
gtX0; I,M)

is obtained by rotating the image-aligned model X back to the CAD space
using R. Rgt is the ground truth pose of the image under consideration and the
rendering operator X = Π(R⊤

gtX0; I,M) extracts the points of the transformed
mesh, visible in the image I by rendering the model mesh M. In order to maintain
the invariance under symmetries, i.e., RX ≡ X for any stabilizer R of X, we
relate orientation distributions to distributions over object coordinates:

Proposition 1. The probability p(R|I) ∝ p(X′|I) where X′ = RΠ(R⊤
gtX0; I,M).

Proof. We will consider the vectorized versions of our variables r := vec(R)
and x′ := vec(X′) and assume p(r | I) = p(R | I) and p(x′ | I) = p(X′ | I). Let
C = Π(R⊤

gtX0; I,M) denote the visible part of the model, w.l.o.g. assumed
to be a constant. Then, the two distributions can be related by the change of
variables:

p(r | I) = p(x′ | I) · |J|, (2)

where

J :=
dx′

dr
=

dvec(RC)

dr
=

d
((
C⊤ ⊗ INX

)
r
)

dr
= C⊤ ⊗ INX

, (3)

where INX
is the NX ×NX identity matrix. Hence the determinant of the Jaco-

bian, |J| := |detJ|, is independent of R:

|J| = |C⊤ ⊗ INX
| =

√
|(C⊤ ⊗ INX

)⊤(C⊤ ⊗ INX
)| =

√
|CC⊤|. (4)

As the canonical model M (hence X0) and Rgt are known, |J| remains constant
leading to:

p(R | I) = p(X′ | I) ·
√

|CC⊤| ∝ p(X′ | I).

With this proportionality, we can instead model p(X′ |I) in a symmetry aware
fashion via the product of experts (PoEs) [18]:

p(X′ | I) = 1∫ ∏
i p̂i(X

′ | I) dX′

∏
i

p̂i(X
′ | I) = 1

Z
p̂SDF(X

′ | I)p̂SE(X′ | I), (5)

where Z =
∫
p̂SDF(X

′ | I)p̂SE(X′ | I) dX′. Note that the product factorizes the
conditional probability p into a set of simpler distributions, experts, p̂i which are
normalized after multiplication. The first term, p̂SDF, will measure the deviation
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from the model in the space of 3D coordinates. The second term, p̂SE, will
ensure that the symmetry-aware features of the transformed model align with
the canonical ones under a given R (thus X). The PoE framework can work with
unnormalized densities, p̂(·), allowing us to model p̂SDF and p̂SE by a Bolzmann
distribution:

p̂SDF ∝ exp (−∥fSDF (X′) ∥0) and p̂SE ∝ exp (−∥fSE (X′)− fSE (X0) ∥F) , (6)

where fSDF : R3 → R and fSE : X → RNF×NX are chosen to be the pre-
trained Deep-SDFs [41] and SurfEmb [15], respectively. Deep-SDF parameter-
izes the signed distance value to the closest surface point via a neural net-
work. Using L0-norm amplifies the penalty on more distant points. SurfEmb
models continuous 2D-3D correspondence (X ∋ x ↔ p ∈ R2) distributions
p(x,p | I) = p(p | I)p(x | I,p) over the surface of objects, where p(p | I) denotes
the discrete distribution over image coordinates. SurfEmb consists of a network
supervised to maximize the probability of the GT coordinates. The specific forms
of fSDF and fSE are precised later in Sec. 3.1.

In our framework, we model these distributions by two MLPs fθ and fϕ with
learnable parameters θ and ϕ, which can be multiplied and passed through the
softmax in Eq. (1) to yield p(R | I).
Training. During training, we have access to {Rn

gt}n for all images and thus
corresponding {X′

n}n. While maximizing p(R | I) by minimizing the negative
log-likelihood for a single ground truth pose is viable, it requires more data
samples to cover all symmetries and train the network. Another alternative is
contrastive training (CT) as done in [16]. Yet, besides the challenge of sampling
hard negatives over SO(3) during training, CT assumes a single positive label
per sample. This resembles learning a multi-modal distribution by matching sev-
eral unimodal distributions. Instead, we take a different approach and align the
entire distribution. To learn the parameters of (fθ, fϕ) this way, we first obtain
two unnormalized empirical measures (µSDF,µSE) supported on SO(3), corre-
sponding to p̂SDF and p̂SE, by randomly sampling SO(3) to get the locations and
computing the individual terms in Eq. (6) as weights of these measures. Similarly,
we let (µθ,µϕ) denote the inferred unnormalized measures (see "Inference") and
use the generalized KL divergence [39] to align unbalanced distributions:

GKL(µ ∥ ν) :=

m∑
i=1

(
− log

(
aνi
aµi

)
+

(
aνi
aµi

)
− 1

)
aµi , (7)

where a = {aµi } and {Rµ
i }, i = 1, . . . ,m denote the weights and locations of a

discrete measure µ =
∑m

i=1 aiδRµ
i
, ai ≥ 0, where δRµ is a Dirac delta at Rµ.

Finally, we train our networks by optimizing the following objectives:

θ⋆ = argmin
θ

Ep(I)GKL(µSDF ∥ µθ), ϕ⋆ = argmin
ϕ

Ep(I)GKL(µSE ∥ µϕ), (8)

where p(I) denotes the data distribution. In summarry (see Fig. 1), to train our
networks, we sample the SO(3) randomly or over a grid and use these samples
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in (i) explicitly computing a product-distribution by leveraging the spatial and
feature-space distances and (ii) inferring these conditioned on the image. The
divergence between the resulting measures becomes our supervision signal.
Inference. During test time, given an input image I, we infer the potentially
multimodal distribution p(R | I) by densely sampling SO(3) and evaluating
− log p(R | I) = fθ(I,R) + fϕ(I,R). The individual predictions can be thought
of as the empirical measures µθ and µϕ, which are combined to get the final
measure. We then pass the result through softmax to arrive at the full posterior.

3.1 Network Design, Positional Encoding and Impl. Details

Network architecture. Our architecture is similar to IPDF with a ResNet50
image encoder and an MLP each for inferring unnormalized SDF and SE mea-
sures. The image encoder encodes the image as a global latent vector which is
concatenated with the positional encoded rotation matrix and passed through
two MLPs to get unnormalized SDF and SE measures. For a given image, we
sample K rotations, to learn the distribution at K discrete points in SO(3) space.
To train the network, for a given image, we generate the supervision signal using
pre-trained SE and SDF MLPs to gather scores for all rotations for supervising
the network. The pre-trained SE and SDF MLPs are two layer Siren MLPs that
predict per-point feature and SDF value respectively from a 3D point input.
Sampling. Using our CAD-based priors, SurfEmb and SDF MLPs, we can gen-
erate the distribution for viewpoints before we start the training. We sample ro-
tations on an equivolumetric partitioning of SO3 grid proposed by Yershova [58].
We subdivide the grid up to 5 levels and estimate distribution for certain view-
points. Using this precomputed distribution, we can sample more rotations near
the modes which helps us in learning distribution better. In our approach, in-
stead of estimating distribution for the entire dataset, we estimate distributions
for a few viewpoints. It is a tradeoff between memory and accuracy. We save
distribution for a few viewpoints at a higher resolution grid than saving distri-
bution for every viewpoint at a lower level grid. This is because the distribution
can be transferred to another viewpoint by rotating the grid accordingly using
the relative rotation between the given viewpoint and the viewpoint for which
the distribution is estimated. We randomly sample a viewpoint from the pre-
computed distributions and convert it to the current viewpoint and sample the
rotations from this distribution. Even though the viewpoints don’t exactly have
the same distribution in some cases, this won’t affect the learning as this will be
reflected in the estimated probability and still a bad rotation will be learned as
such. Even if we sample rotations away from modes sometimes, the supervision
signal will provide a low probability, but it is important to sample more near the
modes to learn a sharper distribution. We precompute both shape and feature
based distribution for a few viewpoints and use them during training for better
sampling. Shape-based precomputed distribution will be valid even in the case
of conditionally symmetric objects with ambiguities that break symmetry.
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Positional encoding(PE). IPDF employs a PE that generates high frequency
components of individual rotation matrix elements separately. PE is not applied
to the rotation manifold leading to errors in the training where multiple rota-
tions that are far apart in SO3 space with similar element-wise absolute values
are closer in positional encoding space in some cases. Specifically, when some
negative values are lower in magnitude in the rotation matrix, they get a similar
PE to when the sign is flipped in another rotation matrix since sines are get-
ting suppressed because of low value and cosine is getting amplified at the same
time and also suppressing the sign. The PE is not exactly the same, but the
network treats them as similar because the change is minute in cartesian space.
To alleviate this issue, we take the 3D corner coordinates of a unit cube and
apply positional encoding on the rotated 3D corner coordinates of the cube. The
positionally encoded corner coordinates are concatenated to generate a vector
that serves as a PE representation of the rotation matrix. This reduces the noise
as shown in Figure 4 and also brings a boost in accuracy.

4 Experiments

We evaluate on Symsol [40], T-Less [20], and ModelNet10-SO3 [36]. Symsol has
two subsets, Symsol-I with untextured symmetric objects and Symsol-II with
conditionally symmetric objects with some texture that breaks symmetry from
certain viewpoints. We adopt the metrics from IPDF, log-likelihood(LL), and
Average Recall(AR) for evaluation. LL measures how strongly the learned net-
work captures the distribution. It is calculated by taking the log mean of the
probabilities at the ground truth rotations in our captured distribution. As we
can’t estimate distribution in continuous rotation space, we compute our distri-
bution on a discrete equivolumetric grid of rotations similar to IPDF. We use
5 levels of subdivision to obtain a rotation grid with around 2M rotations for
evaluation. We compute the distribution on the grid and evaluate the LL for
rotations at the discrete rotation samples on the grid closest to ground truth ro-
tations. LL evaluation can be carried out with a single ground truth annotation
or with multiple ground truth annotation for a single image. To quantify the ro-
tation error on ModelNet, we employ AR with 30◦ rotation error threshold. We
employ distribution visualization proposed in IPDF where each point on sphere
indicates the axis of rotation and the color indicates the tilt about that axis.

4.1 SYMSOL-I

Symsol-I comprises textureless geometric shapes, Cube, Tetrahedron, Cone, Icosa-
hedron, and Cylinder that exhibit different types of symmetries and pose a
challenging task to capture all the symmetric configurations with high prob-
ability. The dataset provides 45k images for each object and they do not provide
camera intrinsics or a CAD model. However, these generic CAD models are
easily available from any 3D library and are already canonically aligned with
the dataset. We employ PBR data [9] and SDF samples from CAD models to
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Table 1: SYMSOL I results: We present results on Symsol-I evaluated using the log-
likelihood metric. Models refers to the number of models trained per dataset. Iterations
refer to training iterations and Images refer to the amount of training images employed
per object. Note that we follow the convention employed in the Normalizing Flow(NF)
paper by adding 2.29 to the scores to make a uniform distribution to have a zero score
instead of having -2.29. We adjusted the scores for us and Spyropose(SP) and other
approaches were already adjusted in NF paper. We present results for Deng [8], Gil [13],
Prok [45], IPDF [40], SP [16] and NF [37].

Deng Gil. Prok. IPDF SP NF NF NF NF Ours Ours

Models 1 1 1 1 5 1 1 1 1 1 1
Iterations 100k 100k 100k 100k 100k 100k 900k 100k 900k 100k 100k
Images 45k 45k 45k 45k 45k 10k 10k 45k 45k 10k 45k
cone 2.45 6.13 -1.05 6.74 9.91 8.45 8.94 8.42 10.05 9.66 10.10
cube -2.15 0.00 1.79 7.10 10.92 5.02 9.01 7.13 11.64 11.29 12.24
cyl 1.34 3.17 1.01 6.55 8.75 8.04 6.41 7.83 9.54 9.32 9.40
icosa -0.16 0.00 -0.10 3.57 7.52 -2.14 -6.03 2.03 8.26 7.99 9.54
tet 2.56 0.00 0.43 7.99 10.98 5.91 10.79 8.98 12.43 11.39 11.96

avg 0.81 1.86 0.42 6.39 9.62 5.06 5.82 6.88 10.38 9.69 10.64

train fSE, fSDF respectively. We use the frozen fSE, fSDF MLPs for training our
pipeline. The test set provides ground truth annotations for all the symmetric
configurations and is considered in the evaluation for log-likelihood and spread.
Prior approaches focus solely on learning distribution from images and show no
way to incorporate a CAD model into the training pipeline. Spyropose tries to
incorporate a CAD model, but only uses it to strengthen the encoder instead of
using a Resnet based encoder. However, their approach requires camera intrin-
sics. So, they render their version of symsol to use the encoder. Moreover, their
cad-based encoder requires the object instance to be known to encode the image.

0.1k 1k 10k 45k
Training Data

5

0

5

10

Lo
g-

Lik
el

ih
oo

d

Normalizing Flow
Ours

Fig. 2: LL vs. Training Data for
NF, Ours on SYMSOL-I.

To have a common baseline, we compare all the
approaches using Resnet image encoder. Using
a basic architecture such as IPDF, we achieve
benchmark results with log-likelihood scores of
10.64 and 9.69 in full-data and low-data regimes
using our training pipeline by distilling knowl-
edge from a CAD model to learn distribution as
shown in Table 1. Our approach converges faster
and performs better than NF, SpyroPose with
just 100k iterations. In a low-data regime with
10k images, the accuracy drop(0.95) is not significant depicting the benefits of a
CAD prior. Besides, NF has weaker performance with low data and negatively
affects some objects with increasing iterations. This demonstrates the advantage
of employing a CAD model which is crucial as real data is not easily available in
large amounts. Our approach can transfer learned features from the CAD model
and help learn the distribution better in the real domain even with fewer images.
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Table 2: SYMSOL-II results: We report results using log-likelihood metric(LL). We
adjust the scores for us and SpyroPose using the convention of normalizing flows(NF)
by adding 2.29 to make a uniform distribution to have an average LL of score zero.-10k
refers to experiments in low-data regime using only 10k images instead of 45k.

Obj Deng Gil. Prok. IPDF SP SP-10k NF-10k NF Ours-10k Ours
SphX 3.41 5.61 -1.90 9.59 11.36 7.67 7.62 12.37 6.32 10.93
cylO 5.28 7.17 6.45 9.20 11.61 9.11 6.99 12.92 11.57 12.18
tetX 5.90 5.19 3.77 10.78 11.70 6.48 3.52 13.53 11.53 12.38
LL 4.86 5.99 2.77 9.86 11.56 7.76 6.04 12.94 9.80 11.83

As shown in Fig. 2, the gap between the LLs attained by our method and those
by NF increases rapidly as the amount of training data decreases. We present
some qualitative results in Fig. 3 as proposed in IPDF.

4.2 SYMSOL-II

Symsol-II comprises conditionally symmetric objects, tetrahedron, cylinder, and
sphere, with markers. So, the modes are reduced when the markers are visible.
For conditional symmetric objects, the pose distribution not only shifts but also
changes completely based on the visibility of markers. We fit the meshes with
silhouette images and estimate intrinsics which is later used to fit the texture of
the mesh using color images through differentiable rendering. We train fSE, fSDF

networks with the obtained mesh. Our approach has slightly weaker performance
compared to NF as shown in Table 2. On the Sphere object, our SDF expert
doesn’t contribute anything as it learns a uniform distribution and it is a limi-
tation of our approach. Hence, we have to rely only on the SurfEmb expert to
explain the distribution which decreases the performance. However, we perform
better than NF and Spyropose in the low-data regime with 10k images. Besides,
LL metric inherently favors NF as it provides exact LL estimation while IPDF
and our approach evaluate LL on a discrete rotation grid, making our methods
limited by the finite resolution. The performance drop is less significant on tex-
tured cylinder and tetrahedron indicating that the shape component can bring
a significant boost to the distribution. LL scores for tetrahedron and cylinder
are higher than the Symsol-I dataset since Surfemb features provide information
about the texture in these objects and perform better in conjunction with shape
experts to capture the textured viewpoints with much finer distribution.

4.3 T-Less

T-Less contains 30 texture-less symmetric objects. We follow [13] to split data
into 75% for training and 25% for testing. We train SurfEmb, fSE, using PBR
and 75% of the real data. fSDF network is trained using the CAD model. We
perform better than the benchmark approach, SpyroPose, as shown in Table 3.
The dataset has minute symmetry breaking features that can turn a multimodal
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(a) Cyl-Symsol-I (b) Cyl-Symsol-II (c) Cyl-Symsol-II

(d) Tet-Symsol-I (e) Tet-Symsol-II (f) Tet-Symsol-II

Fig. 3: Pose distribution visualization for objects in Symsol-I and Symsol-II. a) Un-
textured Cylinder has continuous symmetry b) Textured Cylinder with marker has a
unimodal distribution when the marker is visible, c) Broken continuous symmetry on
the textured cylinder when the marker is not visible d) Untextured Tetrahedron in
Symsol-I has 12 modes which are captured appropriately e) Textured Tetrahedron has
three modes when orange face is visible. f) Textured terahedron has 6 modes when the
orange face is not visible. Note that only one ground truth annotation is provided in
Symsol-II and hence only one mode is circled.

distribution into an unimodal distribution. Although they provide symmetry
annotations, the CAD models are not perfectly symmetric like the objects from
Symsol-I. So, we follow the other approaches, and the evaluation is performed
only on a single ground truth pose similar to Symsol-II. We perform an ablation
with training data used for SurfEmb. SurfEmb provides better features with
PBR+Real data compared to using just PBR data and is reflected in an increase
in LL of 0.2. The results indicate the ability to notice the symmetry breaking
features to capture the distribution more sharply when they are visible.
Table 3: T-Less Results: We present T-Less results using the log-likelihood measure.
P refers to using only PBR data and P+R refers to using both PBR and Real data
for training the Surfemb network. Please note that we still use real data to train our
distribution network in all cases. L1 and GKL refer to the loss used for training.

Method Prokudin [45] Gilitschenski [13] IPDF [40] Spyropose [16] Ours
SE data - - - - P P+R
Loss - - - - L1 L1 GKL
LL 11.0 9.1 12.0 14.1 13.6 13.8 14.53

4.4 ModelNet10-SO3

ModelNet10-SO3 is an unimodal category-level dataset comprising images of
CAD models of 10 categories. We choose a single CAD model per category to
train fSE, fSDF. We employ images from all CADs for training our pipeline, but
the distribution supervision comes from the chosen CAD model. The distribution
supervision should come ideally from the CAD model of the specific instance
in the image, but it is hard to train fSE for all CADs in the category. We
compute the distribution on grid and select the rotation with the highest score for
evaluation. We achieve an AR of 70.5% at 30◦ rotation error threshold compared
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to NF(77.4%) despite using distribution supervision from a single CAD model
per category. Besides, the dataset contains some symmetric models, but only
one GT rotation is considered for evaluation leading to lower accuracy.

4.5 Ablations

Positional encoding(PE). We perform an ablation on different PE of rotation
matrices. The PE of elements of rotation matrix leads to noisy distribution as
shown in Figure 4. This happens when rotation matrices with similar absolute
values sometimes get a similar position encoding leading to noise. This could be
avoided by parameterizing the encoding of the rotation matrix on manifold by
employing Wigner matrices [11]. We propose a PE where corners of a cube are
rotated with rotation matrices and then PE is applied on the transformed 3d
coordinates. Both Wigner matrices and our cube position encoding(cube PE)
were able to remove noise from the distribution. However, our cube PE performs
better compared to Wigner and IPDF PE as shown in Table 4.

(a) Image (b) IPDF (c) Wigner (d) Cube PE (e) Color Wheel

Fig. 4: Pose distribution visualization of our approach with different positional encod-
ings. Our cubePE and wigner matrices based encoding removes noise in the distribution
compared to encoding elements of rotation matrices from IPDF. Our encoding removes
noise and also has a better performance compared to Wigner matrices. a) Input Image,
b)IPDF positional encoding, c) Rotation encoded as Wigner matrices d) Our positional
encoding with cube vertices. e) color wheel indicating the tilt about the axis.

Sampling. During training, we can precompute the distribution for each image
through shape and feature based distribution estimation. IPDF employs random
sampling that leads to learning a smoother distribution making it difficult to
capture modes sharply. As we can convert a single ground truth rotation into
the entire distribution, we can sample more rotations near modes and focus on
learning the distribution sharply. In Table 4, random sampling performs worse
compared to grid-5 and grid-6 sampling. The grid level refers to HEALPix grid
[14] level at which we estimate our distribution. Sampling on a finer grid leads
to improved accuracy. Mode focused sampling is crucial to get sharper modes.
Geometry and SurfEmb based features. An ablation to see how Shape and
SurfEmb feature based probability affect LL in the Symsol-I. LL from the shape
and feature modules achieve decent performance separately but perform better
when combined to estimate the final distribution. Feature-based probability is
appropriate for capturing shape and texture information. Shape based probabil-
ity doesn’t consider texture and it cannot perform alone on Symsol-II. Feature
based probability is essential to capture the distribution better in the presence
of texture. On the other hand, learning could be affected by the quality of the
features from another learned network(SurfEmb) which is not true for shape
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Table 4: Ablation table: Ablations on SYMSOL-I dataset with positional encoding,
sampling strategy, SurfEmb Feature and Shape components, loss terms used for train-
ing. Encoding refers to the rotation encoding employed in the approach. Sampling
refers to the strategy employed for sampling rotations during training. Random refers
to random sampling. Module refer to module employed to estimate the final distribu-
tion. S refers to SDF based module and F refers to the SurfEmb Feature based module.
The combined result of SDF and Feat modules provides the best accuracy.

Encoding IPDF Wigner Cube
Sampling grid-5 grid-5 random grid-5 grid-6
Module F+S F+S F+S F+S S F F+S F+S
Loss L1 L1 L1 L1 GKL GKL L1 GKL
LL 10.09 8.59 6.94 10.2 10.32 10.18 10.48 10.648

based probability as it is based on ground truth shape and more reliable for
capturing the distribution sharply. In essence, both of the scoring mechanisms
together contribute to the betterment of the approach as shown in Table 4.
Loss function. Generalized KL divergence (GKL) performs better than the L1
loss as shown in Table 4. This is reflected in T-Less dataset as well from Table 3
with an increase in LL of 0.6. This indicates that the choice of GKL is well suited
for formulating loss between unnormalized probability distributions compared to
L1 loss, which fails to be a natural fit for comparing distributions.

5 Conclusion

We proposed Alignist, a novel approach to learn pose distributions over images
by mapping the conditional estimation from a given image to one over a proto-
typical CAD model, acquired either as ground truth or via a 3D reconstruction.
Our probabilistic framework uses a product of experts corresponding to losses
over SDF and SurfEmb features, and anchors on full distributional distances
computed by a generalized KL divergence, rather than considering individual
samples as in normalizing flows. Precomputable distribution with the help of
the CAD helps in better sampling leading to sharper distribution. Our novel
positional encoding further reduces noise around modes and allows for learning
cleaner distributions. We achieve benchmark accuracy in the Symsol-I and T-
Less datasets, especially outperforming the state-of-the-art in low data regimes.
Limitations and future work. Our approach does not explicitly utilize the
texture cues either coming from the image or the CAD model. Instead, it ex-
ploits the features from SurfEmb which implicitly depend upon both texture
and geometry, simultaneously. Employing another expert that models the tex-
ture cues explicitly will enable our model to better handle objects like SphereX
on Symsol-II where pure geometry cannot contribute towards the distribution.
Future work also involves extending our work to diffusion models.
Acknowledgements. T. Birdal acknowledges support from the Engineering
and Physical Sciences Research Council [grant EP/X011364/1].
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