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Abstract. Realistic object interactions are crucial for creating immer-
sive virtual experiences, yet synthesizing realistic 3D object dynamics in
response to novel interactions remains a significant challenge. Unlike un-
conditional or text-conditioned dynamics generation, action-conditioned
dynamics requires perceiving the physical material properties of objects
and grounding the 3D motion prediction on these properties, such as
object stiffness. However, estimating physical material properties is an
open problem due to the lack of material ground-truth data, as measur-
ing these properties for real objects is highly difficult. We present Phys-
Dreamer, a physics-based approach that endows static 3D objects with
interactive dynamics by leveraging the object dynamics priors learned
by video generation models. By distilling these priors, PhysDreamer en-
ables the synthesis of realistic object responses to novel interactions,
such as external forces or agent manipulations. We demonstrate our
approach on diverse examples of elastic objects and evaluate the real-
ism of the synthesized interactions through a user study. PhysDreamer
takes a step towards more engaging and realistic virtual experiences by
enabling static 3D objects to dynamically respond to interactive stim-
uli in a physically plausible manner. See our project page at https:
//physdreamer.github.io/.

Keywords: Physics-based modeling · Interactive 3D dynamics

1 Introduction

Realistic object interactions play a pivotal role in creating immersive virtual ex-
periences. Recent advances in 3D vision have enabled the capture and creation
of high-quality static 3D assets [34,50], and some methods even extend to 4D as-
sets [46,47,58], generating unconditioned dynamics. However, these methods fail
to handle action-conditioned dynamics in response to new physical interactions,
such as synthesizing the motion of a rose reacting to a breeze or a touch.

The key challenge in synthesizing action-conditioned dynamics lies in un-
derstanding the physical material properties of objects. Yet, estimating these

https://physdreamer.github.io/
https://physdreamer.github.io/
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Fig. 1: (Left) Leveraging and distilling dynamics priors from a pre-trained video gen-
eration model, we estimate a physical material field for the static 3D object. (Right)
The physical material field allows synthesizing interactive 3D dynamics under arbi-
trary forces. We show rendered sequences from two viewpoints. Red arrows indicate
force directions. Please see videos on our project website for better visualization.

properties is a challenging task due to the lack of ground-truth data, as mea-
suring these properties for real objects is highly difficult. Real-life objects often
exhibit complex, spatially-varying material properties, making the estimation
problem even more challenging. Despite the complexity of physical materials,
humans can easily imagine how objects would react to external forces, such as
the gentle sway of a rose. This ability to imagine object dynamics stems from
our physical prior knowledge obtained from observing and interacting with the
physical world. This motivates us to distill dynamics priors from video gener-
ation models that have been trained on vast, diverse video observations of the
physical world.

In this work, we focus on synthesizing interactive 3D dynamics. We propose
PhysDreamer, a physics-based approach to transforming static 3D objects
into interactive ones that can respond to novel interactions. The key idea behind
PhysDreamer is to distill dynamics priors learned by video generation models to
estimate the physical material properties of static 3D objects. We hypothesize
that video generation models, trained on large amounts of video data, implicitly
capture the relationship between object appearance and dynamics. By leverag-
ing this learned prior knowledge, PhysDreamer can infer the physical material
properties that drive the dynamic behavior of objects, even in the absence of
ground-truth material data (Fig. 1).

PhysDreamer represents 3D objects using 3D Gaussians [34], models the
physical material field with a neural field [71], and simulates 3D dynamics using
the differentiable Material Point Method (MPM) [27]. The differentiable simu-
lation and rendering allow for direct optimization of the physical material field
and initial velocity field by matching pixel space observations. We focus on elas-
tic dynamics and showcase PhysDreamer through diverse real examples, such as
flowers, plants, a beanie hat, and a telephone cord. We evaluate the realism of the
synthesized interactive motion through a user study, comparing PhysDreamer
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to state-of-the-art methods. The results demonstrate that our approach signifi-
cantly outperforms existing techniques on motion realism and visual quality.

In summary, PhysDreamer addresses the challenge of synthesizing interac-
tive 3D dynamics by leveraging the object dynamics priors learned by video
generation models. By distilling these priors to estimate the physical material
properties of static 3D objects, our approach enables the creation of immersive
virtual experiences where objects can respond realistically to novel interactions.
The main contributions of our work include enabling static 3D objects to dy-
namically respond to interactive stimuli in a physically plausible manner and
taking a step towards more engaging and realistic virtual experiences. We be-
lieve that PhysDreamer has the potential to greatly enhance the realism and
interactivity of virtual environments, paving the way for more engaging and
lifelike simulations.

2 Related work

2.1 Dynamic 3D reconstruction

Dynamic 3D reconstruction methods aim to reconstruct a representation of a
dynamic scene from inputs such as depth scans [13, 41], RGBD videos [51], or
monocular or multi-view videos [1,7,39,45,47,52,53,56,66,69,74,75]. This task
is especially challenging in the monocular setting with slow-moving cameras and
fast-moving scenes [20]. Novel scene representations are a major driver of recent
progress. One prominent approach is to augment a canonical Neural Radiance
Fields (NeRF) with a deformation field [56]. This approach can be further im-
proved by incorporating flow supervision [23,66] or as-rigid-as-possible or volume
preserving regularization terms [52,53]. Time-modulated NeRFs [8,19,20,43] offer
a simpler alternative representation. Due to its Lagrangian nature, 3D Gaussian
Splatting [34] is readily adaptable to the task of efficient dynamic scene recon-
struction [17,30,39,47,72,74]. Data-driven prior, such as from monocular depth
models [38, 77] and image diffusion models [67], can also be used to reduce the
inherent ambiguity in dynamic reconstruction from monocular videos.

2.2 Dynamic 3D generation

Our work also relates to efforts to synthesize dynamic 3D scenes. A common
approach is to integrate a 3D generation pipeline with a video generation model
[2, 46, 58, 60]. For instance, Make-A-Video3D begins by creating a static NeRF
as per DreamFusion [55], then extending it temporally using Score Distillation
Sampling (SDS) [55] derived from a video diffusion model. The approach can
be improved with more efficient representations, stronger diffusion priors, and
stable training techniques [2, 46]. However, applying SDS with video diffusion
models demands significant computational and memory costs. Compact4D [73]
and DreamGaussian4D [58] used a more efficient approach, synthesizing 3D dy-
namics by aligning a reference video from video generation models while em-
ploying SDS from image diffusion models to reduce novel view artifacts. These
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methods are currently limited to producing fixed-length 3D videos. We focus on
synthesizing interactive 3D motions under any new physical interactions.

2.3 Interactive motion generation

Interactive motion generation animates still images or 3D contents according
to user inputs like text [11, 76], motion fields [21], motion layers [12, 14], or
direct manipulation such as dragging and pulling [15,44]. Early work from Davis
et al. [15, 16] demonstrated animating an image using an image-space modal
basis extracted from a video of an object undergoing subtle vibrational motions.
Building upon this image-space representation [15], Generative Image Dynamics
[44] used a diffusion model trained on a dataset with paired image and its modal
basis to model scene motion distributions, enabling realistic interaction with still
input images. We focus on interacting with 3D objects rather than images.

For 3D assets, physics-based approaches enable synthesizing motions under
any physical interactions. Virtual Elastic Objects [10] jointly reconstructs the
geometry, appearances, and physical parameters of elastic objects in a multi-
view capture setup with compressed air system. PAC-NeRF [42], DANO [40],
and PhysGaussian [18] integrate physics-based simulations with NeRF and 3D
Gaussians to generate physically plausible motions. We use the same physics-
based approach to generate realistic interactions, but a novel ingredient of our
work is to distill the material parameters of the object from pre-trained video
generation models.

2.4 Video generation models

Recent progress in video generation is driven by the development of larger au-
toregressive [26,37,65,68] and diffusion models [3–6,22,24,25,59]. These models,
trained on increasingly large datasets, continue to advance the quality and real-
ism of generated video content. The state-of-the-art approach [6] can generate
minute-long videos with realistic motions and viewpoint consistency. However,
current video generation models cannot support physics-based interactions with
objects through external forces.

3 Problem formulation

Given a static object represented by 3D Gaussians {Gp}Pp=1, Gp = {xp, αp,Σp, cp}
(where xp denotes the position, αp denotes the opacity, Σp denotes the covari-
ance matrix, and cp denotes the color of the particle), our goal is to estimate
physical material property fields for the object to enable realistic interactive
motion synthesis. These properties include mass m, Young’s modulus E, and
Poisson’s ratio ν. Among these physical properties, Young’s modulus E plays
a particularly important role in determining the object’s motion in response to
applied forces. Intuitively, Young’s modulus (Eq. 2) measures the material stiff-
ness. A higher Young’s modulus results in less deformation and more rigid and
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Fig. 2: Effect of Young’s modulus. We depict the motion of a simulated flower under
the same external force but with three different Young’s moduli, a measure of material
stiffness. Flowers with the highest Young’s modulus (100×) exhibit smaller oscillations
and higher frequencies, while the flower with the lowest Young’s modulus (1×) sways
the most and oscillates at the lowest frequency. Time annotations below each image
indicate the duration of one complete motion path shown in the figure.

higher-frequency motion, while a lower value leads to more flexible and elastic
behavior. Fig. 2 illustrates the simulated motion of a flower under the same
applied forces but with different Young’s modulus.

Therefore, our problem formulation focuses on estimating the spatially vary-
ing Young’s modulus field E(x) for the 3D object. To allow particle simulation,
we query a particle’s Young’s modulus by Ep = E(xp). As for other physical
properties, the mass for a particle mp can be pre-computed as the product of
a constant density (ρ) and particle volume Vp. The particle volume can be es-
timated [70] by dividing a background cell’s volume by the number of particles
that cell contains. As for the Poisson’s ratio νp, we found that it has negligi-
ble impact on object motion in our preliminary experiments(see supplementary
materials for details), and so we assume a homogeneous constant Poisson’s ratio.

4 PhysDreamer

PhysDreamer estimates a material field for a static 3D object. Our key idea is
to generate a plausible video of the object in motion, and then optimize the
material field E(x) to match this synthesized motion. We begin by rendering
a static image (I0) for the 3D scene {Gp} from a certain viewpoint. We then
leverage an image-to-video model to generate a short video clip {I0, I1, . . . , IT }
depicting the object’s realistic motion. This generated video serves as our refer-
ence video. We then optimize the material field E(x) and an initial velocity field
v0(x) (both modeled by implicit neural fields [71]) through differentiable simu-
lation and differentiable rendering, such that a rendered video of the simulation
matches (from the same viewpoint as I0) the reference video. Fig. 3 shows an
overview of PhysDreamer.
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Fig. 3: Overview of PhysDreamer. Given an object represented as 3D Gaussians, we
first render it (with background) from a viewpoint. Next, we use an image-to-video
generation model to produce a reference video of that object in motion. Using differen-
tiable Material Point Methods (MPM) and differentiable rendering, we optimize both
a spatially-varying material field and an initial velocity field (not shown in the fig-
ure above). This optimization aims to minimize the discrepancy between the rendered
video and the reference video. The dashed arrows represent gradient flow.

4.1 Preliminaries

3D Gaussians [34] adopts a set of anisotropic 3D Gaussian kernels to represent
the radiance field of a 3D scene. Although introduced primarily as an efficient
method for 3D novel view synthesis, the Lagrangian nature of 3D Gaussians
also enables the direct adaptation of particle-based physics simulators. Following
PhysGaussian [70], we use the Material Point Method (MPM) to simulate object
dynamics directly on these Gaussian particles. Since 3D Gaussians mainly lie on
object surfaces, an optional internal filling process can be applied for improved
simulation realism [70]. Below, we provide a brief introduction on the underly-
ing physical model and how to integrate MPM into 3D Gaussians. For a more
comprehensive introduction of MPM, we refer interested readers to [27,32,33,70].

Continuum mechanics and elastic materials. Continuum mechanics models ma-
terial deformation using a map ϕ that transforms points from the undeformed
material space X to the deformed world space x = ϕ(X, t). The Jacobian of
the map, F = ∇Xϕ(X, t), known as the deformation gradient, measures local
rotation and strain. This tensor is crucial in formulating stress-strain relation-
ship. For example, the Cauchy stress in a hyper-elastic material is computed
by: σ = 1

det(F )
∂ψ
∂F F T . Here, ψ(F) represents the strain energy density function,

quantifying the extent of non-rigid deformations. This function is typically de-
signed by experts, to follow principles like material symmetry and rotational
invariance while aligning with empirical data. In this work, we use fixed coro-
tated hyperelastic model, whose energy density function can be expressed as:
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ψ(F) = µ

(
d∑
i=1

(σi − 1)2

)
+
λ

2
(det(F )− 1)2, (1)

where σi denotes a singular value of the deformation gradient. µ and λ are related
to Young’s modulus E and Poisson’s ratio ν via:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (2)

The dynamics of an elastic object are governed by the following equations:

ρ
Dv

Dt
= ∇ · σ + f ,

Dρ

Dt
+ ρ∇ · v = 0, (3)

where ρ denotes density, v(x, t) denotes the velocity field in world space, and f
denotes an external force.

Material Point Method (MPM). We use the Moving Least Squares Material Point
Method (MLS-MPM) [27] to solve the above governing equation. MPM is a hy-
brid Eulerian-Langrangian method widely adopted for simulating dynamics for
a wide range of materials, such as solid, fluid, sand, and cloth [31, 35, 57, 62].
MPM offers several advantages, such as easy GPU parallelization [28], handling
of topology changes, and the availability of well-documented open-source imple-
mentations [29,48,49,70].

Following PhysGaussian [70], we view the Gaussian particles as the spatial
discretization of the object to be simulated, and directly run MPM on these
Gaussian particles. Each particle p represents a small volume of the object, and
it carries a set of properties including volume Vp, mass mp, position xtp, velocity
vtp, deformation gradient F t

p , and local velocity field gradient Ct
p at time step t.

MPM operates in a particle-to-grid (P2G) and grid-to-particle (G2P) transfer
loop. In the P2G stage, we transfer the momentum from particle to grid by:

mt
iv
t
i =

∑
p

N(xi−xtp)[mpv
t
p+(mpC

t
p−

4

(∆x)2
∆tVp

∂ψ

∂F
F t
p
T
)(xi−xtp)]+f ti , (4)

where the mass of the grid node i is mt
i =

∑
pN(xi − xtp)mp, N(xi − xtp) is

the B-spline kernel, ∆x is the spatial grid resolution, ∆t is the simulation step
size, and vti is the updated velocity on the grid. We then transfer the updated
velocity back to the particles and update their positions as:

vt+1
p =

∑
i

N(xi − xtp)v
t
i , xt+1

p = xtp +∆tvt+1
p . (5)

Meanwhile, the local velocity gradient and deformation gradient is updated as:

Ct+1
p =

4

(∆x)2

∑
i

N(xi − xtp)v
t
i(xi − xtp)

T , F t+1
p = (I +∆tCt+1

p )F t
p . (6)
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4.2 Estimating physical properties

Using MLS-MPM [27, 70] as our physics simulator and the Fixed Corotated
hyper-elastic material model for the 3D objects, the simulation process for a
single sub-step is formalized as:

xt+1,vt+1,F t+1,Ct+1 = S(xt,vt,F t,Ct,θ, ∆t), (7)

where xt = [xt1, · · · ,xtP ] denotes the positions of all particles at time t, and
similarly vt = [vt1, · · · ,vtP ] denotes the velocities of all particles at time t. F t and
Ct denote the deformation gradient and the gradient of local velocity fields for all
particles, respectively. Both F t and Ct are tracked for simulation purposes, not
for rendering. θ denotes the collection of the physical properties of all particles:
mass m = [m1, · · · ,mP ], Young’s modulus E = [E1, · · · , EP ], Poisson’s ratio
ν = [ν1, · · · , νP ], and volume V = [V1, · · · , VP ]. ∆t is the simulation step size.

We use a sub-step size∆t ≊ 1×10−4 for most of our experiments. To simulate
dynamics between adjacent video frames, we iterate over hundreds of sub-steps
(time interval between frames are typically tens of milliseconds). For simplicity,
we abuse notation to express a simulation step with N sub-steps as:

xt+1,vt+1,F t+1,Ct+1 = S(xt,vt,F t,Ct,θ, ∆t,N), (8)

where the timestamp t + 1 is ahead of timestamp t by N∆t. After simulation,
we render the Gaussians at each frame:

Ît = Frender(x
t,α,Rt, Σ, c), (9)

where Frender denotes the differentiable rendering function, and Rt denotes the
rotation matrices of all particles obtained from the simulation step.

Using the generated video as reference, we optimize the spatially-varying
Young’s modulus E and an initial velocity v0 by a per-frame loss function:

Lt = λL1(Î
t, It) + (1− λ)LD−SSIM(Ît, It), (10)

where we set λ = 0.1 in our experiments.
We parameterize the material field and velocity field by two triplanes [9],

each followed by a three-layer MLP. Additionally, we apply a total variation reg-
ularization for all spatial planes of both fields to encourage spatial smoothness.
Using u to denote one of the 2D spatial planes, and ui,j as a feature vector on
the 2D plane, we write the total variation regularization term as:

Ltv =
∑
i,j

∥ui+1,j − ui,j∥22 + ∥ui,j+1 − ui,j∥22. (11)

Rather than optimizing the material parameters and initial velocity jointly,
we split the optimization into two stages for better stability and faster con-
vergence. In particular, in the first stage, we randomly initialize the Young’s
modulus for each Gaussian particle and freeze it. We optimize the initial veloc-
ity of each particle using only the first three frames of the reference video. In
the second stage, we freeze the initial velocity and optimize the spatially varying
Young’s modulus. During the second stage, the gradient signal only flows to the
previous frame to prevent gradient explosion/vanishing.
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Fig. 4: Accelerated MPM with K-
Means downsampling. We employ
K-Means clustering to create a set of
“driving particles” (in yellow) at the
initial time step (t=0). We only sim-
ulate these driving particles. When
rendering, we obtain each particle’s
position and rotation by fitting a lo-
cal rigid body transformation using
neighboring driving particles.

K-Means 
downsample

Interpola�on

Simulate

t = 0 t = 1

4.3 Accelerating simulation with subsampling

High-fidelity rendering with 3D Gaussians typically requires millions of particles
to represent a scene. Running simulations on all the particles poses a signifi-
cant computational burden. To improve efficiency, we introduce a subsampling
procedure for simulation, as illustrated in Fig. 4.

Specifically, we apply K-Means clustering to create a set of driving parti-
cles {Qq}Qq=1 at t = 0, where each driving particle is represented by Q0

q =

{x0
q,v

0
q ,F

0
q ,C

0
q , Eq,mq, νq, Vq}. The initial position of a driving particle x0

q is
computed as the mean of the position xp of all cluster members. The number of
the driving particles is much smaller than the number of 3D Gaussian particles,
Q≪ P . We run simulations only on the driving particles. During rendering, we
compute the position and rotation for each 3D Gaussian particle Gp by interpo-
lating the driving particles. In particular, for each 3D Gaussian particle, we find
its eight nearest driving particles at t = 0, and we fit a rigid body transformation
T between these eight driving particles at t = 0 and at the current timestamp.
This rigid body transformation T is applied to the initial position and rotation
of the particle Gp to obtain its current position and rotation. We summarize our
algorithm with pseudo-code in supplementary materials.

5 Experiments

5.1 Setup

Datasets. We collect eight real-world static scenes by capturing multi-view im-
ages. Each scene includes an object and a background. The objects include five
flowers (a red rose, a carnation, an orange rose, a tulip, and a white rose), an
alocasia plant, a telephone cord, and a beanie hat. For each scene except for the
red rose scene, we capture four interaction videos illustrating its natural mo-
tion after interaction, such as poking or dragging, and we use the real videos as
additional comparison references.

Baselines. We compare our approach to two baselines: PhysGaussian [70] and
DreamGaussian4D [58]. PhysGaussian [70] integrates MPM simulation to static
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3D Gaussians to support simulation, but it cannot estimate material properties
and relies on manually setting material parameter values. Thus, we use the same
initialization strategy as ours to assign material properties for PhysGaussian.
DreamGaussian4D [58] generates non-interactive dynamic 3D Gaussians from a
static image. It first obtains a static 3D Gaussians using DreamGaussian [63],
and then animate it by optimizing a deformation field from a generated driving
video. For a fair comparison, we run its deformation field optimization on our
reconstructed static 3D Gaussians, and we looped the resulting deformation field
when rendering longer videos in later comparison.

Evaluation metrics. We focus on the quality of the synthesized object motion, in
particular, visual quality and motion realism. Therefore, we conduct a user study
and adopt the Two-alternative Forced Choice (2AFC) protocol: the participants
are shown two side-by-side synchronized videos, including one video result from
ours and the other one from the competitor’s, with a random left-right ordering.
The participants are then asked to choose the one with higher visual quality and
the one with higher motion realism.

We recruited 100 participants, each asked to judge all 8 scenes, forming a total
of 800 2AFC judgement samples for each baseline comparison. For each scene,
we create 4 sample video pairs and show participants a random one from the 4
pairs. In particular, we create 4 five-second motion sequences using PhysDreamer
with randomized initial conditions (applying an external force to the foreground
object or assigning an initial velocity to the object), and render videos from
randomly picked viewpoints. For the baseline method, we apply the same initial
conditions (for PhysGaussian only) and render videos from the same viewpoint as
ours to form the video pairs. Please see supplementary materials for human study
details and quantitative metrics for videos (e.g., Fréchet Video Distance [64]).

5.2 Implementation details

Neural material fields. We represent both material field and initial velocity field
using triplanes [54] each followed by a three-layer MLP. The triplanes have spa-
tial resolutions of 83 and 243 for the material field and velocity field, respectively.

3D Gaussian reconstruction. Similar to PhysGaussian [70], we employ anisotropic
regularization to reduce skinny artifacts in the reconstruction. Each reconstructed
scene contains 0.5 to 1.5 million particles (including foreground and background).

Simulation details. For computational efficiency, we segment the background
and keep only foreground object particles for simulation. In our experiments,
the foreground object contains around 50 to 300 thousand 3D Gaussian parti-
cles. We then discretize the foreground into a 643 grid. The number of driving
particles are 10 to 50 times fewer than the number of 3D Gaussian particles, de-
termined by maintaining an average of at least eight particles per occupied voxel.
For accurate motion, we use 768 sub-steps between successive video frames, cor-
responding to a duration of 4.34 × 10−5 second for each sub-step. To address
the high memory consumption from large number of steps, we apply simulation
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Material result Synthesized 3D dynamics under interac�on

Fig. 5: Interactive 3D dynamics synthesis. (Left) Visualization of the material fields.
Brighter color indicates higher Young’s modulus within each example. (Right) We
apply an external force (red arrow) on each object, and the following columns demon-
strate the object dynamics rendered at a static viewpoint.

state checkpointing and re-computation during gradient back-propagation. We
add Dirichlet boundary conditions for stationary grid cells. We fill the internal
volumes of certain solid objects to enhance simulation realism [70].

Generating reference videos. We render a 3D object with its background from a
viewpoint, and then we use Stable Video Diffusion [4] to animate this rendered
image and generate fourteen video frames. We use a small motion bucket num-
ber [4] (e.g., 5 or 8) so that the generated video contains mostly object motion
and little camera motion. We use rendered images for the video generation, so
that our approach can also be used for generated scenes. Also, rendering images
directly from 3D Gaussians simplifies later optimization.

5.3 Results

We show our qualitative results of the spatially-varying Young’s modulus in
Fig. 5 (left), and simulated interactive motion in Fig. 5 (right). Please see our
project website videos for a better motion visualization. Tab. 1 presents the user
study results in comparison to baseline methods and real captured videos.
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Table 1: Human study 2AFC results of PhysDreamer (Ours) over real captured videos
and baseline methods (PhysGaussian [70] and DreamGaussian4D [58]) on Motion Real-
ism and overall Visual Quality. “Rose O”, “Rose W”, and “Rose R” denotes the orange,
white, and red roses, respectively.

Motion realism Alocasia Carnation Hat Rose O Rose W Rose R Cord Tulip Avg.

Ours over Real capture 86% 61% 55% 63% 47% - 29% 35% 53.7%

Ours over PhysGaussian 96% 89% 57% 91% 93% 73% 61% 86% 80.8%
Ours over DreamGaussian 75% 77% 51% 78% 51% 41% 71% 64% 63.5%

Visual quality

Ours over Real capture 36% 53% 28% 40% 41% - 29% 34% 37.3%

Ours over PhysGaussian 67% 69% 50% 75% 73% 58% 58% 70% 65.0%
Ours over DreamGaussian 82% 75% 74% 76% 60% 47% 76% 70% 70.0%

Compared to PhysGaussian, 80.8% of the human participant 2AFC samples
prefer PhysDreamer (ours) in motion realism and 65.0% prefer PhysDreamer in
visual quality. Note that since the static scenes are the same, the visual quality
also depends on the generated object motion. Fig. 6 shows temporal slices of the
motion patterns. We observe that PhysGaussian produces large, unrealistic slow
motion due to the lack of a principled estimation of material properties.

Compared to DreamGaussian4D, 70.0%/63.5% 2AFC samples prefer ours in
visual quality and motion realism, respectively. From Fig. 6, we can observe that
DreamGaussian4D generates periodic motion with a constant, small magnitude,
while PhysDreamer can simulate the damping in motion. This is because Dream-
Gaussian4D does not simulate the physical dynamics but simply distill a motion
sequence from a generative model, so it cannot extrapolate to different motion.
We further include one more evaluation dimension on “motion amount” compar-
ing to DreamGaussian4D, where we ask the participants to judge which video
has higher amount of motion, and 73.6% 2AFC samples prefer PhysDreamer.

Compared to real videos, 53.7% 2AFC samples favored the motion realism of
ours results. Interestingly, under “Motion Realism”, 86% of the users indicated
that the alocasia outputs were more realistic than real captures. This is surpris-
ing, as one would expect a 50% preference if the videos were indistinguishable.
We offer a potential explanation: for thin geometries like alocasia leaves, the Ma-
terial Point Method tends to produce lower-frequency and slower motions. This
can be observed in the video and is evident in the space-time slice visualizations
in Fig. 6. Humans are poor at judging the naturalness of motion and may be
biased towards smoother and slower motions, as shown in prior studies [36,61].

5.4 Ablation: using multi-view reference videos

For objects with self-occlusion, observing salient motion of all object parts from
a single video is challenging (e.g., the alocasia scene where a leaf can occlude
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Fig. 6: We compare our results with real captured videos, PhysGaussian [70], and
DreamGaussian4D [58] using space-time slices. In these slices, the vertical axis repre-
sent time, and the horizontal axis shows a spatial slice of the object (denoted by red
lines on the “object” column). These slices visualize the magnitude and frequencies of
these oscillating motions. Results for our PhysDreamer (Ours) and PhysGaussian are
simulated with the same initial conditions.
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Fig. 7: Comparison between single-view (top) and two-view (bottom) supervisions.
The object (alocasia) exhibits self-occluding structures. We can use generated videos
at two views to jointly optimize the material field. In the space-time (X-t) slices, the
vertical axis represents time, and the horizontal axis shows a spatial slice of the object.

another leaf). We may alleviate this problem by rendering from multiple view-
points to provide comprehensive coverage of the object. Here, we use multiple
videos in the material estimation, jointly optimizing a video-agnostic, spatially-
varying Young’s modulus for each particle along with video-specific initial ve-
locities. From the comparison of the alocasia scene in Fig. 7, we can see that
using multi-view reference videos (a front view and a back view) helps in such
complex self-occluding objects: PhysDreamer benefits significantly from having
supervision from two views, while using only a single view leads to artifacts. In
our user study, 81.0% 2AFC samples preferresults with two view supervision in
visual quality and 86.0% in motion realism.

6 Conclusion

In this work, we introduced PhysDreamer, a novel approach to synthesizing in-
teractive 3D dynamics by endowing static 3D objects with physical material
properties. Our method distills the object dynamics priors learned by video gen-
eration models to estimate the spatially-varying material properties. We show-
cased dynamics interaction with a diverse set of elastic objects by PhysDreamer.
We believe that PhysDreamer takes a significant step towards creating more
engaging and immersive virtual environments, opening up a wide range of ap-
plications from realistic simulations to interactive virtual experiences.

Limitations. Our approach requires the user to manually specify the object to
simulate and separate it from the background, and establish boundary condi-
tions for stationary parts, like the pot of flowers. 3D object discovery may help
for simulatable object extraction. In addition, our approach is computationally
demanding. Despite our subsampling strategy, our current algorithm takes ap-
proximately one minute on a NVIDIA V100 GPU to produce a single second
of video. Further improving efficiency remains an important future problem.
Finally, in this work, we restrict our scope to elastic objects without collisions.
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