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Appendix

A Data flow

To clarify the decoupling of appearance learning and physical learning, we pro-
vide a simpler layour of our pipeline, as shown in Fig. 8.
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Fig. 8: Simpler layout of the pipeline. In appearance learning, we optimize Gaussian
kernels for static image rendering. We sample anchors A from Gaussians’ center X. In
physics learning, we optimize physical parameters among anchors A. After simulation,
at time t, the updated Gaussians’ center Xt could be interpolated from At.

B More Implementation Details

We use a single NVIDIA RTX 3090 GPU for reconstruction. For static scene
reconstruction, we follow the configuration prescribed by 3D Gaussian Splat-
ting [14], which takes approximately 10 minutes to optimize for the synthetic
data. The dynamic reconstruction takes 300 iterations. We employ 2048 anchor
points for our Spring-Mass model, with each anchor linked to nk = 256 neighbors
through springs. We set nb = 16 and nc = 16. For each sequence, we assume mass
m0 = 1 and damping factor ⇣0 = 0.1. The weighting coefficient for the D-SSIM
term �d�ssim is set to 0.2 for static reconstruction and 0.05 for dynamic recon-
struction. In our experiments, we use a nonlinear spring force, setting pk = 0.5,
and for Inverse Distance Weighting (IDW) interpolation, we arbitrarily choose
pb = 0.5.

Following the practice from PAC-NeRF [18], we first independently optimize
the initial velocity vector v0, utilizing only a few frames captured before the
object interacts with the environment.

In terms of the Gaussian kernels’ parameters, we optimize all of them during
static scene reconstruction while maintaining a constant scaling scalar s0 for
all kernels. We have found that uniform scaling across all kernels in static scene
reconstruction results in a more evenly distributed point cloud and anchor points.
This consistency markedly improves the dynamic model’s simulation capabilities
by making the kernels’ spatial distribution more uniform. It is important to note
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Fig. 9: Ablation study of the effectiveness of optimizing physical parameters for each
particle rather than optimizing a single global parameter, on a heterogeneity object.
The results shows that optimizing a single global parameter is not able to accurately
model objects with complex physical properties.

that we do not preserve the scaling scalar as constant s0 during this refinement
phase. Instead, we assign a unique scaling scalar si to each Gaussian kernel
associated with each anchor point.

C Ablation Study

Dynamic Reconstruction Future Prediction

CD# PSNR" SSIM" CD# PSNR" SSIM"

Spring-Gaus (ours) 0.18 27.08 0.967 2.04 17.63 0.927

Spring-Gaus w/o soft vector ⌘ 0.56 25.36 0.959 13.28 13.91 0.881
Spring-Gaus, single k 3.22 23.02 0.940 6.56 14.45 0.892
PAC-NeRF [18] 8.66 19.87 0.916 5.70 15.65 0.894

Table 3: Ablation study. We demonstrate the importance of optimizing parameters for
each anchor point individually as well as using a soft vector ⌘. Optimizing parameters
for each anchor point allows Spring-Gaus to have a higher degree of freedom in modeling
physics, and the soft vector ⌘ gives a more flexible formulation.
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In our approach, we employ a soft vector ⌘ to dynamically regulate both
the quantity and intensity of springs linked to the anchor points. This strategy
is illustrated in Tab. 3, showcasing its effectiveness. Our method’s capability
to simulate using very sparse anchors allows for the individual optimization
of physical parameters for each anchor point. This contrasts with PAC-NeRF,
which utilizes tens of thousands of particles, making it challenging to optimize
the physical parameters for each particle infeasible. Consequently, PAC-NeRF
faces limitations in accurately modeling objects composed of heterogeneous ma-
terials. In contrast, our methodology is adept at handling such complexities.
As depicted in Fig. 9 and Tab. 3, we present the outcomes on a heterogeneous
object that is segmented into various sections, each with distinct physical prop-
erties, thereby demonstrating our model’s superior adaptability in capturing the
nuanced dynamics of objects with variable material composition.

D Limitations and Future Work

Currently, Spring-Gaus is constrained to modeling elastic objects due to fixed
spring lengths in our formulation; these lengths are constants established at
the onset of dynamic simulation. Future work should aim to incorporate plastic
deformation into the framework. This would involve developing a method to
dynamically adjust the original lengths of the springs, also can make and break
spring relationships during the simulation, allowing for the accurate modeling of
materials that exhibit both elastic and plastic behavior.

Besides, our method focuses on simulating a single object colliding with the
ground surface, while multi-object interaction is a fascinating topic but requires
new model design (e.g., establishing new springs) and a more thorough evaluation
under various challenging scenarios, which we identify as an excellent direction
to expand our method. Other directions include considering more complicated
boundary conditions and external actions.

Lastly, for better evaluation, a more comprehensive real world dataset with
high spatial and temporal resolutions should be collected, including more diverse
objects, materials, and interactions. This dataset should also include more chal-
lenging scenarios, such as occlusions, lighting changes, and camera motion. This
kind of dataset will help to evaluate the robustness and generalization of related
methods.


	Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians

