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Abstract. Reconstructing and simulating elastic objects from visual ob-
servations is crucial for applications in computer vision and robotics.
Existing methods, such as 3D Gaussians, model 3D appearance and ge-
ometry, but lack the ability to estimate physical properties for objects
and simulate them. The core challenge lies in integrating an expressive
yet efficient physical dynamics model. We propose Spring-Gaus, a 3D
physical object representation for reconstructing and simulating elastic
objects from videos of the object from multiple viewpoints. In particu-
lar, we develop and integrate a 3D Spring-Mass model into 3D Gaussian
kernels, enabling the reconstruction of the visual appearance, shape, and
physical dynamics of the object. Our approach enables future prediction
and simulation under various initial states and environmental proper-
ties. We evaluate Spring-Gaus on both synthetic and real-world datasets,
demonstrating accurate reconstruction and simulation of elastic objects.
Project page: https://zlicheng.com/spring_gaus.
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1 Introduction

Reconstructing and simulating elastic objects from visual observations poses a
fundamental challenge in computer vision and robotics, with applications span-
ning virtual reality, augmented reality, and robotic manipulation. Accurately
modeling the elasticity of objects is crucial for creating immersive experiences
and enabling embodied agents to understand and interact with the elastic ob-
jects commonly encountered in our daily lives. However, accurately identifying
the dynamics from vision still presents considerable challenges.

Existing methods for dynamic scene reconstruction, such as 3D Gaussians
and their dynamic extensions [14, 26, 44, 49], have made significant progress in
capturing the temporal changes of the appearance and geometry of objects. How-
ever, these methods do not capture the physical properties of the reconstructed
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Fig. 1: Spring-Gaus reconstructs the appearance, geometry, and physical dynamic
properties of elastic objects from video observations. Spring-Gaus enables future pre-
dictions and simulations under different initial states and environmental conditions.

objects; thus, they typically cannot predict the future dynamics of these objects.
While a few recent approaches using MPM [11,39] have attempted to integrate
physics-based priors into 3D object representations, such as PAC-NeRF [18].
Their ability to handle real, especially heterogeneous, objects is limited, as they
assume a known material model and only assigns a global physical parameter to
the entire object which restricts its adaptability to real objects. Assigning learn-
able physical parameters to each particle in an MPM is theoretically possible.
However, in practice, it incurs extreme computational costs since MPM requires
tens of thousands of dense points. In addition, PAC-NeRF [18] use a implicit
grid representation, due to the computational demands, the resolution of the
grid is limited, which can lead to a loss of detail in the appearance modeling
when using real or noisy data. Thus, the core challenge in reconstructing and
predicting object dynamics lies in developing and integrating an expressive and
efficient physical model for the dynamics. The physical dynamics model should
be expressive enough to capture the motions of elastic objects, including col-
lisions, deformations, and bouncing. It must also be efficient and conducive to
inverse parameter estimation through gradient-based optimization.

In this work, we propose Spring-Gaus, a 3D object representation that in-
tegrates a 3D Spring-Mass model. Our model represents the elastic object dy-
namics properties through a learnable system of mass points and springs. Our
design is expressive in that it assumes a general and widely applicable physical
model class. With a learnable topology and physical parameters, Spring-Gaus
can model complex deformation and motion for heterogeneous elastic objects.
In addition to expressiveness, Spring-Gaus is also highly efficient for the inverse
optimization of physical parameters due to its differentiable nature.

Spring-Gaus enables reconstructing and simulating elastic objects from sparse
multi-view videos (Fig. 1). To overcome the intrinsic difficulty in optimization,
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we propose a reconstruction pipeline that decouples physical parameter recon-
struction from appearance and geometry reconstruction. Spring-Gaus requires
only a few multi-view videos for physical parameter identification and is robust
to the quality of geometry reconstruction.

We evaluate the effectiveness of Spring-Gaus on both synthetic and real-world
datasets, demonstrating its ability to accurately reconstruct and simulate elas-
tic objects. Our Spring-Gaus allows accurate future prediction and simulations
under varying initial states and environmental parameters, showcasing its poten-
tial for applications in predictive visual perception and immersive experiences.
In summary, the main contributions of this work are threefold:

– We propose Spring-Gaus, which incorporates an expressive yet efficient 3D
Spring-Mass model for reconstructing and simulating elastic objects.

– We introduce a pipeline to reconstruct Spring-Gaus from multi-view videos
of the object. We decouple the appearance and geometry reconstruction from
the physical dynamics reconstruction for more effective optimization.

– We demonstrate the effectiveness of Spring-Gaus on both synthetic and real-
world datasets, showcasing accurate reconstruction and simulation of elastic
objects. This includes capabilities for future prediction and simulation under
varying initial configurations.

2 Related Work

3D Object Representations: Traditionally, 3D objects are often represented
by point clouds, meshes, and voxels. Recently, neural 3D object representation
has become popular due to the efficiency and flexibility. For example, Scene
Representation Networks (SRNs) [38] and DeepSDF [29] represent significant
advancements in 3D scene and object representation, treating 3D objects as
continuous functions that map world coordinates to a feature representation
of local object properties. Over the past few years, NeRF [28] and its succes-
sors [1, 2, 25, 47, 50] have demonstrated the efficacy of neural networks in cap-
turing continuous 3D scenes and objects through implicit representation. Di-
rectVoxGO [40] accelerates NeRF’s approach by substituting the MLP with a
voxel grid. Furthermore, 3D Gaussian Splatting [14] has emerged as a method
for real-time differentiable rendering, representing scenes and objects with 3D
Gaussians. Extending this approach, DreamGaussian [41] applies 3D Gaussians
for 3D object generation. Unlike these approaches, our method focuses on recon-
structing simulatable 3D objects. Recently, PhysGaussian [46] integrated phys-
ical simulation into 3D Gaussians using a customized Material Point Method,
allowing forward simulation of reconstructed objects. In contrast to PhysGaus-
sian, our work focuses on system identification from raw videos and supports
both the forward simulation and the inverse reconstruction of physical objects.
Dynamic Scene Reconstruction: The modeling of dynamic scenes has seen
significant progress with the adoption of NeRF [8,10,18, 20, 22, 23, 30–32,42,43]
and 3D Gaussian [12,16,24,26,44,48,49,51] representations. D-NeRF [32] intro-
duces an extension to NeRF, capable of modeling dynamic scenes from monocu-
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lar views by optimizing an underlying deformable volumetric function. Further-
more, Dynamic 3D Gaussians [26] focus on optimizing the motion of Gaussian
kernels for each frame, presenting an efficient method to capture scene dynamics.
Deformable 3D Gaussians [49] propose a novel approach by learning Gaussian
distributions in a canonical space, complemented with a deformation field for
modeling monocular dynamic scenes. Meanwhile, 4D Gaussian Splatting [44] in-
troduces a hybrid model combining 3D Gaussians with 4D neural voxels. PAC-
NeRF [18] delves into the integration of Lagrangian particle simulation with Eu-
lerian scene representation, exploring a new aspect of scene dynamics. Among
them, PAC-NeRF [18] is the most relevant to our work. PAC-NeRF learns phys-
ical parameters used in the Material Point Method (MPM) for better dynamic
reconstruction and prediction. However, PAC-NeRF assumes known material
models that restrict its adaptability and applicability to complex real objects.
In contrast, our work integrates a 3D Spring-Mass model that is both expressive
and efficient, allowing reconstructing and simulating real elastic objects.
Physics-Informed Learning: Physics-Informed Learning has emerged as a
prominent research direction since the introduction of Physics-Informed Neural
Networks (PINNs) [33]. Li et al . [21] and Sanchez-Gonzalez et al . [34] intro-
duced Graph Network-based simulators within a machine learning framework.
INSR-PDE [3] tackles time-dependent partial differential equations (PDEs) using
implicit neural spatial representations. NCLaw [27] focuses on learning neural
constitutive laws for PDE dynamics. DiffPD [9] presents a differentiable soft-
body simulator. Li et al . [19] have made strides in learning preconditioners for
conjugate gradient PDE solvers. Chu et al . [4] and Yu et al . [52] modeled smoke
in neural density and velocity fields. Neural Flow Maps [7] integrate fluid sim-
ulation with neural implicit representations. Deng et al . [6] introduced a novel
differentiable vortex particle method for fluid dynamics inference. DANO [17] is
the most relevant work to ours. In particular, DANO develops a differentiable
simulation for rigid objects represented by NeRFs, allowing reconstruction and
simulation from a few videos. In contrast, our work focuses on elastic objects,
which involve a fundamentally new set of challenges and require a redesign of
the physical models.

3 Approach

We propose Spring-Gaus that integrates a 3D Spring-Mass model with 3D Gaus-
sians for elastic object reconstruction and simulation. Specifically, we are given
a set of O calibrated videos from multiple viewpoints of an elastic object in
motion, denoted as {Io,f}O,F

o=1,f=1, where F is the number of video frames and
Io,f denotes a 2D image at video o and frame f . Our goal is to reconstruct the
appearance, geometry, and physical dynamics parameters of Spring-Gaus.

In the following, we first introduce the representation for the static properties,
i.e., appearance and geometry, and then the dynamics properties, i.e., the 3D
Spring-Mass model. Then we describe our reconstruction pipeline. We show an
overview of our reconstruction pipeline in Fig. 2.
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3.1 Appearance and Geometry Representation

Following 3D Gaussians Splatting [14], we use a set of 3D Gaussian kernels to
represent the appearance and shape of an object. These kernels are described by
a full 3D covariance matrix Σ, defined in world space and centered at point µ:

G(τ ) = e−
1
2 (τ )

TΣ−1(τ ), (1)

where µ is the mean of the Gaussian distribution, and τ is the independent
variable of the Gaussian distribution. In our formulation, we assume all Gaussian
kernels are isotropic, the covariance matrix Σ can be controlled by a scalar s ∈ R.

The splatting process, designed to render Gaussian kernels into a 2D image,
involves two main steps: (1) projecting the Gaussian kernels into camera space,
and (2) rendering the projected kernels into image space. The projection process
is defined as:

Σ′ = JWΣWTJT , (2)

where Σ′ represents the covariance matrix in camera coordinates, W is the
transformation matrix, and J denotes the Jacobian of the affine approximation
of the projective transformation. The color C of each pixel is rendered as:

C =
∑
i∈N

Tiαici, (3)

where N is the total number of kernels and Ti represents the transmittance,
defined as Πi−1

j=1αj . The term αi denotes the alpha value for each Gaussian,
which is calculated using the expression 1 − e−σiδi , where σi is the opacity
factor. Additionally, ci refers to the color of the Gaussian along the ray within
the interval δi.

For each kernel, the learnable parameters include a point center µ, a scaling
scalar s, a color vector c, and an opacity value σ.

3.2 Physics-Based Dynamics with 3D Spring-Mass Model

We aim to develop and integrate an expressive yet efficient physics-based dynam-
ics model. With these two design goals in mind, we introduce the 3D Spring-Mass
model which represents the elastic object dynamics by a learnable spring-mass
system. Our Spring-Gaus does not assume any material type, and it is expressive
to model real heterogeneous elastic objects. Besides being expressive, our dynam-
ics model should also be efficient and amenable to gradient-based optimization
for parameter estimation.

Recall that the appearance and geometry representations include a set of
Gaussian kernels {Gi}Ni=1, parameterized by point centers X = {µi}Ni=1, scaling
scalars {si}Ni=1, color vectors {ci}Ni=1, and opacity values {σi}Ni=1. To manage
complexity for efficient simulation, we introduce volume sampling to generate a
set of anchor points A = {xi}NA

i=1 (each x represents a spatial point), defined by:

A = {xi}NA
i=1 = V(X), (4)
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Fig. 2: Overview of Spring-Gaus reconstruction pipeline: (a) Static Scene
Reconstruction: We start by reconstructing static 3D Gaussians from the first frames
of the multiview videos. (b) Refining 3D Gaussians: We extract a set of anchor
points to allow efficient simulation, which leads to appearance drift. We refine the
3D Gaussians to better model the appearance during simulation. (c) Dynamic Re-
construction: Our 3D Spring-Mass model simulates anchor points and updates the
positions of Gaussian kernels. Upon completion of optimization, we obtain a simulat-
able 3D object that accurately models its dynamics.

where NA denotes the number of anchors, and V denotes the sampling function.
Our 3D Spring-Mass physical model can simulate the motion of anchor points

A, assuming each anchor has a mass mi and an initial velocity vi. Each anchor
xi connects to its nk nearest neighbors Ni = {xi,j}nk

j=1 through springs L:

L = {li,j}NA,nk

i=1,j=1 = knn(A,A, nk), (5)

where li,j denotes the spring’s length between xi and xi,j , and knn denotes the
k-nearest neighbors function. Each spring is characterized by a stiffness ki,j and
a damping factor ζi,j .

To update the positions of the kernels, we first measure the distance between
each kernel center and its nb nearest anchors at the dynamic simulation’s onset:

{di,j}N,nb

i=1,j=1 = knn(X,A, nb). (6)

For each timestep t, the forces F t
i acting on each anchor point xt

i are calculated
as follows:

F t
i = Fk

t
i + Fζ

t
i +mig, (7)
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where Fk
t
i, Fζ

t
i, and g represent the spring force, the damping force, and gravi-

tational acceleration, respectively.
Then, for each spring Li,j , the spring force Fk

t
i,j and damping force Fζ

t
i,j are

determined by:

Fk
t
i,j = −ηj · ki,j

(∥∥xt
i − xt

i,j

∥∥− li,j
) xt

i − xt
i,j∥∥xt

i − xt
i,j

∥∥ ·
∣∣∣ ∥∥xt

i − xt
i,j

∥∥− li,j

∣∣∣pk

, (8)

Fζ
t
i,j =

(
−ζi,j

(
vt
i − vt

i,j

) xt
i − xt

i,j∥∥xt
i − xt

i,j

∥∥
)

·
xt
i − xt

i,j∥∥xt
i − xt

i,j

∥∥ , (9)

where η is a soft vector which will be discussed later and pk is a hyperparameter
that determines the nonlinearity of the spring force. When pk is set to 0, Eq. (8)
becomes Hooke’s law, and for positive values of pk, the spring force becomes a
nonlinear function of the spring’s length. The cumulative forces acting on each
anchor point xt

i are expressed as:

F t
i =

nk∑
j=1

Fk
t
i,j +

nk∑
j=1

Fζ
t
i,j +mig. (10)

Anchor points A’s positions and velocities are updated using semi-implicit Euler
integration:

v̂t+1
i = vt

i +
F t
i

mi
∆t, (11)

x̂t+1
i = xt

i + vt+1
i ∆t, (12)

and a boundary condition B is applied to the anchor points A to model the
interactions with the environment:

xt+1
i ,vt+1

i = B(x̂t+1
i , v̂t+1

i ). (13)

The position of each Gaussian kernel µi is updated through Inverse Distance
Weighting (IDW) interpolation to reflect the dynamic changes accurately:

µt+1
i =

∑nb

j=1 x
t+1
i,j · (1/(di,j)pb)∑nb

j=1(1/(di,j)
pb)

, (14)

where pb is a positive real number that determines the diminishing influence of
anchor points with distance. To render the image Î at a specific camera and
frame, we use the updated positions of the Gaussian kernels following the ren-
dering equation Eq. (3).
Soft Vector for Springs Connection: In our formulation above, the nk is
a hyperparameter which is the number of connected springs for each anchor.
However, the choice of nk will directly affect the simulation results markedly.
The bigger value of nk, the object will behave more rigidly, and a smaller value
of nk leads to a noticeably softer behavior of the point cloud. To address the
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significant impact that the value of nk has on the simulation, we introduce
a mitigation strategy by applying a soft vector η = [η0, η1, ..., ηnk

]. This vector
controlled by a learnable parameter κ (shared by all anchors) is used to modulate
the number of connected springs, thereby adjusting the system’s response to a
different object. Given an empirical value nc, the soft vector η is calculated as:

ηj =

{
1 j ≤ nc,

clamp(2− exp(softplus(κ))j−nc , 0, 1) nc < j ≤ nk.
(15)

3.3 Optimization

To allow efficient optimization, we simplify our model by reducing the number of
learnable parameters without changing the essential expressiveness. In our sim-
plified approach, we standardize the mass of every anchor to a constant value
m0, and control all damping factors using a singular parameter ζ0. These two
parameters are fixed, eliminating their variability from the optimization process.
Furthermore, we introduce a unified parameter ki for each anchor xi to control
the spring stiffness of the springs connected to it, simplifying the model with-
out compromising its functional integrity. The spring stiffness ki,j and damping
factor ζi,j are thus given as follows:

ki,j = ki/li,j , (16)
ζi,j = ζ0/li,j . (17)

Note that, in Eq. (17) stiffness is defined at anchor points rather than on
springs themselves to simplify the optimization—we only need to optimize NA

stiffness coefficients instead of all the springs, which is on the order of nk ·NA.
By this simplification, our model maintains computational efficiency and ease of
optimization, while still capturing the essential dynamics of the object.

Summarized, the learnable parameters in our model now include:

– v0: the initial velocity vector, providing a baseline movement pattern for the
simulation;

– {ki}NA
i=1: the individual stiffness parameters for each anchor, allowing for

localized adjustments to spring stiffness;
– κ: a parameter governing the modulation of the soft vector, facilitating fine-

tuned control over the spring dynamics;
– Θ(B(·)): parameters defining the boundary conditions (Θ is learnable pa-

rameters), such as the friction coefficient, which influence the simulation’s
physical realism.

There exist nt timesteps between each of the two keyframes. At each timestep,
xt is computed from xt−1 using the update rule Eqs. (11) and (12). We only
optimize physical parameters at each keyframe (when t = 0, nt, 2nt, 3nt, . . .)
based on the visual observations until that time. We increase the value of nt

as the parameters converge. This approach balances identification accuracy and
computational demand.
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Same with 3D Gaussian Splatting [14], we define our loss function as a
weighted combination of the L1 norm and the Structural Similarity Index Mea-
sure (D-SSIM) Ld-ssim, applied between the input images I and the rendered
images Î. This is formally expressed as:

L = (1− λd-ssim)L1 + λd-ssimLd-ssim, (18)

where λd-ssim is a weighting coefficient that balances the contribution of the L1

norm and the D-SSIM term to the overall loss. We decouple our optimization
into a few stages, as illustrated in Fig. 2.
Static Reconstruction: Our optimization starts by taking the first frames
of the multi-view videos and using them to reconstruct the appearance and
geometry of the object.
3D Gaussians Refinement: During dynamic simulation of the anchor points,
the 3D Gaussian centers X0 = {µ0

i }Ni=1 are computed by IDW interpolation out-
lined in Eq. (14). This leads to a slight appearance drift from the static recon-
struction. Therefore, we refine the parameters of the Gaussian kernels—scaling
scalar s, color vector c, and opacity value σ, excluding points center µ—also at
the first frame, before the dynamic simulation. Since the Gaussian kernels’ po-
sition from IDW interpolation is slightly different from the static reconstruction
results, this refinement process enables the Gaussian kernels with the interpo-
lated spatial position to render the correct object appearance.
Dynamic Reconstruction: Since our efficient dynamics simulation is fully dif-
ferentiable with respect to the learnable parameters, we can optimize the physical
parameters through differentiable simulation and differentiable rendering with
our loss function L.

4 Experiment

4.1 Datasets

Synthetic Data. We evaluate Spring-Gaus using a synthetic dataset. We first
collected fourteen 3D models, including point clouds and meshes, to use as initial
point clouds for our simulations. Some of them are sourced from PAC-NeRF [18]
and OmniObject3D [45]. Following PAC-NeRF, we employ the Material Point
Method [11,39] to simulate the dynamics of elastic objects to generate synthetic
data. Our dataset features elastic objects with various stiffness levels and di-
verse geometric forms. Multi-view RGB videos are rendered using Blender [5],
with each sequence comprising 10 viewpoints and 30 frames at a resolution of
512×512. The initial 20 frames are utilized for dynamic reconstruction, while the
subsequent 10 frames are dedicated to evaluating future prediction performance.
Real-World Data. In addition to synthetic datasets, we further assess Spring-
Gaus using captured real-world examples. Our collection process distinguishes
between static scenes and dynamic multi-view videos. For static scenes, we
position each object on a table and capture 50-70 images from various view-
points within the upper hemisphere surrounding the object. To obtain camera
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registration

Fig. 3: Registration from static scene to dynamic scene for real-world sample.

poses for static scenes, we utilize the off-the-shelf Structure-from-Motion toolkit
COLMAP [35, 36]. The dynamic aspect of our dataset is represented through
multi-view RGB videos, recorded from three distinct viewpoints, at a resolution
of 1920×1080. The camera parameters for dynamic scenes are obtained through
calibration using a checkerboard. SAM [15] is used to obtain object masks.

4.2 Implementation Details

When learning the 3D Gaussians, the distribution of Gaussian kernels is highly
dependent on the initial points. Gaussian kernels tend to concentrate on the
surface if the initial points are derived from SfM results. However, we initialize
a large number of points inside a cube, resulting in a more uniform distribution
of the final kernels.

For real-world samples, we collect static and dynamic scenes separately be-
cause three viewpoints are insufficient for effective 3D Gaussian reconstruc-
tion [14]. This results in the Gaussian kernels for static and dynamic scenes
being in different coordinate systems. Therefore, for real samples, we employ a
registration network before dynamic reconstruction to align the Gaussian kernels
from static scene coordinates to dynamic scene coordinates, as shown in Fig. 3.
Specifically, we optimize a scale factor sr, a translation vector tr, and a rota-
tion vector rr for the registration. We represent 3D rotations using a continuous
6D vector rr ∈ R6, which has been shown to be more amenable for gradient-
based optimization [53]. However, slight deformations of objects and variations
in lighting conditions and exposure times during data capture are inevitable.
These variations can result in color discrepancies between frames across time
and viewpoints. The color discrepancy is the major noise source that hinders
registration and reconstruction. Thus, we refine our approach by computing the
loss function between mask images, incorporating both mask center loss and
perceptual loss into our model. Consequently, the revised loss function for real
samples is expressed as:

L = (1− λd-ssim)L1 + λd-ssimLd-ssim + λcenterLcenter + λpercepLpercep, (19)

where λd-ssim = 0.8, λcenter = 1.0, and λpercep = 0.1 are the weighting coeffi-
cients. Here, Lcenter quantifies the discrepancy between the center coordinates of
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Torus Cross Cream Apple Paste Chess Banana Mean

C
D

↓ Spring-Gaus (ours) 2.38 1.57 2.22 1.87 7.03 2.59 18.48 5.16
PAC-NeRF [18] 2.47 3.87 2.21 4.69 37.70 8.20 66.43 17.94

E
M

D
↓ Spring-Gaus (ours) 0.087 0.051 0.094 0.076 0.126 0.095 0.135 0.095

PAC-NeRF [18] 0.055 0.111 0.083 0.108 0.192 0.155 0.234 0.134

P
S
N

R
↑ Spring-Gaus (ours) 16.83 16.93 15.42 21.55 14.71 16.08 17.89 17.06

PAC-NeRF [18] 17.46 14.15 15.37 19.94 12.32 15.08 16.04 15.77

S
S
IM

↑ Spring-Gaus (ours) 0.919 0.940 0.862 0.902 0.872 0.881 0.904 0.897
PAC-NeRF [18] 0.913 0.906 0.858 0.878 0.819 0.848 0.866 0.870

Table 1: Quantitative results of future prediction on synthetic data. Spring-
Gaus excels in short-term future prediction. Meanwhile, since we separate appearance
and dynamics modeling, Spring-Gaus also maintains good rendering quality.

Torus Cross Cream Apple Paste Chess Banana Mean

C
D
↓

Spring-Gaus (ours) 0.17 0.48 0.36 0.38 0.19 1.80 2.60 0.85
PAC-NeRF [18] 4.92 1.10 0.77 1.11 3.14 0.96 2.77 2.11
Dy-Gaus [26] 579 773 479 727 2849 764 2963 1305
4D-Gaus [44] 11.12 1.77 2.87 2.23 1.95 3.97 7.13 4.43

E
M

D
↓ Spring-Gaus (ours) 0.040 0.037 0.031 0.033 0.022 0.063 0.052 0.040

PAC-NeRF [18] 0.056 0.052 0.041 0.045 0.054 0.052 0.062 0.052
Dy-Gaus [26] 0.857 0.955 0.783 0.903 1.739 0.985 1.591 1.116
4D-Gaus [44] 0.130 0.078 0.089 0.088 0.070 0.097 0.112 0.095

Table 2: Quantitative results of dynamic reconstruction on synthetic data.
Spring-Gaus has excellent geometric accuracy in dynamic reconstruction.

the rendered and ground truth images, while Lpercep represents the perceptual
loss [13], which is based on the VGG16 architecture [37].

4.3 Qualitative and Quantitative Results

We assess the performance of our approach using both synthetic and real-
world datasets. Firstly, we validate the effectiveness of our method on synthetic
datasets, utilizing the first 20 frames as our observation set for training dynamic
modeling capabilities. For future prediction, we employ the subsequent 10 frames,
comparing the ground truth with our model’s predictions of future frames. Ad-
ditionally, we benchmark our approach against the most relevant methods in dy-
namic scene modeling and physics-informed learning, including PAC-NeRF [18],
Dynamic 3D Gaussians [26], and 4D Gaussian Splatting [44].

The qualitative results are presented in Fig. 4. We also report quantitative
results by computing the Chamfer Distance (CD) and Earth Mover’s Distance
(EMD). In all tables, the Chamfer Distance is measured based on squared dis-
tance, with units expressed as 1×103mm2. The quantitative analysis of dynamic
reconstruction, shown in Tab. 2, reveals that Spring-Gaus can accurately simu-
late object dynamics for the synthetic data.
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Fig. 4: Qualitative results on synthetic data. Compared with PAC-NeRF [18],
Dynamic 3D Gaussians [26] and 4D Gaussian Splatting [44], Spring-Gaus can maintain
a good geometry and appearance while reconstructing reasonable dynamics.
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Fig. 5: Qualitative results of future prediction on real-world samples. Pre-
dicted dynamics closely follow real observations.

In Tab. 1, we show our method’s capability in predicting future frames. Our
method outperforms PAC-NeRF across CD, EMD, Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM) metrics. We show qualitative
results in Fig. 4. We observe that Spring-Gaus gives faithful reconstruction and
future prediction that closely aligns with the ground truth, even though the sim-
ulation engines are different. This shows that Spring-Gaus is not only expressive
but also allows efficient identification through gradient-based optimization.

We also evaluate Spring-Gaus on real-world samples. It is difficult for both
NeRF [28] and 3D Gaussian Splatting [14] to reconstruct the correct geometric
information under extremely sparse camera views. However, due to 3D Gaus-
sians’ explicit representation that we can directly operate Gaussian kernels, we
could reconstruct the static scenes and dynamic scenes in a different coordinate
system and then align them using a registration network mentioned in Sec. 4.2,
which is hard to do under an implicit representation. We show the registration
process in Fig. 3. Results on real-world samples can be found in Fig. 5 and Fig. 1.

4.4 Generalization to New Conditions

In addition to future prediction, we also show that our method essentially cre-
ates a digital asset of the object from the multi-view videos, allowing dynamic
simulation under different unseen environmental conditions. In Fig. 6, we edit
the boundary conditions, such as adjusting the positions and the stickiness of
the ground plane. In Fig. 7, we edit physical conditions, initialization conditions,
and environmental conditions, such as object properties (making them softer or
harder), initial velocities, and environmental gravity. Please check our project
website∗ for videos of the results for a more expressive illustration.

* https://zlicheng.com/spring_gaus

https://zlicheng.com/spring_gaus
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Low ground

SmoothNormal Sticky

Mid groundHigh ground

NormalSticky Smooth

Low groundMid groundHigh ground

Fig. 6: We edit boundary conditions in these demos. Changing grounds’ position and
using smooth or sticky ground.

Original Random init velocity

Random init velocityOriginal OriginalZero gravity Hypergravity Bigger & Softer

Smaller & Softer Original Windy Bigger & Softer

Fig. 7: We edit physical conditions, initial velocities and gravities in these demos.

5 Conclusion

In this paper, we introduce Spring-Gaus, a novel framework designed to acquire
simulatable digital assets of elastic objects from video observations. By integrat-
ing a 3D Spring-Mass model, Spring-Gaus allows the reconstruction of object ap-
pearance and dynamics. A key feature of our approach is the distinct separation
between the learning processes for appearance and physics, thereby circumvent-
ing potential issues with optimization interference. We evaluate Spring-Gaus on
both synthetic and real-world datasets, demonstrating its capability to recon-
struct geometry, appearance, and physical dynamic properties. Moreover, our
method demonstrates improved capabilities by predicting short-term future dy-
namics under different environmental conditions. This showcases its strength in
identifying physical properties from observational data and predicting the dy-
namics of reconstructed digital assets.
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