
Deep Patch Visual SLAM

Lahav Lipson, Zachary Teed, and Jia Deng

Princeton University

Abstract. Recent work in Visual Odometry and SLAM has shown the
effectiveness of using deep network backbones. Despite excellent accu-
racy, such approaches are often expensive to run or do not generalize
well zero-shot. To address this problem, we introduce Deep Patch Visual-
SLAM, a new system for monocular visual SLAM based on the DPVO vi-
sual odometry system. We introduce two loop closure mechanisms which
significantly improve the accuracy with minimal runtime and memory
overhead. On real-world datasets, DPV-SLAM runs at 1x-3x real-time
framerates. We achieve comparable accuracy to DROID-SLAM on Eu-
RoC and TartanAir while running twice as fast using a third of the
VRAM. We also outperform DROID-SLAM by large margins on KITTI.
As DPV-SLAM is an extension to DPVO, its code can be found in the
same repository: https://github.com/princeton-vl/DPVO

Keywords: SLAM · Visual Odometry · Monocular

1 Introduction

Visual Simultaneous Localization and Mapping (SLAM) aims to estimate cam-
era motion and produce a 3D environment map from a video stream. Most
approaches treat SLAM as an optimization problem which seeks to align the
unknown poses and depth to the visual measurements. Indirect approaches to
SLAM estimate matches between frames as a pre-processing step and then
minimize the reprojection error during bundle adjustment [2, 16, 17]. DROID-
SLAM [31], a recently-proposed indirect method for SLAM with exceptional
accuracy, alternates between predicting optical flow residuals and optimizing
the camera pose and depth estimates. DROID-SLAM uses a deep-network back-
bone based on RAFT [29], and generalizes well to multiple datasets without ever
having seen real-world data during training. Several other approaches have since
been based on this design [31,41,45].

Despite DROID-SLAM’s success, it requires a GPU with 24GB of memory to
run on all datasets. This makes deploying DROID-SLAM on portable hardware
challenging, which is required for many applications of SLAM. DROID-SLAM
is also slower than several classical approaches, and requires a high-end GPU in
order to run in real-time. To address these issues, a sparse analog of DROID-
SLAM, Deep Patch Visual Odometry (DPVO [31]), was later introduced. DPVO
only tracks a small number of keypoints (64-96) per-frame, as opposed to the
dense correspondence that DROID-SLAM used.

https://github.com/princeton-vl/DPVO

2 Lipson, Teed, Deng

DPVO is efficient, but it has several weaknesses. First, it is limited to a
visual odometry system due to the high storage cost imposed by its use of high-
resolution feature maps. Second, DPVO suffers from severe scale-drift outdoors.

To address these challenges, we propose DPV-SLAM, a new system for
monocular visual SLAM with improved efficiency and accuracy. DPV-SLAM is
based on the DPVO visual odometry system; our primary contributions are two
separate SLAM loop closure mechanisms which improve accuracy across several
domains, with only small penalties to inference speed and memory usage.

– DPV-SLAM is general and robust. We evaluate our approach on Eu-
RoC, KITTI, TUM-RGBD and TartanAir. Our method performs well in
all settings, suffering from 0 catastrophic failures. We compare DPV-SLAM
to other methods which report results on both indoor/outdoor without re-
training, and show that our method has low average error in all settings.

– DPV-SLAM is fast. DPV-SLAM runs 2.5x faster than DROID-SLAM on
EuRoC and 2.3x faster on KITTI. Compared to the base DPVO system, we
incur only a small reduction in speed (e.g., 60→50 FPS on [1]) and increase
in cost (4G→5G GPU memory).

– DPV-SLAM is accurate. We perform similarly to DROID-SLAM on Eu-
RoC and TartanAir. Compared to DPVO, we achieve 4.5x lower error on Eu-
RoC (0.105→0.023). On KITTI, we outperform DROID-SLAM and DPVO
by significant margins.

To construct DPV-SLAM, we introduce an efficient mechanism for proximity-
based loop closure and an image-retrieval backend based on classical descriptors.
Our proximity backend addresses a challenge with building SLAM systems on
deep networks, which is their inability to run the backend and frontend in par-
allel. For example, previous systems [30, 45] run their respective backends in
separate processes which compete for GPU resources if run on the same device.
Without a second GPU, their odometry systems must pause periodically and
wait for the backend to finish executing.

Our proximity backend runs on a single GPU, at low memory cost and low
latency. We optimize and update a scene graph with both odometry and loop
closure factors. To enable efficient global optimization, we contribute a CUDA-
accelerated block-sparse implementation of bundle adjustment which is compat-
ible with DPVO’s patch graph scene representation. Our proximity-based loop
closure runs considerably faster DROID-SLAM’s backend on EuRoC [1] (0.1-
0.18s vs 0.5-5s). We also extend DPV-SLAM to utilize a classical loop closure
mechanism, which employs image retrieval and pose graph optimization to cor-
rect for scale drift.

2 Related Work

Zero-Shot Cross-Domain Generalization is a longstanding problem in vi-
sual SLAM. The challenge is to develop a system which avoids catastrophic
failures in different domains, without requiring re-training. Classical approaches

Deep Patch Visual SLAM 3

to SLAM [2,16,17] are prone to catastrophic failures during fast camera motion,
and generally underperform deep approaches on indoor datasets [5, 10]. Several
works have proposed learning a generalized system for SLAM by using a deep-
network backbone trained entirely on synthetic data. TartanVO [35] trained on
TartanAir [36] and showed strong performance on both indoor and outdoor set-
tings without fine tuning. DROID-SLAM [30] and DPVO [31] followed a similar
approach, but used a differentiable bundle adjustment layer in order to learn
outlier rejection by supervising on the predicted camera poses.

Our approach is also trained only on synthetic data, however we demon-
strate better generalization and/or runtime. Many works in VO/SLAM focus on
in-domain accuracy, i.e., approaches trained or developed with a particular test
setting taken into special consideration [14,22,34,37,39,40,42–44]. This setting
is orthogonal to ours; we do not claim to outperform VO/SLAM systems spe-
cialized for autonomous driving applications on the KITTI dataset, for example.
Monocular SLAM is especially challenging due to the ambiguity of scale in
monocular video. Several VO/SLAM works remove the scale ambiguity alto-
gether by relying on stereo video, inertial measurements, or depth [8, 20, 21]. In
contrast, our method operates on monocular video. We focus our evaluation on
methods which do the same. Monocular SLAM is important due to the wide
availability of monocular video, and because they can be easily adapted to use
additional sensors, whereas the reverse is not always true.
Neural SLAM and rendering-focused SLAM: Several recent approaches
use Gaussian-splatting and/or NeRFs [12, 13, 27, 47]. These rendering-based ap-
proaches are primarily designed for high-quality reconstruction/rendering, with
tracking being a secondary focus usually only evaluated with smooth/slow cam-
era motion on [25]/ [4]. In contrast, we focus on tracking accuracy in hard set-
tings, similar to [2, 5, 16,17,30,31]. [45] is an exception, which we compare to.
Loop Closure enables VO/SLAM methods to correct drift by adding factors
between temporally-distant pose variables. Campos et al. [2] categorized the
types of loop closure as mid-term and long-term data-association based on their
approach to detecting loops and optimizing the scene graph. mid-term loop clo-
sure uses the current estimate of poses and depth to detect loops, and updates
the poses/depth using bundle adjustment. long-term data association uses vi-
sual place recognition to detect loops and updates the poses using pose graph
optimization. DROID-SLAM [30] uses mid-term. LDSO [10] uses long-term. VO
systems use neither (by definition). ORB-SLAM [2] uses both. DPV-SLAM uses
mid-term, or optionally both.
Deep Patch Visual Odometry (DPVO) was proposed as a faster alternative
to the visual odometry from DROID, based on two insights. The first is that vir-
tually every approach to SLAM provides some mechanism to trade-off accuracy
for speed and/or memory (to an extent). For example, one can increase the num-
ber of keypoints, RANSAC iterations, the optimization window size, the image
resolution, the number of keyframes produced, or the connectivity of the factor
graph. For SLAM methods with deep-network backbones, one can also increase
the feature dimension, add more layers, or use quantization / mixed-precision.

4 Lipson, Teed, Deng

The second insight is that, by predicting sparse optical flow as opposed to
dense, the resulting memory/runtime savings are sufficient to offset the initial
accuracy loss by spending them in other aspects of the design. This allows DPVO
to achieve similar accuracy to DROID-SLAM’s frontend, with much lower cost
and faster inference. The drawback is that the DPVO design is more challenging
to adapt to a full SLAM system due to the large per-frame storage require-
ment. DPVO also suffers from the same performance issues as DROID-SLAM
on outdoor datasets.

3 Approach

3.1 Goals for a general SLAM system

In this work, we aim to construct a general approach to monocular visual-SLAM
which is maximally useful for estimating camera-motion across domains. To this
end, we clearly define our goals:

– Zero-shot generalization. We aim for DPV-SLAM to generalize across
domains (outdoor and indoor), without requiring re-training or fine-tuning
on data from the testing domain. Recent works based on deep-network back-
bones [30,35] have shown strong zero-shot generalization by training on syn-
thetic data [36]. DPV-SLAM does this as well, but generalizes better. Like-
wise, classical approaches to VO/SLAM [2, 5, 10, 16, 17] are also considered
“general” due to their use of classical feature-descriptors/detectors [19,23] in-
stead of learned ones. In contrast, many recent works in VO/SLAM [14,22,
34,37,39,40,42–44] do not demonstrate the ability to generalize between do-
mains (outdoor/indoor) without re-training/tuning on domain-specific data.

– Fast (real-time or better) inference. We aim for DPV-SLAM to be
fast. A significant application of SLAM is to provide real-time feedback to
autonomous systems. For these applications, it is critical that the method
can process images at a rate equal to or better than the camera hz. Many
classical approaches [2, 5, 10, 16, 17], as well as some deep ones [30, 41, 45],
slow down significantly during fast motion due to more frequent keyframing.

– Low-cost. We aim for DPV-SLAM to be low-cost. Many applications for
visual SLAM require deploying the algorithm on portable hardware. The
resources on such hardware are often limited. To this end, we show that
DPV-SLAM uses minimal GPU memory.

3.2 DPVO Preliminaries

Our system is based on Deep Patch Visual Odometry (DPVO) [31]. DPVO is a
sparse analog of the visual odometry frontend of DROID-SLAM which achieves
similar accuracy with much lower latency and memory. In this section, we will
discuss the details of DPVO that are relevant to our contribution. For more
details, we refer the readers to the original DPVO paper.

Deep Patch Visual SLAM 5

DPVO Overview: Given an input video stream, DPVO seeks to estimate the
2D motion of selected keypoints across time by predicting optical flow and up-
dating the depth and camera poses using bundle adjustment. DPVO only sup-
ports visual odometry, so it operates on a sliding window of frames and removes
keyframes and features once they fall outside of the optimization window.

Global Bundle
Adjustment

Loop
Detected?

Patch &
Feature

Extraction

Frame
Cache

Frame
Cache

Keypoint
Matching

+ Sim(3) Est
Pose-Graph
Optimization

Local Bundle
Adjustment

Update Operator

Select proximity factors

Additional
Reproj-Error Factors

Pose Factors
𝑆𝑖𝑚 3
Factor

0

1

2

3
4
5
6 7 8 9

10
11
12

13

14

15

16

17

18
19
20
21222324

25
26
27

28

29

Patch-Graph

DBoW2
DBoW2

Input Video Stream

Fig. 1: Overview of DPV-SLAM. Our system maintains the odometry system from
DPVO [31] as a frontend, and introduces efficient loop closure mechanisms. Like DPVO,
our system utilizes a patch graph scene representation, which alternates between pre-
dicting sparse optical flow residuals and optimizing the camera poses and depth using
bundle adjustment. DPV-SLAM detects previously visited locations and attempts to
correct the accumulated drift via loop closure. The proximity loop closure detects loops
using the pre-estimated geometry and uses global bundle adjustment. The second uses
image retrieval and pose graph optimization.

The patch graph: DPVO uses a scene representation known as a patch graph,
in which each frame i contains a set of p× p patches Pik

Pik =


x
y
1
d

 x,y,d ∈ R1×p2

(1)

where d is the inverse depth estimate. We denote the number of patches for
frame i as Ki, and [Ki] := {1, ...,Ki}. The patch graph is a bipartite graph,
in which directed edges connect patches to frames. The scene representation is
used by DPVO and DPV-SLAM. We visualize an example of our backend patch
graph in Fig. 3.

Given the current poses, inverse depths and camera intrinsics, we can repro-
ject any patch to any other frame. We denote the set of edges as F , the global

6 Lipson, Teed, Deng

camera pose for frame i as Gi, and the 3D→2D pinhole-projection function as
π(·). We represent edges from Pik to frame j as (i, k, j). The reprojection of Pik

to frame j is denoted as

P′
ikj = π[G−1

j ·Gi · π−1(Pik)] (2)

The explicit objective of DPVO is to predict residual updates ∆ikj to P′
ikj

for all edges in order to improve the visual alignment. The resulting Iikj :=
(P′

ikj + ∆ikj) represents the model’s ideal reprojection of Pik into frame j.
After predicting ∆ikj , DPVO solves an optimization problem (BA) over the
patch graph to align the actual patch reprojections to the ideal reprojections.

argmin
G,d

∑
i

∑
k∈[Ki]

∑
j:(i,k,j)∈F

∥∥π[G−1
j ·Gi · π−1(Pik)]− Iikj

∥∥2
Σikj

(3)

Note that in eq. 3, Iikj is treated as a constant. In addition to ∆ij , DPVO also
predicts a confidence estimate wikj ∈ R2 for each edge. Eq. 3 minimizes the
Mahalanobis distance, in which the error terms are weighted by the predicted
confidences: Σikj = diag(wikj).
Patch extraction: DPVO selects keypoints randomly, as opposed to the usual
strategy of using a detector or image-gradients. This counter-intuitive strategy
works sufficiently well [31], and is trivial to implement. The patch features are
cropped around the chosen 2D keypoints from dense (H/4 × W/4) feature maps
predicted by a residual network learned end-to-end with the full model. DPVO
extracts both 1×1 context features, and p×p correlation features. The correlation
features are used to evaluate the visual alignment of the current pose and depth
estimates, whereas the context features are provided as-is to the update operator.
Update Operator: The update operator of DPVO is the recurrent module
used to predict ∆ikj and wikj for all edges in the patch graph. As an RNN,
it also maintains a running hidden state hikj ∈ R384 for every edge (i, k, j).
The architecture includes several fully-connected gated residual units. As input,
the update operator accepts the previous hidden state hikj , correlation features
Cikj , and the context features for Pik.
Patch correlation: Correlation features Cikj are computed for each edge in
order to evaluate the visual alignment produced by the current depth and pose
estimates. To compute C, we use eq. 2 to reproject Pik into frame j. Let g(u, v)
represent the p×p patch correlation features indexed at (u, v) and P′(u, v) denote
P′

ijk indexed at (u, v). f(·) denotes bilinear sampling, ⟨·⟩ a dot product, and ∆αβ

a 7 × 7 grid centered at 0, indexed at (α, β). Each value in C ∈ Rp×p×7×7 is
computed as:

C(u, v, α, β) = ⟨g(u, v), f(P′(u, v) +∆αβ)⟩ (4)

C is recomputed and flattened before each invocation of the update operator.
Colloquially, eq. 4 computes a dot product between correlation features for all
pairs of grid points around either end of the flow vector induced from the poses

Deep Patch Visual SLAM 7

9.1 GB / 1K Frames

0.6 GB / 1K Frames

Uni-Directional
Reproj-Error Factors

Bi-Directional
Reproj-Error Factors

Fig. 2: Our optimization layer is composed of directed reprojection-error factors which
constrain the depth of the outgoing frame, and both camera poses. The key insight is
that, for each directed edge in the patch graph, the outgoing frame incurs a tiny storage
cost and the incoming frame incurs a large cost, yet this factor sufficiently constrains
both camera poses in the optimization. This is a special property of DPVO’s patch
representation, since outgoing flow vectors only require patch features. We leverage
this fact to introduce long-range edges for loop closure with minimal cost.

and Pk. The key insight is that eq. 4 requires storing the full correlation feature
map for frame j in memory, since P′

ikj is unbounded. This is an expensive
requirement, which is addressed in our proximity backend.

3.3 Proximity Loop Closure

We contribute a loop closure mechanism to DPVO which detects loops via the
camera’s proximity to previously visited locations. This backend seeks to im-
prove global consistency by periodically inserting long-range edges into the patch
graph, updating their optical flow, and performing global bundle adjustment to
update all camera poses and depth. Previous deep SLAM systems [30,45] require
two GPUs in order to consistently average real-time inference. This is because
CUDA operations typically utilize all available cores on their host device, and
therefore must run sequentially, even when they are being called from separate
processes. All Pytorch/CUDA operations in DPV-SLAM run in a single process
on a single device, which is both simpler and computationally cheaper.

Constructing the Patch Graph: DPVO, like DROID-SLAM [30], stores dense
feature maps in memory for updating the optical flow predictions. The larger the
optimization window, the more feature maps must be kept, increasing cost. This
problem is exacerbated in DPVO, where the feature maps are twice the spatial
resolution (1/4 vs 1/8). Note that this problem does not affect keypoint-based
indirect SLAM methods like ORB-SLAM [2], only those based on RAFT [29].

We observe that, for each directed edge in the patch graph, the correlation
operator consumes dense features only for the destination frame and only small
patch features for the source frame. Meanwhile, the associated reprojection-error
factor in the optimization is able to influence the camera poses for both frames.
This means, for each edge in the patch graph, we can arbitrarily flip its direction
to influence which of the two frames hosts the patch features and which the dense
feature map, without significantly affecting the optimization result.

8 Lipson, Teed, Deng

Proximity
Factors

Odometry Factors

Fig. 3: The patch graph for our DPV-SLAM. We introduce directed factors from old
frames to recent frames in the odometry frontend. These factors are chosen based on
the frontend’s proximity to previously visited locations. The construction of this patch
graph only requires storing a finite number of dense feature maps, keeping the memory
consumption small.

We exploit this fact to minimize the number of deep features stored in mem-
ory. Specifically, we permanently store only the patch features for all previous
time-steps and create uni-directional proximity factors connecting these patches
to recently observed frames in the frontend. Consequently, we incur only a minor
storage overhead from the patch features (≈ 0.6Gb / 1K frames). We depict this
globally-connected patch graph in Fig. 3.

Efficient Global Optimization: We mix both odometry and loop-closure fac-
tors in the same optimization. This mandates a bundle adjustment implementa-
tion which can handle global optimization without severely impacting the odom-
etry component. DPVO’s pre-existing bundle adjustment is GPU-accelerated,
but is still inefficient for large, sparse optimization problems. This is precisely
the challenge we face when introducing a small number of long-range proximity
factors into the optimization. A viable solution is to leverage the sparse struc-
ture of the hessian by implementing bundle adjustment in CUDA with block
sparse representations. While prior work has implemented such a system for
dense, uniformly sized depth maps [30], such a system has not been built for
sparse, varying sized patch graphs. We contribute our implementation and use
it to perform efficient global optimization.

3.4 Classical Loop Closure

Separately from our proximity loop closure, we also support a more traditional
SLAM backend which uses classical image retrieval and pose graph optimization.
This loop closure is especially important for correcting large amounts of drift.
We refer to the variant of our model with both proximity and classical loop
closure as DPV-SLAM++.

Deep Patch Visual SLAM 9

Fig. 4: We visualize the number of patches participating the optimization, over the
coarse of a video. During invocations of our proximity backend, we perform global
bundle adjustment which updates a significant portion of patch depths. Here, we only
consider patches with at least one high-confidence outgoing edge (w > 0.5).

Structure-Only BA Sim(3) Estimation

Fig. 5: Drift estimation. After identifying candidate image pair for loop closure us-
ing image retrieval, we seek to estimate the accumulated drift as a relative 7DOF
transformation. Using off-the-shelf detectors and matchers, we estimate 2D corre-
spondence from each retrieved image to its two temporal neighbors and perform
structure-only bundle adjustment to triangulate their depth. Finally, we match be-
tween the resulting 3D keypoints and estimate a 7DOF point-cloud alignment with
RANSAC+Umeyama [33].

Detecting Long-term Loops: We identify candidate image pairs using dBoW2 [9]
for retrieval, which requires extracting ORB [19] features for each frame. The
process of extracting features, indexing and searching the DBoW model takes
less time than the forward pass of DPVO and happens concurrently in a sep-
arate process, thereby incurring virtually 0 runtime overhead. Following prior
work [2], we look for multiple consecutive defections to increase precision.

Estimating Drift: We week to estimate the accumulated drift ∆Sloop
jk ∈ Sim(3)

between retrieved image pair (j, k). This is often done by matching between
their previously-mapped keypoints. However, the keypoints of DPVO [31], our
frontend, cannot directly be used for matching since DPVO does not use a
repeatable-keypoint detector. This decision has been justified in several prior
works [5, 10, 31] which showed that such detectors are not ideal for tracking
small-motions. See Fig. 6 for examples.

10 Lipson, Teed, Deng

We instead leverage off-the-shelf keypoint detectors and matchers [15,18,32],
only during loop closure, to estimate 2D correspondence from each retrieved im-
age to its temporal neighbors and perform structure-only bundle adjustment to
triangulate their depth. We then match the 3D keypoints between the retrieved
image pair and align their two point clouds using RANSAC+Umeyama [33]. We
depict this process in Fig. 5.

Fig. 6: Visualization of the 5 most confident (red/orange) and 5 least confident (blue)
patch centroids on TartanAir [36]. 96 keypoints are chosen randomly in each image.
Since only the edges have associated weights, we compute the "confidence" of each
keypoint as the maximum predicted weight over all of its outgoing edges. In contrast
to the usual expectation that the most salient features are the easiest to track, we
observe that DPV-SLAM frequently selects points on near-featureless regions.

Optimization: The final step estimates an absolute similarity for all keyframes
using a simplified version of the algorithm from [24]. We represent the estimated
pose of each keyframe i as an absolute similarity Si ∈ Sim(3) by converting the
current global pose estimates into similarities with scale 1. These are the free
variables of the optimization, while terms with the ∆ suffix are constants. We
add an error term to our optimization objective between each keyframe and its
successor, defined in the tangent space of Sim(3):

ri = logSim(3)

(
∆S−1

(i,i+1) · S
−1
i · Si+1

)
(5)

and error terms for the estimated loop connections:

rjk = logSim(3)

(
∆Sloop

jk · S−1
j · Sk

)
(6)

We then optimize the following objective using the Levengberg-Marquardt algo-
rithm:

argmin
S1,...SN

(
N∑
i

∥ri∥22 +
L∑

(j,k)

∥rjk∥22

)
(7)

where N is the total number of keyframes and L is the list of detected loops.
For each absolute similarity Si = (ti, Ri, si), the global poses and inverse depths

Deep Patch Visual SLAM 11

(a) DPVO [31] (b) DPVO with classical-backend

Fig. 7: Predictions of the DPVO base model with and without classical loop closure
(see Sec. 3.4) on the “Business Campus" sequence of the 4Seasons dataset [38]. Our
approach leads to more accurate outdoor trajectories.

are updated as Gi ← (ti, Ri) and di ← di/si. The pose graph optimization
is performed on the CPU in parallel to the main process, thereby incurring
negligible runtime overhead.

(a) Sequence 41 (b) Sequence 20 (c) Sequence 43

Fig. 8: Qualitative visualization on TUM-Mono [6]

4 Experiments

We evaluate DPV-SLAM on four datasets: KITTI [11], TUM-RGBD [26], EuRoC-
MAV [1], and the TartanAir [36] test set from the ECCV 2020 SLAM competi-
tion. We compare DPV-SLAM to methods which report results on both indoor
and outdoor settings, and that do not require re-training their model per-domain.
§ denotes values which we measured using their open source code, since they were
not reported in the original paper. For GO-SLAM, timings were measured using
tracking/mono mode. All timing experiments were performed on an RTX-3090.
TUM-RGBD [26] We evaluate monocular SLAM on the entirety of the Freiburg
1 set of the TUM-RGBD benchmark in Tab. 1. The purpose is to show that our

12 Lipson, Teed, Deng

360 desk desk2 floor plant room rpy teddy xyz Avg FPS VRAM

ORB-SLAM2 [17] X 0.071 X 0.023 X X X X 0.010 -
ORB-SLAM3 [2] X 0.017 0.210 X 0.034 X X X 0.009 -
DeepTAM [46] 0.111 0.053 0.103 0.206 0.064 0.239 0.093 0.144 0.036 0.116
TartanVO [35] 0.178 0.125 0.122 0.349 0.297 0.333 0.049 0.339 0.062 0.206
DeepV2D [28] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepV2D [TartanAir] 0.182 0.652 0.633 0.579 0.582 0.776 0.053 0.602 0.150 0.468
DeepFactors [3] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233
DeFlowSLAM [41] 0.159 0.016 0.030 0.169 0.048 0.538 0.021 0.039 0.009 0.114
GO-SLAM [45] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010 0.035 6.4§ 7.2G§

DROID-SLAM [30] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038 30 8.5G§

DPV-SLAM 0.112 0.018 0.029 0.057 0.021 0.330 0.030 0.084 0.010 0.076 30 4.0G
DPV-SLAM++ 0.132 0.018 0.029 0.050 0.022 0.096 0.032 0.098 0.010 0.054 30 6.0G

Table 1: ATE on the TUM-RGBD benchmark. Bolded indicates the best result. We
report runtimes and memory for methods whose average error is similar to ours. We
perform similarly to other methods based on DROID-SLAM [30,41,45] (0.054-0.076 vs
0.035-0.114), however these approaches do not perform well (or don’t report results)
outdoors (See Tab. 2), and are more expensive (4.0-6.0G vs 7.2-8.5G). DPV-SLAM++
performs well in both indoors and outdoors. Our objective is a SLAM system which
performs well in all settings.

approach performs well both indoors and outdoors. This benchmark evaluates
handheld camera motion, and is especially challenging due to rolling shutter
effects and motion blur. Video is recorded at 30FPS.

Sequence 06 07 09 10 Avg
trel rrel trel rrel trel rrel trel rrel trel rrel

TartanVO [35] 4.72 2.95 4.32 3.41 6.0 3.11 6.89 2.73 5.48 3.05
DPV-SLAM++ 4.95 0.16 1.29 0.24 17.69 0.23 6.32 0.23 7.56 0.22

(a) Comparison with TartanVO
00 01 02 03 04 05 06 07 08 09 10 Avg FPS ↑

ORB-SLAM2 [17] 8.27 X 26.86 1.21 0.77 7.91 12.54 3.44 46.81 76.54 6.61 - 34
ORB-SLAM3 [2] 6.77 X 30.500 1.036 0.930 5.542 16.605 9.700 60.687 7.899 8.650 - 34
LDSO [10] 9.32 11.68 31.98 2.85 1.22 5.1 13.55 2.96 129.02 21.64 17.36 22.42 49
DROID-VO [30] 98.43 84.2 108.8 2.58 0.93 59.27 64.4 24.2 64.55 71.8 16.91 54.19 17
DPVO [31] 113.21 12.69 123.4 2.09 0.68 58.96 54.78 19.26 115.9 75.1 13.63 53.61 48
DROID-SLAM [30] 92.1 344.6 X 2.38 1.00 118.5 62.47 21.78 161.6 X 118.7 - 17

DPV-SLAM 112.8 11.50 123.53 2.50 0.81 57.80 54.86 18.77 110.49 76.66 13.65 53.03 39
DPV-SLAM++ 8.30 11.86 39.64 2.50 0.78 5.74 11.6 1.52 110.9 76.7 13.7 25.76 39

(b) Comparison with other SLAM approaches using ATE[m].

Table 2: Monocular SLAM on the KITTI [11] training set. TartanVO only reports
results for sequences 6,7,9,10 using the trel/rrel metrics. Compared to other general
approaches to SLAM, our method performs well, while running at 39 FPS. [41, 45]
do not report results on KITTI. This table shows the challenge of generalizing across
domains: DROID-SLAM performs exceptionally well on indoor datasets, but fails on
KITTI. In turn, classical approaches perform well on KITTI, but fail on TUM (Tab. 1).
DPVO-SLAM++ performs well on both.

Deep Patch Visual SLAM 13

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg FPS VRAM

DeepFactors [3] 1.587 1.479 3.139 5.331 4.002 1.520 0.679 0.900 0.876 1.905 1.021 2.040
DeepV2D [28]† 0.739 1.144 0.752 1.492 1.567 0.981 0.801 1.570 0.290 2.202 2.743 1.298
DeepV2D [TartanAir]† 1.614 1.492 1.635 1.775 1.013 0.717 0.695 1.483 0.839 1.052 0.591 1.173
TartanVO1 [35]† 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
ORB-SLAM [16] 0.071 0.067 0.071 0.082 0.060 0.015 0.020 X 0.021 0.018 X -
DSO [10]† 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
LDSO [10] 0.046 0.035 0.175 1.954 0.385 0.093 0.085 - 0.043 0.405 - -
SVO [7]† 0.100 0.120 0.410 0.430 0.300 0.070 0.210 X 0.110 0.110 1.080 -
ORB-SLAM3 [2] 0.016 0.027 0.028 0.138 0.072 0.033 0.015 0.033 0.023 0.029 X -
DPVO [31]† 0.087 0.055 0.158 0.137 0.114 0.050 0.140 0.086 0.057 0.049 0.211 0.105
GO-SLAM [45] 0.016 0.014 0.023 0.045 0.045 0.037 0.011 0.023 0.016 0.010 0.022 0.024 6§ 14G§

DROID-SLAM [30] 0.013 0.014 0.022 0.043 0.043 0.037 0.012 0.020 0.017 0.013 0.014 0.022 20 20G§

DPV-SLAM 0.013 0.016 0.022 0.043 0.041 0.035 0.008 0.015 0.019 0.011 0.033 0.023 50 5.0Gb
DPV-SLAM++ 0.013 0.016 0.021 0.041 0.041 0.035 0.010 0.015 0.021 0.011 0.023 0.023 50 7.0Gb

Table 3: Monocular SLAM on the EuRoC datasets, ATE[m]. † denotes visual odometry
methods. We report runtimes and memory for methods whose average error is similar
to ours. We perform marginally worse than DROID-SLAM (0.023 vs 0.022), but use
significantly less GPU memory (5G vs 20G) and run 2.5x faster (50 FPS vs 20 FPS).

Compared to other deep SLAM systems [30, 45], our method performs sim-
ilarly (0.054-0.076 vs 0.38-0.114), however these approaches do not perform
well (or don’t report results) in outdoor settings (See Tab. 2). Classical ap-
proaches [2, 17] generally do not perform well on this dataset. In contrast, they
perform well on KITTI while previous deep SLAM methods do not. Our method
performs well on both datasets.

KITTI [11] We evaluate monocular SLAM on sequences 00-10 from the KITTI
training set in Tab. 2. The purpose is to show that our approach performs well
both indoors and outdoors. Video is recorded at 10FPS. The KITTI dataset in-
cludes long outdoor driving sequences with several loops. In order to correct scale
drift, monocular methods must implement some form of loop closure. However,
the loop-closure approach used in DROID-SLAM is insufficient; in fact, it causes
catastrophic failures on this dataset. Our approach achieves the second-lowest
average error among all methods in Tab. 2, while averaging 39FPS. Note that
the 1st place method is not especially accurate in indoor settings (see Tab. 3).

EuRoC-MAV [1] We evaluate monocular SLAM on the Machine-Hall and
Vicon 1 & 2 sequences from the EuRoC MAV dataset. Video is recorded at 20
FPS. This benchmark contains long sequences with motion blur, over/under-
exposed images, and rapid camera movement. On EuRoC, our method performs
similarly to DROID-SLAM (0.023 vs 0.022 ATE), while running 2.5x faster (50
FPS vs 20 FPS) using a quarter of the memory (5.0G vs 20G). Compared to
the base DPVO system, we achieve 4.5x lower error (0.105→0.023), with only a
small reduction in speed (60→50-FPS) and increase in cost (4G→5G).

TartanAir [36] We evaluate monocular SLAM on the TartanAir test set from
the ECCV 2020 SLAM competition. Compared to existing approaches, DPV-
SLAM outperforms DROID-SLAM by a sizeable margin (0.16 vs 0.24). Our
method runs at 27 FPS, while DROID-SLAM runs at 8FPS.

14 Lipson, Teed, Deng

10 20 30 40 50 60 70
Camera Frames-Per-Second

Mean FPS
 (50.2)

Inference Speed Distribution on EuRoC

(a) Latency on EuRoC [1]

10 20 30 40 50
Camera Frames-Per-Second

Mean FPS
 (39.4)

Inference Speed Distribution on KITTI

(b) Latency on KITTI [11]

Fig. 9: The distribution of inference speed. We run DPV-SLAM on EuRoC and KITTI,
and sample the current FPS uniformly over the runtime. In both cases, there are two
modes, the larger being representative of the odometry runtime and the smaller being
representative of the loop closure. On EuRoC, the loop closure causes the runtime to
drop from 60 to 42 FPS. On KITTI, the infrequent loop closure causes the speed to very
briefly dip below real-time (5-10 FPS) before returning to 40-FPS. The average speed
on EuRoC and KITTI are 50-FPS and 39-FPS, or 2.5x and 3.9x real-time, respectively.

Monocular MH000 MH001 MH002 MH003 MH004 MH005 MH006 MH007 Avg

ORB-SLAM [16] 1.30 0.04 2.37 2.45 X X 21.47 2.73 -
DeepV2D [28] 6.15 2.12 4.54 3.89 2.71 11.55 5.53 3.76 5.03
TartanVO [35] 4.88 0.26 2.00 0.94 1.07 3.19 1.00 2.04 1.92
DPVO [31] 0.21 0.04 0.04 0.08 0.58 0.17 0.11 0.15 0.17
DeFlowSLAM [41] 0.63 0.06 0.02 0.01 2.80 0.20 0.31 0.45 0.56
DROID-SLAM [30] 0.08 0.05 0.04 0.02 0.01 1.31 0.30 0.07 0.24

DPV-SLAM 0.23 0.04 0.04 0.04 0.54 0.17 0.08 0.13 0.16
DPV-SLAM++ 0.21 0.04 0.04 0.04 0.92 0.17 0.11 0.13 0.21

Table 4: Results on the TartanAir monocular benchmark (ATE[m]). We outperform
existing approaches.

5 Limitations

DPV-SLAM requires a GPU to run, which imposes additional hardware con-
straints. Additionally, the global bundle adjustment layer scales poorly to very
large scenes, which is why we limit its range to 1000 frames. This bottleneck is
primarily caused by the Cholesky decomposition.

The image retrieval is also susceptible to the occasional false-positive detec-
tion, leading to catastrophic failures. The classical loop closure also incurs an
additional 2Gb of GPU memory due to the invocation of the U-Net keypoint
detector [32].

6 Conclusion

We introduce DPV-SLAM, a system for monocular visual SLAM. DPV-SLAM
generalizes well to different domains, and is efficient. We evaluate on EuRoC,
TartanAir, TUM-RGBD and KITTI. We show that our approach is robust across
domains, and is comparable to, or better than the SOTA on several real-world
datasets, while running much faster and using less compute. This work was
partially supported by the National Science Foundation.

Deep Patch Visual SLAM 15

References

1. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik,
M.W., Siegwart, R.: The euroc micro aerial vehicle datasets. The International
Journal of Robotics Research 35(10), 1157–1163 (2016)

2. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3:
An accurate open-source library for visual, visual–inertial, and multimap slam.
IEEE Transactions on Robotics 37(6), 1874–1890 (2021)

3. Czarnowski, J., Laidlow, T., Clark, R., Davison, A.J.: Deepfactors: Real-time prob-
abilistic dense monocular slam. IEEE Robotics and Automation Letters 5(2), 721–
728 (2020)

4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017)

5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE transactions on
pattern analysis and machine intelligence 40(3), 611–625 (2017)

6. Engel, J., Usenko, V., Cremers, D.: A photometrically calibrated benchmark for
monocular visual odometry. arXiv preprint arXiv:1607.02555 (2016)

7. Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual
odometry. In: 2014 IEEE international conference on robotics and automation
(ICRA). pp. 15–22. IEEE (2014)

8. Fu, T., Su, S., Wang, C.: islam: Imperative slam. arXiv preprint arXiv:2306.07894
(2023)

9. Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics 28(5), 1188–1197 (2012)

10. Gao, X., Wang, R., Demmel, N., Cremers, D.: Ldso: Direct sparse odometry with
loop closure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). pp. 2198–2204. IEEE (2018)

11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern
recognition. pp. 3354–3361. IEEE (2012)

12. Keetha, N., Karhade, J., Jatavallabhula, K.M., Yang, G., Scherer, S., Ramanan,
D., Luiten, J.: Splatam: Splat, track map 3d gaussians for dense rgb-d slam. arXiv
preprint (2023)

13. Li, H., Gu, X., Yuan, W., Yang, L., Dong, Z., Tan, P.: Dense rgb slam with neural
implicit maps. arXiv preprint arXiv:2301.08930 (2023)

14. Li, R., Wang, S., Long, Z., Gu, D.: Undeepvo: Monocular visual odometry through
unsupervised deep learning. In: 2018 IEEE international conference on robotics
and automation (ICRA). pp. 7286–7291. IEEE (2018)

15. Lindenberger, P., Sarlin, P.E., Pollefeys, M.: Lightglue: Local feature matching
at light speed. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 17627–17638 (2023)

16. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate
monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015)

17. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262
(2017)

18. Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open
source differentiable computer vision library for pytorch. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3674–
3683 (2020)

16 Lipson, Teed, Deng

19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to
sift or surf. In: 2011 International conference on computer vision. pp. 2564–2571.
Ieee (2011)

20. Schneider, T., Dymczyk, M., Fehr, M., Egger, K., Lynen, S., Gilitschenski, I.,
Siegwart, R.: maplab: An open framework for research in visual-inertial mapping
and localization. IEEE Robotics and Automation Letters 3(3), 1418–1425 (2018)

21. Schops, T., Sattler, T., Pollefeys, M.: Bad slam: Bundle adjusted direct rgb-d slam.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 134–144 (2019)

22. Shen, S., Cai, Y., Wang, W., Scherer, S.: Dytanvo: Joint refinement of visual odom-
etry and motion segmentation in dynamic environments. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). pp. 4048–4055. IEEE
(2023)

23. Shi, J., et al.: Good features to track. In: 1994 Proceedings of IEEE conference on
computer vision and pattern recognition. pp. 593–600. IEEE (1994)

24. Strasdat, H., Montiel, J., Davison, A.J.: Scale drift-aware large scale monocular
slam. Robotics: science and Systems VI 2(3), 7 (2010)

25. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The replica dataset: A digital replica of
indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

26. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ international conference
on intelligent robots and systems. pp. 573–580. IEEE (2012)

27. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: imap: Implicit mapping and position-
ing in real-time. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 6229–6238 (2021)

28. Teed, Z., Deng, J.: Deepv2d: Video to depth with differentiable structure from
motion. arXiv preprint arXiv:1812.04605 (2018)

29. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. pp. 402–419. Springer (2020)

30. Teed, Z., Deng, J.: Droid-slam: Deep visual slam for monocular, stereo, and rgb-
d cameras. Advances in neural information processing systems 34, 16558–16569
(2021)

31. Teed, Z., Lipson, L., Deng, J.: Deep patch visual odometry. Advances in Neural
Information Processing Systems (2023)

32. Tyszkiewicz, M., Fua, P., Trulls, E.: Disk: Learning local features with policy gra-
dient. Advances in Neural Information Processing Systems 33, 14254–14265 (2020)

33. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence
13(04), 376–380 (1991)

34. Wang, S., Clark, R., Wen, H., Trigoni, N.: Deepvo: Towards end-to-end visual
odometry with deep recurrent convolutional neural networks. In: 2017 IEEE in-
ternational conference on robotics and automation (ICRA). pp. 2043–2050. IEEE
(2017)

35. Wang, W., Hu, Y., Scherer, S.: Tartanvo: A generalizable learning-based vo. In:
Conference on Robot Learning. pp. 1761–1772. PMLR (2021)

36. Wang, W., Zhu, D., Wang, X., Hu, Y., Qiu, Y., Wang, C., Hu, Y., Kapoor,
A., Scherer, S.: Tartanair: A dataset to push the limits of visual slam. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 4909–4916. IEEE (2020)

Deep Patch Visual SLAM 17

37. Wang, X., Maturana, D., Yang, S., Wang, W., Chen, Q., Scherer, S.: Improving
learning-based ego-motion estimation with homomorphism-based losses and drift
correction. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 970–976. IEEE (2019)

38. Wenzel, P., Wang, R., Yang, N., Cheng, Q., Khan, Q., von Stumberg, L., Zeller,
N., Cremers, D.: 4seasons: A cross-season dataset for multi-weather slam in au-
tonomous driving. In: Pattern Recognition: 42nd DAGM German Conference,
DAGM GCPR 2020, Tübingen, Germany, September 28–October 1, 2020, Pro-
ceedings 42. pp. 404–417. Springer (2021)

39. Xu, S., Xiong, H., Wu, Q., Wang, Z.: Attention-based long-term modeling for deep
visual odometry. In: 2021 Digital Image Computing: Techniques and Applications
(DICTA). pp. 1–8. IEEE (2021)

40. Yang, N., Stumberg, L.v., Wang, R., Cremers, D.: D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 1281–1292 (2020)

41. Ye, W., Yu, X., Lan, X., Ming, Y., Li, J., Bao, H., Cui, Z., Zhang, G.: Deflowslam:
Self-supervised scene motion decomposition for dynamic dense slam (2023)

42. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and
camera pose. In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition. pp. 1983–1992 (2018)

43. Zhan, H., Weerasekera, C.S., Bian, J.W., Garg, R., Reid, I.: Df-vo: What should
be learnt for visual odometry? arXiv preprint arXiv:2103.00933 (2021)

44. Zhang, J., Henein, M., Mahony, R., Ila, V.: Vdo-slam: a visual dynamic object-
aware slam system. arXiv preprint arXiv:2005.11052 (2020)

45. Zhang, Y., Tosi, F., Mattoccia, S., Poggi, M.: Go-slam: Global optimization for con-
sistent 3d instant reconstruction. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3727–3737 (2023)

46. Zhou, H., Ummenhofer, B., Brox, T.: Deeptam: Deep tracking and mapping. In:
Proceedings of the European conference on computer vision (ECCV). pp. 822–838
(2018)

47. Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald, M.R., Pollefeys,
M.: Nice-slam: Neural implicit scalable encoding for slam. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12786–
12796 (2022)

	Deep Patch Visual SLAM

