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This document includes the supplementary information of our main doc-
ument. We provide more details about our experiments in Sec. A, including
implementation details, metric design, and dataset acquisition. In the following
section, we provide more experimental results on Replica and Scannet in Sec. B
and Sec. C respectively. Finally, we discuss the limitation of our framework in
Sec. D.

A More details about experiments

We provide more details about the experiment, including the dataset preprocess,
implementation details, and evaluation metric definition.

A.1 More Implementation details

Our implementation is based on Scaffold-GS [5]. Following [5], we set an opacity
MLP, covariance MLP, and color MLP to decode the corresponding attributes
for each spawn Gaussian. We set the anchor feature size as 32. As the main focus
of our framework targets surface reconstruction, we take the anchor feat as input
for opacity MLP and covariance MLP to get the opacity, covariance, and scal-
ing for each spawns Gaussian, while using the concatenated feature by anchor
feature and view direction encoding for the color MLP to get the view-depend
appearance, which is different with original design. We set the neural implicit
network following the structure of Instant-NGP [6]. For the experiments con-
ducted in Replica, we used the Poisson octree depth as 8 for surface extraction.
We adopt the default train/test split for the Replica dataset. For ScanNet, we
follow the experimental design of MonoSDF [12] which uses the entire dataset
for training and evaluating the surface quality. We set the voxel size to 0.001
for the initial anchor point construction. We provide the training overview in
Fig. A.

We provide more details about the point sampling strategy used in our frame-
work for the joint optimization of neural implicit representation. Firstly, we use
the depth rendered by the Gaussians to un-project a 2D pixel into a 3D point.
To guarantee the effectiveness of the point in the calculation of MLS, we propose
to find the nearest Gaussian for this point and use the corresponding Gaussian
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Fig.A: The training progress of our framework. We follow the Scaffold-GS to
start anchor densification in 1500 iterations. Once the anchors stop growing or pruning,
we add the neural implicit network for joint optimization to regulate the Gaussian
attributes till the end of training.

to generate a new candidate with its mean and covariance. We will use this new
point and its nearest L Gaussians to calculate the MLS function. As suggested
in [4,10], we use the sampling points to construct a sphere with a radius of 0.01
and only use these Gaussians inside the sphere for the MLS function calculation.

A.2 The dataset for training

We use Replica and ScanNet for experiments. We use the ground camera poses
for both datasets to train our model. To obtain the sparse point cloud used
for 3D Gaussian Splatting, we use those ground truth camera poses and rerun
COLMAP [8] to construct the initial point cloud. We also trained SuGaR with
the ground truth camera pose and the initialized sparse point cloud for compar-
ison.

We also normalized the camera pose to make sure the scene is located in a
unit cube for the construction of instant-ngp [6] hash embedding. While this can
also be implemented dynamically using the anchor point to set the normalized
factor.

A.3 Metric for evaluating surface reconstruction

The definition of the evaluation metrics we used in the main document is given
in Table. A.

A.4 Details about RIMLS

The detailed equation of RIMLS is defined as follows:

FRIMLS(x) =

∑L
l=1 olGl(x)ϕ(∥nl − ∇FMLP(x)

∥∇FMLP(x)∥∥)⟨x− µl,nl⟩∑L
l=1 olGl(x)ϕ(∥nl − ∇FMLP(x)

∥∇FMLP(x)∥∥)
. (1)

As mentioned in the main document, the ϕ is defined as a 1-D Gaussian kernel
with a variance of σ2

n. The σn is set as 0.05 in our implementation.
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Metric Definition

Accuracy meanp∈P(minq∈Q ∥p− q∥1)
Completeness meanq∈Q(minp∈P ∥p− q∥1)
Chamfer-L1 0.5 * (Accuracy + Completeness)
Precision meanp∈P(minq∈Q ∥p− q∥1) < 0.05
Recall meanq∈Q(minp∈P ∥p− q∥1) < 0.05
F-score 2 ∗ Precision ∗ Recall/(Precision+Recall)

Table A: Evaluation Metric Calculation. We provide the equation for computing
the quantitative metric used in the experiment. Given the sampled point cloud from
ground-truth P and predicted result Q, all the metrics can be calculated as shown
above.

B More results on Replica

To further investigate the benefits of joint optimization, we conducted additional
experiments focused on using an implicit network to fit normal-augmented Gaus-
sians.
Why need joint optimization? For this purpose, we targeted Gaussians de-
rived from Scaffold+N&D [5] and employed an identical implicit network struc-
ture for fitting. The training process utilized the same loss functions as in our
joint optimization scheme, Ljoint. The critical variable in our experiment was
the application of joint optimization for updating the Gaussians. We visual-
ized the resulting meshes by the implicit network through Marching Cubes, as
depicted in Fig. B. Our findings reveal that without joint optimization, the im-
plicit function tends to fit more high-frequency noise as the number of iterations
increases, leading to a less smooth surface. Conversely, the use of joint opti-
mization yields a smoother, more accurate surface by regulating the Gaussians’
positions and orientations. This regulation not only mitigates the tendency to
fit low-frequency details early on but also refines the Gaussians’ attributes for
better surface alignment. Notably, meshes generated through our method exhib-
ited some floating elements in empty spaces, attributed to isolated Gaussians.
However, by employing Poisson reconstruction for surface construction from the
final Gaussians, our approach demonstrates robustness against such noisy and
outlier Gaussians, ensuring cleaner, more coherent mesh outputs.
Visual quality comparison with SuGaR. While our focus is on surface
reconstruction, as requested we compare our view synthesis results with the
refinement output from SuGaR (SDF). The average results over 8 Replica scenes
are reported below (left) in Tab. B. Our method achieves superior visual quality
in PSNR and SSIM. This is mainly because of the implicit appearance modeling
inherited from Scaffold-GS. Besides better visual quality, our method achieves
much better surface reconstruction results compared with SuGaR.
Ablation study of octree depth. Table B (right) also presents surface re-
construction results across different octree depths, adhering to SuGaR’s recom-
mended guidelines to ensure fairness, specifically using an octree depth of 8 as
outlined in line 25 of the supplementary material. While increasing the octree
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Task& Visual Quality Surface Quality (F-score/ Chamfer Distance)
Setting PSNR/SSIM/LPIPS depth=8 depth=9 depth=10

SuGaR 37.07/0.9659/0.0593 52.10/9.57 53.55/9.16 54.59/9.08
Ours 37.53/0.9704/0.0856 67.22/7.08 67.79/6.97 67.93/6.94

Table B: Comparision with SuGaR on visual quality (left) and surface re-
construction under different octree-depth (right).

depth leads to improved quantitative results, it also results in a rougher surface.
Across all tested octree depths, our method consistently outperforms SuGaR.
MLS SDF vs SuGaR SDF. We replaced the SDF estimation method in our
framework with the SuGaR SDF design while keeping all other components
unchanged, and evaluated it across 8 Replica scenes. As shown below, our con-
figuration with SuGaR SDF underperforms compared to our original method
in all metrics. This reinforces the superiority of our MLS SDF, which provides
more precise information that significantly enhances geometric detail.

Setting Normal-C ↑ F-score ↑ CD ↓

Ours 85.23 67.22 7.08
Ours w/ SuGaR SDF estimation 83.89 65.59 7.68
SuGaR w/ monocular guidance 77.82 58.42 8.71
SuGaR 76.11 52.10 9.57
Table C: SuGaR with our proposed designs.

SuGaR with monocular guidance. The table above C also reports the results
of incorporating monocular guidance with SuGaR, which improves all geometry
quality metrics over vanilla SuGaR, yet they still fall short of ours. Introducing
monocular cues at the initial GS stage of SuGaR offers effective initialization.
However, it results in blocky artifacts and inferior performance compared to ours
due to SuGaR’s regularization.

C More results on ScanNet

We provide more comprehensive results on ScanNet [1] in Tab. D. Our approach
achieves a comparable performance with Manhattan-SDF [3] and MonoSDF
(Grids) [12] in all metrics, which demonstrates a strong potential ability of 3DGS
to produce a high-quality surface mesh.

D Discussion about Limitations

While our method achieves superior quality in many aspects, our analysis re-
veals a noticeable gap when compared to the current state-of-the-art in surface
reconstruction. A promising direction for future work is the incorporation of ap-
pearance guidance, which can enable more precise capture of detailed geometry,
thereby lessening our method’s dependence on pre-trained models. Furthermore,
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Fig. B: Comparison of the mesh produced by performing Marching Cube
from the implicit network. The top row shows the mesh produced by the neural im-
plicit network without joint optimization of the Gaussians and the bottom row depicts
the mesh from the implicit network with joint optimization. We noticed that without
joint optimization, the implicit function will fit the high-frequency noise as the training
goes on. The joint optimization regulates the orientation and position of Gaussians to
obtain a better surface alignment Gaussian Splatting field.

revisiting and potentially revising the Gaussian assumption inherent in our 3D
Gaussian Splatting (3DGS) approach could yield more accurate models for den-
sity estimation, enhancing surface reconstruction fidelity. These areas represent
valuable opportunities for future research, signaling our commitment to pushing
the boundaries of what is achievable in surface reconstruction quality.

Accuracy ↓ Completeness ↓ Chamfer-L1 ↓ Precision ↑ Recall ↑ F-Score ↑

UNISURF [7] 0.554 0.164 0.359 0.212 0.362 0.267
Neus [9] 0.179 0.208 0.194 0.313 0.275 0.291
VolSDF [11] 0.414 0.120 0.267 0.321 0.394 0.346
Manhattan-SDF [3] 0.072 0.068 0.070 0.621 0.586 0.602
MonoSDF (Grids) [12] 0.072 0.057 0.064 0.660 0.601 0.626
MonoSDF (MLP) [12] 0.035 0.048 0.042 0.799 0.681 0.733

SuGaR [2](density) 0.398 0.170 0.284 0.189 0.255 0.217
SuGaR [2](SDF) 0.328 0.211 0.269 0.179 0.189 0.184

Ours 0.067 0.069 0.068 0.604 0.594 0.599

Table D: The quantitative results of the scene reconstruction on ScanNet.
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