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Supplementary Material

This supplementary material provides further details about HeadGaS, as
well as additional results. Section 1 provides some insights on the learned 3D
Gaussians, such as visualization of the learned feature basis as well as a gradual
removal of the Gaussians to observe the occluded content. Section 2 provides
more implementation details on the methods used in the ablation of the main
paper. Further, we provide some time analysis in Section 3. In Section 4 we show
more qualitative results on the novel expression task comparing ours against
baselines. Finally, in this supplement we kindly refer the reader to a demo video
which contains method highlights and various result sequences as comparison
with state-of-the-art methods, ablation and novel view synthesis.

1 Understanding the Learned 3D Gaussians

Basis visualization Since HeadGaS relies on a feature basis for blending, it
would be beneficial to understand what this basis is learning. For this purpose,
we utilize expression parameters as one-hot vectors to our model and show the
generated image alongside the 3DMM mesh corresponding to that expression in
Figure 1. The left section of the figure shows two examples on the NBS data [3],
using Face Warehouse [2], while the right part provides two FLAME [4] based
examples from the INSTA data [6]. Note that for the FLAME-based tracking
we noticed that the optimized neutral expressions were far from a vector of
zeros, therefore we normalized the one-hot expression vectors first, by adding
the expression weights of a neutral expression from the training set. Since the
Face Warehouse basis is more semantic, i.e. every expression element corresponds
to a more local and interpretable action, such as winking, or opening mouth in
surprise, we observe more drastic changes in this base compared to FLAME.
The results show that HeadGaS learns a reasonable feature basis that aligns
well with the 3DMM expressions. However, this is limited by the level in which
an expression is observed in the training data, e.g . for subject 2 from the top we
observe that winking does not work quite well (both eyes are closing instead of
one) due to this reason.

Gradual removal of Gaussians The purpose of this experiment is to reveal
what the intermediate Gaussians in a particular frame represent. This is of in-
terest because the proposed method relies on over-representation, i.e. multiple
Gaussians will represent certain face areas (e.g . lips) and they will occasion-
ally become transparent to reveal other areas underneath (e.g . teeth) as needed.
Therefore we remove the optimized 3D Gaussians gradually, using the camera
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Fig. 1: Learned feature basis visualization. Left: Expression parameters from the
Face Warehouse model Right: Expression parameters from the FLAME model.

Fig. 2: Removal of frontal 3D Gaussians reveals underlying structures such as teeth,
invisible in this frame, but observed in other frames.

view as direction, from near to far. Figure 2 shows the original rendering for
a given frame as well as the rendering after we have removed the most frontal
Gaussians in the mouth area. As expected, we start seeing teeth in the inter-
mediate layers of visibility, as these structures have been observed from other
frames (e.g . when the person was talking or laughing). This reflects that, our
model does not simply re-color the Gaussians in those areas to accommodate
teeth instead of lips, but rather has a separate set of Gaussians to represent the
teeth. Additionally, we observe background color (white) when dis-occluding the
regions between the nose and the upper lip. This is due to the fact that there is
no need to represent the structures underneath, as they are never observed by
any frame.

Effect of going outside of the training manifold In Figure 3 (top) we
navigate along one 3DMM parameter up to 1.4× of its maximum value in the
training set. We notice that colors start slowly to deteriorate after 1.2×max. This
observations is in line with the expectations, as we model deformation through
changes in color and opacity. Similarly, in Figure 3 (bottom) we see that if the
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Fig. 3: (Top) Navigation of 3DMM expression space for 1 parameter. (Bottom) Navi-
gation of viewing angle.

viewing angle changes considerably from the range of observed training views,
we start noticing some artifacts.

2 Ablation Details

This section provides more details on the ablation methods presented and eval-
uated in the main paper.

Ours w/o MLP This model does not use learned features for the blending,
but rather it blends a basis of colors and opacities directly. In each Gaussian
we create these bases as C ∈ RB×3(k+1)2 and α ∈ RB×1 and use the expression
weights to obtain the final color ci and opacity αi as a weighted average. Note
that summation did not work here, as colors are explicit values and they would
add up to high values.

Ours w/ ∆(µ,R) This model uses the learned feature basis F of HeadGaS to
rather shift the positions µ and transform the rotations R. Thereby we feed the
blended feature fi in to an MLP ϕ′(·) that contains the same number of layers
and hidden dimensions as ϕ(·) from our proposed model. The difference is that,
ϕ′(·) outputs 3 values of position shift and 4 values of rotation (represented as
quaternion) as:

∆µ, rt = ϕ′(fi, ψ(µ)). (1)

These outputs are namely used to transform the static parameters of the Gaus-
sian (after converting rt to a rotation matrix Rt) as

µ′ = µ+∆µ (2)
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and
R′ = RtR. (3)

To facilitate convergence, we additionally add a regularization term to the esti-
mated position shift, encouraging it to remain in a small range. The final loss
then becomes

Ltotal = λ1L1(Ir, Igt) + λsLSSIM(Ir, Igt) + λpLp(Ir, Igt) + λµL1(∆µ). (4)

Ours change all This model uses the learned feature basis F of HeadGaS to
predict color, opacity as well as a shift of positions µ and transformation of
rotations R. Thereby we feed the blended feature fi to an MLP ϕ′′(·), which
outputs sh colors, opacity, 3 values of position shift and 4 values of rotation
(represented as quaternion). The transformations are applied in the same way
as in Ours w/ ∆(µ,R). Also here we apply the regularization term in the loss
function, as in eq. (4).

Ours w/o blending This model aims to verify that using the expression pa-
rameters as a weight for blending Gaussian features works better than using it
as a simple condition to the MLP. Therefore, here we do not have a basis of
latent features F . Instead, the expression vector ei and the encoded position µ
are fed directly into ϕ(·) to predict the color and opacity. We hypothesize that
this baseline requires more capacity for the MLP, as, in contrast to our proposed
method, it has to learn all dynamics of the face at once. Therefore, we do not
restrict our experiments to a small MLP of two layers, but rather extend its
capacity until it reaches a plateau. Thus, the MLP here results in five linear
layers, each followed by a leaky ReLU.

Ours w/o Lp This model is the same as the proposed HeadGaS and simply
has the perceptual loss disabled

Ltotal = λ1L1(Ir, Igt) + λsLSSIM(Ir, Igt). (5)

3 Time analysis

Rendering time vs image size In Figure 4 we plot our models relationship
between rendering time and image resolution. For each subject we render our
models in 3 different resolutions, namely 5122, 10242 and 20482 and collect the
run-time statistics. The number of Gaussians range between 21k and 37k, which
is one of the main factors affecting the rendering time. The resulting mean
rendering time for each resolution is namely 0.004, 0.005 and 0.0086, i.e. the
rendering time only doubles when we increase resolution by a factor of 4 in both
dimensions (i.e. 16× more pixels).
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Fig. 4: Rendering time versus resolution for HeadGaS on the INSTA dataset. We show
the statistics of all subjects, with number of Gaussians ranging from 21k to 37k.

Ablation on number of 3D Gaussians and rendering time In addition
to the image quality metrics evaluated in the main paper, we compare our dif-
ferent ablation models in terms of rendering time and number of Gaussians in
Table 1. We notice that the proposed HeadGaS (Ours) results in significantly
less Gaussians compared to other models while being the fastest to render. In-
terestingly, the model that blends explicit parameters directly (Ours w/o MLP)
is still slower than ours, despite not employing an MLP computation due to its
large number of Gaussians. Another interesting observation is that, even though
HeadGaS relies on over-representation, it still leads to significantly less Gaus-
sians compared to the alternative model that transforms Gaussians (Ours w/
∆(µ,R)). We believe this is due to the fact that the proposed model is more effective
and easier to learn, and therefore it leads to the most efficient representation of space
compared to other variants.

Table 1: Ablation methods compared in terms of number of optimized 3D Gaussians
and per-frame rendering time. Our method leads to the lowest number of Gaussians
(i.e. most efficient coverage of space) while having the best PSNR.

Method # Gaussians ↓ Time (s) ↓ PSNR ↑

Ours w/o blending 135k 0.008 29.38
Ours change all 97k 0.012 29.65
Ours w/ ∆(µ,R) 234k 0.019 29.83
Ours w/o MLP 295k 0.010 32.08
Ours 28k 0.004 32.50
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4 Additional qualitative results

We provide additional qualitative results comparing HeadGaS against the most recent
baselines [1, 3, 5, 6] in Figure 5 and Figure 6. We observe that generally our model
renders images with less artifacts, higher similarity to the ground truth expression,
more noticeable reflecting glasses and skin specularities (Figure 5, row 2).

Fig. 5: Additional qualitative results on the NBS data. Left: Ground truth, Center:
HeadGaS (ours), Right: NeRFBlendShape.
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Fig. 6: Additional qualitative results on the INSTA data. From left to right: Ground
truth, HeadGaS (ours), INSTA, PointAvatar and FLARE.
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