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Abstract. This paper tackles the intricate challenge of object removal
to update the radiance field using the 3D Gaussian Splatting. The main
challenges of this task lie in the preservation of geometric consistency and
the maintenance of texture coherence in the presence of the substantial
discrete nature of Gaussian primitives. We introduce a robust framework
specifically designed to overcome these obstacles. The key insight of our
approach is the enhancement of information exchange among visible and
invisible areas, facilitating content restoration in terms of both geome-
try and texture. Our methodology begins with optimizing the position-
ing of Gaussian primitives to improve geometric consistency across both
removed and visible areas, guided by an online registration process in-
formed by monocular depth estimation. Following this, we employ a novel
feature propagation mechanism to bolster texture coherence, leveraging
a cross-attention design that bridges sampling Gaussians from both un-
certain and certain areas. This innovative approach significantly refines
the texture coherence within the final radiance field. Extensive experi-
ments validate that our method not only elevates the quality of novel
view synthesis for scenes undergoing object removal but also showcases
notable efficiency gains in training and rendering speeds. Project Page:
https://w-ted.github.io/publications/gscream
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1 Introduction

3D object removal from pre-captured scenes stands as a complex yet pivotal
challenge in the realm of 3D vision, garnering significant attention in computer
vision and graphics, particularly for its applications in virtual reality and content
generation. This task extends beyond the scope of its 2D counterpart, i.e. image
in-painting [3], which primarily focuses on texture filling. In 3D object removal,
the intricacies of geometry completion become equally crucial, and the choice of
3D representation plays a significant role in the effectiveness of the model and
rendering quality. [9–11,13,17,31,36].
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Fig. 1: Illustration of the Object Removal using 3D Gaussian Representa-
tions. Given a set of multi-view posed images and object masks, our goal is to learn
a 3D consistent Gaussian representation modeling the scene with the object removed,
which enables the consistent novel view synthesis without the specific object.

Recently, the radiance field representation has revolutionized the community
due to the superior quality of scene representation and novel view synthesis.
Among these, the Neural Radiance Field (NeRF) [21] has emerged as the ground-
breaking implicit 3D representation approach, offering photo-realistic view syn-
thesis quality. The high-quality rendering capabilities of NeRF have spurred fur-
ther development in 3D object removal techniques based on it [17,22,23,40,41].
However, the intrinsic drawbacks of implicit representation, particularly its slow
training and rendering speeds, pose severe limitations for practical applications
based on object removal. For instance, it is highly expected that the system can
quickly model the scene given any object mask condition for object removal,
which enforces a straight requirement in terms of training efficiency. Another
critical issue is that the object removal task relies on a flexible scene represen-
tation that can learn effective multi-view consistency to synthesize high-quality
scene images with objects masked.

To effectively address the dual challenges of producing an enhanced radi-
ance field for object removal, we introduce a pioneering strategy leveraging 3D
Gaussian Splatting (3DGS) [15]. Unlike implicit representations, 3DGS explic-
itly models the 3D scene using tons of Gaussian primitives. This approach has
demonstrated notable advances in rendering efficiency and quality, surpassing
traditional NeRF-based methods [1, 24]. However, applying 3DGS to object re-
moval presents unique challenges, primarily from two aspects: 1) Geometry Ac-
curacy : The inherently discrete nature of a significant number of Gaussians can
result in an inaccurate representation of the underlying geometry in the standard
3DGS model. This inaccuracy poses a considerable challenge in executing geom-
etry completion and ensuring geometric consistency in the object removal areas
within a 3D space. 2) Texture Coherence: Filling the region behind the removed
object with consistent textures under the 3DGS framework represents another
unexplored challenge. Achieving texture coherence across various viewing angles
is essential, yet the methodologies to realize this goal within the 3DGS paradigm
are currently underdeveloped.

The cornerstone of our approach lies in augmenting the interaction between
Gaussians in both the in-painted and visible regions, encompassing geometry and
appearance enhancements. Initially, to bolster geometric consistency across the
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removal and visible areas, our method incorporates monocular depth estimation
from multi-view images as a supplementary geometric constraint. This enhances
the precision of 3D Gaussian Splatting (3DGS) placements. Employing a novel
online depth alignment strategy, we refine the spatial arrangement of Gaussians
within the removal area, ensuring improved alignment with adjacent regions.
In terms of texture synthesis, our goal is to achieve a seamless blend between
the visible and in-painted regions. Distinct from approaches tailored for im-
plicit representations, which predominantly rely on image domain guidance for
supervision, such as generating multi-view in-painted images [23,40,41] or simu-
lating pseudo-view-dependent effects from NeRF [22], the explicit characteristic
of Gaussian representations opens the door to innovative solutions. We introduce
a novel method that facilitates feature interactions between Gaussian clusters
from both visible and in-painted regions. This is achieved through a meticulously
designed attention mechanism, which significantly improves the alignment of ap-
parent and in-painted appearances. By sampling Gaussians positioned within
both masked and unmasked areas, we refine their features via cross-attention in
preparation for the final rendering. This self-interaction strategy capitalizes on
the explicit nature of Gaussians to fine-tune the feature distribution in 3D spaces,
culminating in enhanced coherence in the rendered outcomes. Furthermore, to
mitigate the computational burden associated with directly manipulating mil-
lions of diminutive Gaussians, we implement a lightweight Gaussian Splatting
architecture, Scaffold-GS [19], as our base model. Scaffold-GS introduces a novel
paradigm that organizes Gaussians around anchor points, using the features as-
sociated with these anchors to decode attributes for the respective Gaussians.
This approach not only streamlines the processing of Gaussian data but also
significantly enhances the efficiency and effectiveness of our rendering process.

To the end, we propose a holistic solution coined GScream for object removal
from Gaussian Splatting while maintaining the geometry and feature consistency.
The contribution of our paper is threefold summarized below:

– We introduce GScream, a model that employs 3D Gaussian Splatting for ob-
ject removal, specifically targeting and mitigating issues related to geometric
inconsistencies and texture incoherence. This approach not only achieves sig-
nificant efficiency but also ensures superior rendering quality when compared
to traditional NeRF-based methods.

– To overcome the geometry inconsistency in the removal area, we incorporate
multiview monocular depth estimation as an extra constraint. This aids in
the precise optimization of Gaussian placements. Through an online depth
alignment process, we enhance the geometric consistency between the re-
moved area and the surrounding visible areas.

– Addressing the challenge of appearance incoherence, we exploit the explicit
representation capability of 3DGS. We propose a unique feature regulariza-
tion strategy that fosters improved interaction between Gaussian clusters in
both the in-painted and visible sections of the scene. This method ensures
coherence and elevates the appearance quality of the final rendered images.
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2 Related Works

2.1 Radiance Field for Novel View Synthesis

Photo realistic view synthesis is a long-standing problem in computer vision and
computer graphics [16,18,30,32]. Recently, the radiance field approaches [21] rev-
olutionized this task by only capturing scenes with multiple photos and brought
the reconstruction quality to a new level with the help of neural implicit repre-
sentations [25, 33] and effective positional encoding [21, 34]. While the implicit
representation benefits the optimization, the extensive queries of the network
along the ray for rendering make the entire rendering speed costly and time-
consuming [1,2]. Recently, there have been several attempts to facilitate the ren-
dering speeds [7,15,24,26]. Among all of them, the 3D Gaussian splitting (3DGS)
representation [15,19] stands as the most representative one which reaches a real-
time rendering with state-of-the-art visual quality. 3DGS represents the radiance
field as a collection of learnable 3D Gaussian. Each Gaussian blob includes in-
formation describing its 3D position, opacity, anisotropic covariance, and color
features. With the dedicated design of a tiled-based splatting solution for train-
ing, the rendering of 3DGS is real-time with high quality. However, 3DGS is only
proposed for novel view synthesis. It remains challenging to tame it if we want
to remove objects from the pre-captured images [5].

2.2 Object Removal from Radiance Field

As the fidelity of 3D scene reconstruction advances, the ability to edit pre-
captured 3D scenes becomes increasingly vital. Object removal, a key application
in content generation, has garnered significant interest, particularly within the
realm of radiance field representation. Several methods have been proposed to
tackle this challenge [17, 22, 23, 40, 41]. For instance, NeRF-in [17] and SPIn-
NeRF [23] utilize 2D in-painting models to fill gaps in training views and ren-
dered depths. However, these approaches often result in inconsistent in-painted
images across different views, leading to “ghost” effects in the removed object re-
gions. View-Subtitude [22] offers an alternative by in-painting a single reference
image and designing depth-guided warping and bilateral filtering techniques to
guide the generation in other views. Despite these innovations, the underlying
issue of slow training and rendering speed persists in these NeRF-based methods.
The recent 3DGS-based general editing framework, GaussianEditor [6], includes
the operation of deleting objects. However, despite its faster editing efficiency
compared to NeRF-based methods, it still lacks specific constraints in the 3D
domain. For the object removal task, purely fitting the 2D priors provided by
the image in-painting model can also result in discontinuities in the 3D domain.

In response to these limitations, our work proposes a novel solution utiliz-
ing the 3D Gaussian Splatting (3DGS) [15] representation to achieve efficient
object removal. The 3DGS method offers a more rapid training and rendering
process, making it a suitable candidate for this application. However, 3DGS,
in its standard form, primarily focuses on RGB reconstruction loss, leading to
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less accurate underlying geometry for complex scenes. To make it suitable for
recovering a scene without a selected object, we approach the problem in two
stages: depth completion followed by texture propagation. We first enhance the
geometric accuracy of 3DGS using monocular depth supervision. With a more
refined geometric base, we then employ this improved structure to propagate 3D
information outside the in-painted region to refine the texture in the in-painted
region. These processes ensure not only the efficient removal of objects but also
the maintenance of the scene’s visual and geometric integrity.

3 The Propose Framework: GScream

As illustrated in Fig. 1, given N multi-view posed images {Ii|i = 0, . . . , N} of a
static real-world scene with the corresponding binary masks specifying the object
{Mi|i = 0, . . . , N}. The object mask Mi is a binary mask with the object region
set as 1 and the background set as 0. We assume these masks are provided
for training, which can be obtained trivially by video segmentation [8, 17] or
a straightforward 3D annotation [4, 41]. Our goal is to learn a 3D Gaussian
representation to model the real-world scene with the object removed. To address
this problem, we propose a novel framework named GScream, and the overview
of it can be found in Fig. 2. First, we select one view as the reference view and
perform the 2D in-painting [27,28] to complete the content by the corresponding
mask. Without loss of generality, we denote the selected view with index 0 and
the in-painted image as Ī. We use the in-painted one single image to train the
final 3DGS. The overview of our proposed GScream is shown in Fig. 2.

The organization of this section is presented as follows: we will introduce the
preliminary about 3D Gaussian Splatting and its variants in Sec. 3.1, and then
dive into the details about the core design of our framework in terms of geometry
consistency and appearance coherence in the following subsection.

3.1 Preliminary: 3D Gaussian Splatting

3D Gaussian Splatting We use the 3D Gaussian representation as our under-
lying modeling structure. Each Gaussian blob has the following attributes: 3D
coordinates µ, scale matrix S, rotation matrix R, color features c, and its opac-
ity. With these attributes, the Gaussians are defined by the covariance matrix
Σ = RSSTRT centered at point µ:

G(x) = exp−
1
2 (x−µ)TΣ−1(x−µ) . (1)

This Gaussian is multiplied by the opacity in the rendering process. By projecting
the covariance onto the 2D plane following Zwicker et al . [44], we can obtain the
projected Gaussian and adopt the volume rendering (α-blending) [20] to render
the color in the image plane.

Ĉ =

K∑
k=1

ckαk

k−1∏
j=1

(1− αj), (2)
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Fig. 2: Illustration of our GScream framework. It consists of two novel compo-
nents, which are monocular depth guided training and cross-attention feature regular-
ization. Our 3D Gaussian splatting (3DGS) representation is initialized by the 3D SfM
points and supervised by both images and multi-view monocular pseudo depth estima-
tion. The additional depth losses help refine the geometry accuracy within the 3DGS
framework. The following 3D feature regularization performs texture propagation to
refine the appearance within the 3D in-painted region.

where K means the number of sampling points along the ray and α is given by
evaluating the projected Gaussian of G(x) and the corresponding opacity. The
initial 3D coordinates of each 3D Gaussian blob are initialized as the coordinates
of the SfM points [29]. All the attributes of Gaussians are optimized by the
reconstruction loss of the image. More details can be found in [15].
Scaffold-GS While the sparse initial points are insufficient to model the entire
scene, 3DGS designs a densification operation to split and merge Gaussians to
capture more details. It will result in better rendering quality while leading to
a heavy storage burden. Therefore, we adopt a lightweight Gaussian Splatting
structure, Scaffold-GS [19]. The key contribution of it is to use anchors to gen-
erate new Gaussian attributes with several decoders. There will be a learnable
feature embedding attached to each anchor, and all the new Gaussian attributes
can be extracted from the anchor features. With the densification performed in
the anchor points, the storage requirement of Scaffold-GS can be significantly
reduced and benefit the modeling of the radiance field. We adopt it as our base
model to propose an efficient object removal solution for Gaussian Splatting.
More details can be found in [19].

3.2 Improve Geometry Consistency by Monocular Depth Guidance

One of the challenges to performing object removal upon 3DGS is the underlying
geometry is too noisy [15], which further leads to difficulty when performing
geometry completion for the removal region. To improve the quality, we propose
to leverage the guidance from estimated monocular depth as extra supervision.
Concretely, we use the depth estimation model [14] to extract the depth D =
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{Di|i = 0, . . . , N} of each image from the in-painted image Ī and other views I.
Here D0 corresponds to the estimated depth of Ī.
Online Depth Alignment and Supervision The monocular depth estimation
is not a metric depth [14]. Therefore, we propose an online depth alignment
design to utilize the depth guidance. However, the inconsistent depth estimation
of Ī and I brings an additional issue. The I contains the object that we want
to remove, while Ī depicts an image without the object. Therefore, we propose
the following weighted depth loss to solve this problem:

Ldepth =
1

HW

∑
M ′

i∥(wD̂i + q)−Di∥, (3)

M ′
i =

{
λ1Mi + λ2(1−Mi), if i = 0

λ3(1−Mi), if i ̸= 0
. (4)

Where D̂i is the rendered depth map from 3D Gaussian Splatting calculated
similar to the Equ. 2 by:

D̂ =

K∑
k=1

tkαk

k−1∏
j=1

(1− αj), (5)

where tk is the z-coordinates of Gaussian mean µk in the corresponding camera
coordinate system. The depth obtained from the monocular estimator Di and
the rendered depth D̂i by the 3D Gaussians have different numerical scales, so
we cannot directly calculate the loss. We employ an online alignment method
to address the scale issue. Specifically, we align the rendered depth using scale
and shift parameters, denoted as w and q, to match the scale of the monocular
depth before calculating the loss. The scale and shift are obtained by solving a
least-squares problem [14,42]. For the image in I, we only use the points outside
the mask region, and the resulting scale and shift are applied to the entire depth
map. We design different weights to calculate the depth loss as in Equ. 4. With
this design, the depth supervision is applied to the entire depth map D0 for
the reference view, while it is applied on the background region for other views’
depth {Di|i = 1, . . . , N}. The λ1, λ2, λ3 are hyper-parameters to balance the
influence of mask weights. In addition to the point-wise L1 loss, we also enforce
a total variation loss to enforce smoothness in the depth difference as follows:

Ltv =
1

N

∑
M ′

i∥∇((wD̂i + q)−Di))∥ (6)

Color Loss Following [15,19], we also apply the multi-view color reconstruction
loss for both the training:

Lcolor =
1

HW

∑
M ′

i((1− λssim)∥Ĉi − Ii∥

+ λssimSSIM(Ĉi, Ii)),
(7)
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Fig. 3: Illustration of the Cross-attention Feature Regularization. Our regular-
ization module consists of 3D Gaussian Sampling and a Bidirectional Cross-Attention
Module, propagating the 3D feature from surrounding blobs to the in-painted region.
As a complement to the 2D prior, the cross-attention mechanism enables the trans-
mission of information among 3D Gaussian blobs, further ensuring the similarity of
appearance between the in-painted region and its surroundings.

where Ĉ is the rendered image from 3DGS. Thanks to the rendering efficiency
of 3DGS, we can render the entire image and perform a structural image recon-
struction loss [39] SSIM to constrain the RGB image reconstruction. The overall
training loss is the weighted sum of depth and color loss:

Ltotal = λdepthLdepth + λtvLtv + Lcolor (8)

3.3 Cross-Attention Feature Regularization

Through monocular depth-guided training, we enhance the geometry of the 3D
Gaussian representation. The following question is how we can refine the texture
in the missing region from the surrounding environment.

Prior approaches in the realm of 3D object removal commonly employ a
strategy that involves generating pseudo-RGB guidance to refresh the scene’s
information. This typically relies on leveraging multi-view in-painted images to
update NeRF/3DGS models [6, 23, 41], or on producing view-dependent effects
as a form of guidance [22]. However, these methods tend to be sensitive to the
quality of the pseudo-ground truth and often overlook the intrinsic relationships
between the in-painted regions and their visible counterparts.

The key insight of our model is to propagate the accurate texture in the sur-
rounding region into the in-painted region in a certain manner. The explicit
nature of 3DGS provides us the possibility to use the information from visible
parts to update the content in the in-painted region. We expect this propagation
can provide reliable information for the in-painted region in 3D space and ensure
the propagated content is consistent across multiple viewpoints. Specifically, as
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shown in Fig. 3, we perform a two-stage procedure to achieve texture propaga-
tion, i.e., 3D anchors sampling, and subsequent bidirectional cross-attention.
3D Gaussian Sampling First, for each view i, we sample the patch that can
simultaneously cover both the inside and the outside of the mask Mi. Then, we
project the center coordinates of the 3D Gaussian anchors to the current view,
to determine which anchor’s 2D projection falls within the sampled 2D patch.
After we identify the clusters of Gaussian anchors whose projections fall within
the patch, we can easily categorize them into two groups based on whether their
2D projections are inside or outside the 2D mask. In this way, we sample 3D
Gaussian anchors in both the in-painted and surrounding regions. Our goal is to
sample 3D points in both the in-painted region and the surrounding region, as
shown in the left part of Fig. 3. Although there are alternative sampling methods
such as using depth for point back-projection, we believe that our approach based
on 2D mask back-projection is sufficient to achieve our objectives.
Bidirectional Cross-Attention After obtaining the 3D Gaussian anchors from
both regions, we perform bidirectional cross-attention between the two sets of
Gaussian features to propagate information between the anchors. Specifically,
we concatenate the two sets of Gaussian features as two tokens and take them
as input to a bidirectional cross-attention structure following the classical defini-
tion [35] Attention(Q,K,V) = softmax(QKT

√
dk

)V, where dk is the token length.
The output of the cross-attention structure, which represents the updated

features, is then assigned back to the corresponding Gaussian anchors. The bidi-
rectional structure of the cross-attention is designed to facilitate bidirectional
information propagation between the features inside and outside the in-painted
regions. It can be seen as two sets of shared-parameter cross-attention modules,
enabling information exchange between the two sets of features. As shown in
Fig. 3, let us assume that the sampled tokens in the in-painted and surrounding
regions are represented by the fin and fsur. After passing them through the
cross-attention module, the updated features can be denoted as f̂in and f̂sur:

f̂in = Attention(Q = fin,K = fsur,V = fsur)

f̂sur = Attention(Q = fsur,K = fin,V = fin)
(9)

As shown in Fig. 2, when the sampled anchors complete the feature updates,
all anchors undergo neural blobs growing and differentiable rendering as usual
in [19]. The rendered depth map and image under the current viewpoint are then
supervised by the total loss introduced in 8.

The 3D Gaussian sampling strategy together with the shared bidirectional
cross-attention augments the anchor feature with similarity towards higher con-
sistency. Through the gradients backpropagated to the anchors’ features in the
visible region, the similar anchors in the unpainted region can also be updated
due to the attention mechanism. This design improves the consistency between
the in-painted region and visible certain areas, which leads to better texture
coherence in our experiments.
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4 Experiments

4.1 Experimental Setup

Dataset Following previous methods, we conducted experiments for object re-
moval on the SPIn-NeRF [23] and IBRNet dataset [37]. SPIn-NeRF dataset
consists of 10 forward-facing in-the-wild scenes. Each scene has 100 multi-view
images with annotated foreground object masks. To ensure a fair comparison, we
directly utilize the camera parameters from the dataset instead of re-performing
the sparse construction as [41]. IBRNet dataset is constructed for novel view syn-
thesis, including selected scenes from existing datasets and 102 scenes collected
by mobile phones. We use five captured scenes from IBRNet for experimentation.
Baselines We compare our methods with three recent baseline methods: SPIn-
NeRF [23], OR-NeRF [41], and View-Sub [22]. We re-train and test the model
using their open-source code to compare the first two baselines. We borrow the
reported quantitative and qualitative results directly from the paper [22] due to
the unavailable of open-source code.
Evaluation Metric We calculate the PSNR, SSIM [38], and LPIPS [43] on the
full image and within the mask region. We also calculate the Frechet Inception
Distance (FID) [12], which measures the distribution similarity between the gen-
erated and real images. We record the training time to evaluate the efficiency.
Please note that the IBRNet scenes do not have ground truth images with ob-
jects removed, so quantitative metrics such as PSNR cannot be calculated. We
only showcase partial quantitative results for these scenes.

4.2 Comparison with the State-of-the-art Methods

We present quantitative and qualitative comparisons between our method and
three baseline methods in Tab. 1 and Fig. 4, respectively.
Quantitative Comparison As detailed in Tab. 1, our method either matches
or surpasses SPIn-NeRF or OR-NeRF across all evaluated metrics. Notably, our
approach yields superior similarity metrics, such as SSIM and LPIPS, suggesting
that the images rendered by our method bear a closer resemblance to the ground
truth in the test set. It is worth mentioning that SPIn-NeRF and OR-NeRF both
utilize patch-based LPIPS loss in their optimization objective, which we did not
employ. Despite this, our results still show an advantage in LPIPS, demonstrat-
ing the effectiveness of our method. Our method also performs better in terms
of FID, indicating that the feature distribution of our rendered images is more
consistent with real images without objects. Moreover, thanks to the efficiency of
3DGS representation rendering and optimization, our method achieves training
times that are 1.5× and 4.0× faster than SPIn-NeRF and OR-NeRF, respec-
tively. Regarding the View-sub method, due to the unavailability of its code, our
comparison was limited to the masked LPIPS as reported in their paper, where
our results were comparable. However, our method shows promise for an even
more significant advantage in training efficiency.
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Table 1: Quantitative comparison on novel view synthesis with the object removed.
We compared our method with three baselines: SPIn-NeRF [23], OR-NeRF [41], and
View-Sub [22]. ‘-’ indicates the metrics are not reported by the authors in the paper.
‘*’ indicates the metrics are directly borrowed from the corresponding paper.

Methods PSNR ↑ masked PSNR ↑ SSIM ↑ masked SSIM ↑ LPIPS↓ masked LPIPS ↓ FID ↓ Training Time ↓

SPIn-NeRF [23] 20.18 15.80 0.46 0.210.210.21 0.47 0.58 58.78 ∼ 3.0h
OR-NeRF [41] 20.32 15.74 0.54 0.210.210.21 0.35 0.56 38.69 ∼ 6.0h
View-Sub [22] - - - - - 0.450.450.45∗ - -

GScream (Ours) 20.4920.4920.49 15.8415.8415.84 0.580.580.58 0.210.210.21 0.280.280.28 0.54 36.7236.7236.72 ∼ 1.2h1.2h1.2h

Sample View & Mask (a) SPIn-NeRF (b) OR-NeRF (c) View-Sub (d) Ours

Fig. 4: Qualitative results compared with the most representative object-
removal approaches. Illustration of the rendered qualitative images with object re-
moved, compared with SPIn-NeRF [23], OR-NeRF [41], and View-Sub [22]. Our ap-
proach can synthesize high-quality images with natural removal effect.

Qualitative Comparison Fig. 4 presents a qualitative comparison across five
different scenes. For the first three scenes, we select of the nearest neighboring
viewpoints based on the View-sub paper, enabling a coherent rendering com-
parison among all approaches. Despite slight camera pose differences, we believe
these variations are negligible concerning the overall assessment of rendering
quality. The leftmost column shows randomly selected scene images and their
corresponding mask. Upon analysis, it is evident that while all methods exhibit
competence in completing mask regions across certain scenarios, such as the reg-
ular wall depicted in the third row and the simple textured fence in the fourth
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Fig. 5: Qualitative results of the effective depth-guided training. We visualize
the scene in 3D Gaussian Splatting format and 2D rendered image by ablating the
depth-guide training. The geometry guidance provides more information to fill the
missing area with Gaussian blobs. Please zoom in for a better view.

row, SPIn-NeRF and OR-NeRF occasionally struggle with more complex re-
gions. For instance, in the scenarios requiring the completion of both soil and
bush textures (as seen in the first row), these methods often resort to inserting
repetitive, unrealistic gray textures. In contrast, both the View-Sub method and
our results can complete appropriate grass and plants. Similarly, in the second
row, our completed railing appears more reasonable. While minor discrepancies
in viewpoint exist between the results of the View-sub and ours, the fidelity of
the completed textures in the first three scenes remains notably comparable.

Further analysis of the last two rows in Fig. 4, which shows two indoor
scenes with more complex depth from the IBRNet dataset, reveals our method’s
proficiency. For instance, in the case of lamp removal, our method naturally
completes the curtain behind the lamp compared to baselines. In the case of table
removal, our method reconstructs the chair legs and carpet more accurately.

4.3 Ablation Study

We conduct ablation experiments on mono-depth supervision and cross-attention
feature regularization and present the quantitative and qualitative results in
Tab. 2, Fig. 5, and Fig. 6.
Analysis of Depth Supervision We first analyze our first contribution: in-
troducing multi-view depth maps to aid in the 3D geometry learning of the in-
painted area. Fig. 5 (a) and (b) show the results supervised by using Equ. 7 and
Equ. 8 based on the original 3DGS. Note that the former does not have mono-
depth supervision while the latter has mono-depth supervision. We visualize the
learned Gaussian blobs and 2D images before and after incorporating depth su-
pervision (all visualized in novel views). From Fig. 5, we can observe that in (a),
where depth supervision is lacking, the positions of the Gaussian blobs within
the red box are floating in the air, with noticeable holes interspersed in between.
The corresponding 2D rendered images also exhibit noticeable texture floating.
However, the involvement of depth supervision in (b) leads to more plausible
positions of the 3D Gaussian blobs: most blobs are located within areas with
objects (grass and bushes) rather than floating in the air as in (a). The corre-
sponding 2D rendered images are noticeably more realistic and plausible. This
demonstrates that our depth supervision significantly constrains the position of
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Table 2: Quantitative comparison of different variants of our proposed
method. We remove one or both of the Mono-Depth Supervision and Cross-Attn
(Cross-Attention) Regularization components and compare the quantitative results.

Variants PSNR ↑ masked-PSNR ↑ SSIM ↑ masked-SSIM ↑ LPIPS↓ masked-LPIPS ↓

GScream w/o Cross-Attn & Mono-Depth 20.12 14.87 0.58 0.19 0.260.260.26 0.56
GScream w/o Cross-Attn 20.47 15.63 0.58 0.20 0.260.260.26 0.500.500.50

GScream (Our Full Model) 20.4920.4920.49 15.8415.8415.84 0.580.580.58 0.210.210.21 0.28 0.54

Gaussian blobs and improves the geometric accuracy of 3DGS, which enables
the realism of the 2D renderings in novel views.
Quantitative Analysis of Key Components We further disable Mono-Depth
Supervision and Cross-Attention Feature Regularization modules individually
based on the full model GScream, and present more quantitative and qualitative
results of these ablation experiments in Tab. 2 and Fig. 6. Disabling Cross-
Attention Feature Regularization means training only with Equ. 8, without per-
forming 3D Gaussian sampling and bidirectional cross-attention. Disabling both
means only retaining the color loss term in Equ. 8.

From the Tab. 2, we can observe that removing the cross-attention feature
regularization modules leads to a degradation in the metrics PSNR and SSIM.
For instance, the masked PSNR decreases from 15.84 to 15.63, indicating that
the content filled in the masked regions becomes less reasonable. This suggests
that improvements in depth accuracy and feature propagation are beneficial for
the results. Furthermore, if both modules are disabled, the metrics become even
worse. Compared to the full model, the masked PSNR decreases to 14.87, and
the masked-SSIM further decreases to 0.19, suggesting poorer depth and no 3D
regularization in masked regions lead to worse results.
Qualitative Analysis of the Mono-Depth Module. The label (a)(b)(c) in
Fig. 6 represent (a) GScream w/o Cross-Attention & Mono-Depth; (b) GScream
w/o Cross-Attention Regularization and (c) Our Full Method (GScream), re-
spectively. For both Scene-1 and Scene-2, by comparing Fig. 6 (a) with (b)(c),
we can observe that removing depth supervision results in poor depth prediction,
with significant noise present in the red box region and along the image edges.
The texture quality of scene (a) suffers notably due to the absence of depth
supervision, resulting in texture holes when viewed from novel perspectives.
Qualitative Analysis of the Cross-Attention Module. While our experi-
ments revealed a marginal reduction in the LPIPS upon deactivating the cross-
attention module, we are poised to showcase this module’s substantial role in
enhancing our results in Fig. 6. While Fig. 6 (b) benefits from incorporating
monocular depth supervision, leading to improved texture filling and depth accu-
racy, the outcomes still fall short of naturalness due to the absence of 3D feature
regularization. In Scene-1 (b) of Fig. 6, when the perspective shifts to the left side
of the tree trunk, black holes become visible in areas distanced from the frontal
view, as indicated by the red arrow (zooming in is recommended for clarity). This
scenario underscores the limitations of solely relying on 2D priors for supervi-
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(a)

(b)

(c)

Scene-1 Scene-2

Fig. 6: Qualitative results of the ablation study. We provide the visualization of
different variants of our method. From the top to bottom, (a) GScream w/o Cross-
Attention & Mono-Depth; (b) GScream w/o Cross-Attention Feature Regularization;
(c) Our Full Method GScream. We visualize the rendered RGB and depth to verify the
effectiveness of our proposed components. Our full model produces a more reasonable
depth and RGB image. Please zoom in for a better view.

sion, which are unable to remediate texture gaps in unseen regions. However, the
introduction of 3D feature regularization in (c) effectively addresses these short-
comings by filling the previously observed holes. This enhancement reveals the
critical role of 3D feature interactions in supplementing 2D priors, enabling the
propagation of appropriate textures to obscured areas and thereby ensuring more
cohesive rendering in novel views. In Scene-2, a side-by-side comparison of (a)
and (b) reveals that, while (b) demonstrates depth enhancements over (a), both
still exhibit a pronounced sharp boundary, as indicated by the red arrow, which
detracts from naturalism. However, integrating feature cross-attention in (c) sig-
nificantly mitigates this issue. The previously stark gap softens, eliminating the
noticeable boundary. This transformation suggests that facilitating feature in-
formation exchange can harmonize originally disjointed textures at boundaries,
ensuring a more seamless and consistent texture transition.

5 Conclusion

In conclusion, our innovative framework for object removal, which leverages 3D
Gaussian Splatting, has proven to be both effective and more efficient than tra-
ditional NeRF-based approaches. Through the integration of monocular-depth
guided training and cross-attention feature regularization techniques, our method
facilitates rapid training speeds while simultaneously preserving multi-view ge-
ometric and texture consistency in the inpainted textures. Experimental valida-
tions confirm that our approach outperforms existing NeRF-based methods in
terms of both efficiency and effectiveness.
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