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Abstract. Current optical �ow and point-tracking methods rely heav-
ily on synthetic datasets. Event cameras are novel vision sensors with
advantages in challenging visual conditions, but state-of-the-art frame-
based methods cannot be easily adapted to event data due to the limi-
tations of current event simulators. We introduce a novel self-supervised
loss combining the Contrast Maximization framework with a non-linear
motion prior in the form of pixel-level trajectories and propose an e�-
cient solution to solve the high-dimensional assignment problem between
non-linear trajectories and events. Their e�ectiveness is demonstrated in
two scenarios: In dense continuous-time motion estimation, our method
improves the zero-shot performance of a synthetically trained model on
the real-world dataset EVIMO2 by 29%. In optical �ow estimation, our
method elevates a simple UNet to achieve state-of-the-art performance
among self-supervised methods on the DSEC optical �ow benchmark.
Our code is available at https://github.com/tub-rip/MotionPriorCMax.

1 Introduction

Determining the motion of arbitrary projected world points on the image plane
over long time intervals is a di�cult low-level computer vision problem. Re-
searchers have studied it as optical �ow and lately as point-tracking, with many
practical applications in robotics, computational photography, video compres-
sion, and object-level tracking [26]. The best-performing frame-based methods
for optical �ow estimation and point tracking use large-scale synthetic datasets.
Synthetic data is diverse and has highly accurate ground truth (GT), but is
unrealistic and methods trained on synthetic data show a sim-to-real gap.

Novel vision sensors called event cameras [16,17,39] have emerged as promis-
ing alternatives to take on the problem. Inspired by the transient visual pathway,
which is responsible for motion perception, they are particularly �t for captur-
ing scene motion in the form of asynchronous pixel-wise intensity changes. This
working principle endows them with advantages, such as high speed, high dy-
namic range (HDR) and low power consumption.
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a) Contrast Maximization with non-linear Trajectories b) Overview Method

c) Application to Trajectory Estimation d) Application to Optical Flow 
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Fig. 1: Summary. a) We present an approach to combine Contrast Maximization with
dense non-linear trajectories. b) We show how it can be used for self-supervised learn-
ing in a pipeline to predict dense point trajectories, and c) evaluate it on the EVIMO2
dataset, for which we generate dense point tracks. d) Additionally, our approach pro-
vides state-of-the-art performance on self-supervised optical �ow prediction.

Event-based motion estimation methods can be categorized according to the
complexity of the motion considered (i.e., number of degrees-of-freedom (DOF))
and to the solution strategy: model-based or learning-based. Low-DOF motions
arise in sparse feature tracking and ego-motion estimation, while high-DOF mo-
tions describe more complex scenes, e.g., via per-pixel displacement (i.e., densely,
over the whole image plane). Focusing on the latter, the event-based optical �ow
problem has been extensively studied on mobile robotic datasets [23,75], where
GT is calculated as the motion �eld (from known depth and poses). Most ap-
proaches use this GT for direct supervision of dense �ow prediction [22, 24, 40,
57, 65]. Alternatively, several works use a contrast loss [18, 19, 77], which allows
training in a self-supervised manner. However, the contrast loss is prone to unde-
sired local optima, called event collapse [52, 53], where many events are warped
into a few pixels or lines. Evaluation of event-based optical �ow has been mostly
done on the MVSEC [75] and DSEC [23] datasets, which comprise largely uni-
form motions and test intervals from 0.022s to 0.1s. Recently, [25] has proposed a
supervised method to predict pixel displacement over a larger duration (0.5s), by
leveraging synthetic data. It relies on the generation of training event data from
images, where current tools [21] are not as mature as frame-based simulation,
therefore it su�ers from a sim-to-real performance gap.

In short, progress has been made and the research �eld is moving towards
predicting motion over longer time intervals on the whole image plane, i.e., tak-
ing on more complex (i.e., nonlinear) motion problems. This is precisely the
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problem tackled in this paper (Fig. 1): long-time and dense event-based motion
estimation, reducing the domain adaptation gap of previous approaches. It comes
with several associated challenges, mainly overcoming the lack of large labeled
datasets, and dealing with event noise and data association (events depend on
motion, and for large motions, the appearance of �corresponding� events can
be wildly di�erent due to changes in motion direction, occlusions, etc.) while
leveraging the space-time characteristics of event data.

To this end, we propose tackling the problem in two stages, by leveraging
both supervised and self-supervised strategies: �rst, using supervised learning
on synthetic data to provide initial model weights for motion estimation, and
secondly, �ne-tuning the network on real data via a self-supervised loss to reduce
the domain adaptation gap. Our technical contributions involve extending the
contrast loss framework to regress continuous-time trajectories over long time
intervals via motion priors (parametric functions that provide a good balance
between motion generality and regularization [64, 66]). This includes a solution
to accurately and e�ciently associate events to the trajectories (Fig. 2).

More speci�cally, �nding the association between events and motion trajec-
tories (to warp corresponding events and achieve event alignment) is a high-
dimensional problem (e.g., for a time window of 0.3 s one can consider about
ten million events, and as many trajectories as pixels), which needs to be imple-
mented in a di�erentiable and parallelizable manner. We propose two actions to
cope with these technical challenges. First, we relax the problem by interpolating
over a coarse spatio-temporal displacement �eld, which serves as a lookup table.
Secondly, we use a symbolic matrix framework [15] to calculate the K = Ntraj

nearest neighbor (KNN) trajectories for each grid point, thereby solving KNN
in a memory-e�cient and di�erentiable way on GPU. The warp displacement at
the grid point is then set to the average of the neighboring trajectories.

Our approach is versatile, allowing for di�erent types of networks and trajec-
tories. Hence, we evaluate its performance on two applications: dense continuous-
time motion estimation and optical �ow. The results on EVIMO2 [7] show that
�ne-tuning with our self-supervised loss improves the zero-shot performance of a
model pre-trained on synthetic data by 29%. On DSEC, our model shows state-
of-the-art performance among self-supervised methods, on average improving
the angular error by 19% and the percentage of inliers by 14%, while having a
5× faster inference time. In summary, our contributions are (Fig. 1):

1. We introduce motion priors (parametric functions with a good balance be-
tween generality and regularization) in the event-based contrast maximiza-
tion framework for continuous-time and dense motion estimation.

2. We combine the self-supervised loss with B�ow [25], the current top-performing
supervised model for dense continuous-time event-based motion estimation
trained on synthetic data, and show that it can be used to improve over
zero-shot performance on unseen real data (EVIMO2).

3. We show that the combination of our loss with a simple U-Net architecture
(à la EV-FlowNet [76]) achieves state-of-the-art performance among the self-
supervised methods on the DSEC Optical Flow benchmark.
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2 Related Work

Frame-based Motion Estimation. Progress in deep learning triggered a large
series of learned methods for optical �ow estimation in classical, frame-based
computer vision [2, 14, 32, 33, 60, 62]. The solutions rely on large-scale synthetic
datasets [14,42,59,73]. Similarly related is the task of point tracking, which has
shown impressive progress on frame-based data [13,31,36,50,74], equally relying
on simulated data [8,12,74]. This approach is unsatisfying, as it is prone to out-of-
distribution (OOD) problems that cannot be easily overcome. As an alternative,
self-supervised methods have been explored [34,35,48,72] and shown to improve
models pre-trained on simulated data for motion estimation tasks [58,61].

Event-based Optical Flow. Event cameras [39, 46] are a relatively new tech-
nology, and have found applications in various computer vision domains, like
mobile robotics [27, 45, 68], scene understanding [29, 30], and computational
imaging [55, 63]. Their exploration for low-level vision tasks has taken a sim-
ilar trajectory in a compressed timeline as previously frame-based methods [17].
The �rst event-based optical �ow methods were model-based [3, 4, 6, 41, 43, 54],
followed by learning-based approaches [11,24,28,38,44,76,77].

The scarce availability of event data and less mature simulation technology
compared to frame-based cameras are major obstacles [21]. Therefore, event-
based optical �ow has been mostly evaluated on data acquired through ego-
motion, such as the robotics dataset MVSEC [75], the driving dataset DSEC [23]
or the M3ED dataset [9]. However, GT is calculated using the motion �eld
equation (with data from a synchronized depth sensor) and therefore does not
provide an accurate �ow at the event rate, nor spatially at occlusions and inde-
pendently moving objects (IMOs). This GT is used to train supervised learning
approaches [22,24,40,57,65], which inherit limitations from the ground truth.

Self-supervised methods for event-based optical �ow lessen the dependency
on GT labels by leveraging an event alignment error [28,54,70,77]. Notably, varia-
tions of the contrast loss have been proposed [18], however, so far the application
has been limited to either low-DOF problems (e.g., feature tracking [10, 19, 51],
ego-motion [19,20,37]) or high-DOF but short-time optical �ow problem [44,54]
(max. 0.1 s). We expand the frontier to the challenging problem of long-time
and high-DOF (complex) motion estimation, by exploiting trajectory priors.

Trajectory Prior. Using trajectories as motion priors has been a widely ex-
plored scheme in computer vision. Speci�cally, [1, 64, 78] propose a linear com-
bination of basis functions for structure from motion. More recently it has been
explored for dynamic novel view synthesis [66]. In the context of events, [63]
uses cubic motion splines for video frame interpolation, [25] uses B-splines for
supervised learning of non-linear optical �ow, [67] use learned basis functions for
event-based video decompression, and [10,51] show event-based feature tracking
(low-DOF) using Bézier or B-spline curves in combination with a contrast loss.
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Fig. 2: Pipeline overview. (a) Input events in a time interval are (b) voxelized and (c)
passed to an arti�cial neural network that predicts per-pixel coe�cients for continuous-
time trajectories (d). The raw events and predicted trajectories are fed to the loss
module (e). Here, a dense spatio-temporal displacement map is interpolated, and events
are warped according to their looked-up displacement. Lastly, an image of warped
events (IWE) is built at a random reference time and its gradient magnitude acts as
training loss. Note that the prediction method displayed here is speci�c to the used
B�ow backbone [25], with additional events before the prediction start time ts as input.

3 Methodology

3.1 Contrast Loss

Contrast Maximization (CM) [18, 19] is used for self-supervised training. The
idea is to �nd the point trajectories on the image plane best aligning with the
events by maximizing the sharpness of warped events. It is an iterative approach,
with three steps per iteration: (i) Each event ek = (xk, tk, pk) contains the pixel
coordinates xk = (xk, yk)

>, timestamp tk and polarity pk of a brightness change
of prede�ned size C (contrast sensitivity). Events E = {ek}Ne

k=1 are displaced
according to a candidate motion hypothesis x′k = W(xk, tk;θ), with parameters

θ, to a reference time tref, producing a set of warped events E ′tref = {e
′
k}
Ne

k=1:

ek
.
= (xk, tk, pk)

W7→ e′k
.
= (x′k, tref, pk). (1)

Afterwards, (ii) the events are summed into an image of warped events (IWE),

I(x; E ′tref ,θ)
.
=
∑Ne

k=1N (x;x′k, σ
2), (2)

which essentially counts the number of warped events e′k per pixel. Lastly (iii)
the contrast or sharpness of the IWE is computed (e.g., the gradient magnitude
of the IWE, G

.
=
∫
‖∇I(x)‖dx), which serves as a proxy for how well the model

(motion hypothesis and θ) �t with the events produced by the true motion.
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Table 1: Comparison of the contrast loss formulation in the most recent methods.

Steps Shiba et. al [54] Paredes et. al [44] Ours

Warp displacement (3): ∆xk = (tref − tk)v(ek) ∆xk =
∑
i

(
∆tivi

)
(ek) ∆xk = 1

Ntraj

∑
n∆xnk

linear trajectory �ow concatenation non-linear trajectory

IWE I(x) =
∑
kN (x;x′k, σ

2) T±(x) =
∑

k tkN (x;x′
k,σ

2)∑
k N (x;x′

k
,σ2)

I(x) =
∑
kN (x;x′k, σ

2)

Reference time tref: {t0, t0.5, t1} multi-partition p, multi-time-scale s ∼ U(0, 1)

Contrast objective
G(t0) + 2G(t0.5) +G(t1)

4G(v = 0)

1

S

S−1∑
s=0

1

2s

2s−1∑
p=0

LR/2
s

CM,p G(tref)

3.2 Estimating Continuous-Time and Dense Motion Trajectories

The CM framework has been extended in several works. Table 1 compares recent
extensions for optical �ow estimation, where events are warped as

x′k = xk +∆xk. (3)

The main di�erences between these approaches lie in the event displacement
(i.e., warp) model, the reference times used, and the loss function (i.e., event-
alignment metric), with the design choices having two goals: �tting the event
data and regularizing the solution (e.g., avoiding event collapse [52]). Previous
methods used mostly a linear model [54,56] or partitioned the inference interval
into smaller �ow intervals so that its concatenation need not be linear [44]. By
contrast, we introduce an explicit continuous-time non-linear trajectory model,
a random reference time per iteration, and an easier contrast loss.
Trajectory Representation. Figure 2 shows an overview of the training pipeline.
Events in the time interval [ts, te] are fed into a neural network that makes per-
pixel predictions of the parameters (coe�cients) θ ≡ αn = (αn,1, . . . , αn,Nc)

> ∈
RNc of a continuous-time trajectory qn(t;αn) ≡ qn(t) = (xn(t), yn(t))

>. There
is one trajectory per pixel (i.e., �dense� character), n = 1, . . . , Np, whereNp = hw
is the number of pixels (image height h and width w). Thus, n is the spatial index
of the trajectory, identifying it among all trajectories on the image plane.

We model trajectories as weighted combinations of basis functions, qn(t) =∑Nc

j=1 gj(t)pn,j , where gj(t) are temporal basis shared by all trajectories, and

pn,j = (αxn,j , α
y
n,j)
> are �control points� (we write x and y components explicitly

with separate coe�cients in αn). We investigate polynomial basis gj(t) = tj ,

Bézier curves with basis gj(t) =
(
Nc

j

)
(1− t)Nc−jtj , as well as a learned basis.

Spatio-Temporal Event Warping. The trajectories can be used to warp
events. This would require �nding the trajectory that passes through the space-
time coordinates of the event and then �nding the value of the trajectory at
the reference time (i.e., the warped event location). However, the association
between events and trajectories is unknown and needs to be estimated simul-
taneously with the parameters (i.e., shape) of the trajectories. We circumvent
the problem by using a soft association between events and trajectories. Each

event ek is associated with its Ntraj nearest neighboring trajectories {qn}
Ntraj

n=1 ,
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and the event displacement ∆xk in (3) is computed as the average of the respec-

tive trajectory displacements {∆xnk}
Ntraj

n=1 . The trajectory displacement ∆xnk is
de�ned as the di�erence of trajectory locations at the time of the event and the
reference time. The event displacement is de�ned as the mean:

∆xk
.
=

1

Ntraj

Ntraj∑
n=1

∆xnk , with ∆xnk
.
= qn(tref)− qn(tk). (4)

Loss Calculation. Once the events are warped using (3), it is straightforward to
compute the IWE. We adopt the magnitude of the IWE gradient as loss function
[18, 56]. Moreover, we use the contrast loss in a self-supervised learning setting,
choosing a di�erent reference time tref, uniformly sampled in the observation
interval, for every batch during training. This simpli�es the objective to a single
warping operation and loss calculation (e.g., compared to the three warping
operations and loss calculations in the optimization-based approach by [54,56]),
while it has added regularization bene�ts, as mentioned below.

Memory E�ective Computation of the Displacement Field. The number
of events and trajectories can be very large, and even more their combination.
Calculating KNN for every event can quickly become computationally unfeasible,
and traditional algorithms cannot be e�ciently implemented in deep-learning
frameworks. We propose calculating the per-event displacement ∆xk in (3) by
�rst interpolating a dense but coarser spatio-temporal displacement �eld, and
then looking up the per-event displacement in such space-time volume. Moreover,
we relax the problem by solving the KNN search in 2D instead of in the volume.

Figure 2 shows an overview of the interpolation process. The displacement
map is a tensor of shape [Nbins, h/4, w/4], where Nbins is the number of tempo-
ral bins, and h and w are the sensor's height and width, respectively. For each
temporal bin-center tbins the trajectories qn(t = tbins) are calculated and the
KNN interpolation is performed between each pixel of a channel x[tbins] and
qn(t = tbins). We implement the KNN approach using KeOps [15], a framework
for symbolic matrix computation, which provides a memory-e�cient and di�er-
entiable solution. We perform a KNN search for every voxel in the table, and
events are warped after a lookup operation. Please note that this step is entirely
independent of the voxel grid passed as input to the backbone, and all raw events
are used to calculate the contrast loss. From the calculated displacement map,
we can directly look up per-event displacements ∆xk.

Regularization. Objectives based on event alignment are prone to undesired
local minima called �event collapse� [52,53]. Our formulation inherently provides
regularization, temporally by the smoothness of the motion prior, and spatially
by interpolating the event �ow from several trajectories via a soft assignment.
Our framework uses two additional regularization sources. Firstly, we penalize
the magnitude of the spatial gradient of the interpolated displacement �eld be-
tween consecutive timesteps, R

.
= ‖∇(∆q∗(t)))‖L1(Ω). To interpolate q∗ from

the sparse trajectories qn, we use the same KNN indices as for the main volume.
This loss encourages spatial smoothness of the trajectories.
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Table 2: Results on EVIMO2 [7].

Method TEPE ↓ TAE ↓ %Out ↓

Paredes et. al [44] 21.69 51.91 0.63
E-RAFT (linear) [24] 19.38 74.52 0.66
BFlow (zero-shot) [25] 8.63 19.94 0.36
BFlow (in-domain) 3.38 11.68 0.17

Ours (self-supervised) 6.14 16.98 0.25

Secondly, we use a multi-reference formulation by randomly sampling a ref-
erence time at every training step, while previous work used multiple and �xed
timestamps (Tab. 1). This has the advantage that (i) IWEs are required to be
sharp at truly any time and (ii) the memory requirement is lowered as it scales
linearly with the number of reference times used during a training step.

In summary, the training loss is

L = 1/G+ λR, (5)

with λ > 0 as regularization weight. Further details are in the supplementary.
Pre-processing and Prediction-Module Architecture. Events record bright-
ness changes asynchronously, in the form of a sparse spatio-temporal signal.
As input to the Prediction Module, events are customarily converted to voxel
grids [77] for compatibility with conventional arti�cial neural networks. An event
volume is discretized in the time dimension, and each voxel counts the number
of events within it (bi-linearly voted for undistorted, recti�ed events).

In principle, our self-supervised loss module can be paired with any segmen-
tation or optical �ow network architecture. We use a U-Net architecture for
the experiments on DSEC (Sec. 4.2), and the architecture in the recent B�ow
method [25], inspired by RAFT [62], for the experiments on EVIMO2 (Sec. 4.1).

4 Experiments

We test our method on two applications. First, we test the capabilities for non-
linear trajectory estimation on the real-world dataset EVIMO2 [7], with addi-
tional results on the synthetic MultiFlow dataset [25], which we use for pre-
training (Sec. 4.1). Secondly, we evaluate our method on the DSEC dataset [23,
24] because this has been the previous frontier for event-based optical �ow esti-
mation and it allows for direct comparison with prior work (Sec. 4.2). Additional
results, including on the MVSEC dataset [75], are given in the supplement.

4.1 Results on Non-Linear Trajectory Estimation

EVIMO2 Continuous Flow Dataset (CF-EVIMO2). MultiFlow [25] was
�rst proposed to evaluate long-term �optical �ow� methods. The dataset consists
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Fig. 3: Visualization of predicted trajectories on EVIMO2 data. GT : Ground truth.
In-domain: �ne-tuned on EVIMO2 using GT (supervised). Zero-shot : network trained
only on synthetic data (out-of-domain prediction). Ours: Pre-trained on synthetic data,
�ne-tuned with self-supervised loss. Note that supervision in-domain is often impossible
in practice because dense trajectory labels for real data are di�cult to obtain.

of synthetic videos generated with Internet images as foreground and Flickr30K [71]
images as background. Events are generated with a simulator [47] by rendering
the synthetic scenes at 1000 frames/s. However, due to the sim-to-real gap be-
tween real and synthetic events, it is challenging to infer the actual performance
of the proposed and baseline methods on real datasets. Furthermore, Multi�ow
generates trajectories by pasting 2D foreground objects onto background images,
which lacks the challenging cases of self-occlusion due to 3D rotation.

To address these data limitations, we present the EVIMO2 Continuous Flow

Dataset based on the full 3D data and event data provided by the meticulously
designed EVIMO2 [7] dataset. The EVIMO2 GT data provides high-quality 3D
scans of the objects, camera poses, object poses, and camera intrinsics, which we
use to compute optical �ow GT as follows. Given a point P it on the object repre-
sented in the camera coordinate system at time t, we project it onto a 2D point
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Fig. 4: End-point-error vs. prediction time span for three methods: in-distribution, out-
of-distribution and self-supervised (Ours). Using the Bézier curve results from Tab. 3.

Table 3: Sensitivity with respect to motion prior on EVIMO2 [7]. SL, ID : supervised,
in-distribution, SL, OOD : supervised, out of distribution, SSL: self-supervised.

Method TEPE ↓ TAE ↓ %Out ↓

S
L
,
ID

BFlow (polyn.) 3.51 13.26 0.18
BFlow (learned) 3.78 13.87 0.19
BFlow (Bézier) 3.38 11.68 0.17

S
L
,
O
O
D BFlow (polyn.) 9.36 20.88 0.36

BFlow (learned) 8.66 19.64 0.35
BFlow (Bézier) [25] 8.63 19.94 0.36

S
S
L

Ours, polyn. 6.78 19.76 0.27
Ours, learned 7.46 19.78 0.28
Ours, Bézier 6.14 16.98 0.25

pit = π(P it ), where the π(·) function represents the perspective projection, includ-
ing the camera intrinsics. The object poses at time t and t + 1 are provided as
T cto , T

ct+1
o in the GT data. The rigid-body transformation T c

t+1

ct = (T
ct+1
o )−1T cto

maps 3D points in the camera frame at time t to the camera frame at time t+1
by aligning the shared object coordinate frame. The ��ow� (or dense motion,

since it may not be linear) is de�ned as ∆pit→t+1
.
= π(T c

t+1

ct P it ) − π(P it ). For
each sequence, we generate GT dense motion every 10ms for 300ms. We mask
out areas where GT object masks are unavailable. Experiments are carried out
on the IMO subset of EVIMO2 using the o�cial train and test splits.
Metrics. Ground truth is provided as dense motion from t = 0 to several
timesteps in increasing order. We consider Ns = 6 timestamps (i.e., subintervals)
in a 300ms window and evaluate the quality of predictions with direct extension
of the common optical �ow metrics end-point-error (EPE), angular error (AE),
and percentage of predicted vectors above a speci�c EPE threshold (%Out). We
term the corresponding trajectory metrics TEPE and TAE, where

TEPE = 1
Ns

∑Ns

k=1 EPE(∆xpred(tk), ∆xgt(tk)). (6)
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The number of outliers is calculated on TEPE with a threshold of 3px.

Implementation Details. We use the BFlow network architecture and test
di�erent motion priors. Speci�cally, we report results with polynomial, Bézier
(with Nc = 10) and learned basis gj(t) (a small dense neural network with three
layers and hidden dimension 64 is trained alongside the main network).

The contrast loss module uses one trajectory per 4 × 4 px, and similarly
4×4 px in the displacement volume. The weight for the spatial smoothness term
is λ = 0.003, and the number of neighbors in the KNN approach is Ntraj = 32.
The loss function G is the L1 norm of the IWE's gradient magnitude [18,56].

Training Schedule. The model is �rst pre-trained on MultiFlow (≈ 12000 sam-
ples) for 50 epochs, with a batch size of 10 with an L1 loss on the GT trajectory
�ow. We include data augmentation by �ipping (horizontal and vertical) and
cropping and use the training/test split provided in [25]. These weights are what
we refer to as zero-shot or out-of-distribution (OOD) for the main comparison
on EVIMO2. Afterwards, the pre-trained model is �ne-tuned with two di�erent
losses on EVIMO2. Training using our self-supervised loss is carried out for 15
epochs with a batch size of 6. We refer to this method as Ours. Lastly, a second
version is trained directly on the GT �ow of EVIMO for 50 epochs, which we
refer to as in-distribution (ID). All experiments are performed on Nvidia RTX
A6000 GPUs with an AdamW optimizer and a learning rate of 10−4.

Baselines. This is the �rst usage of EVIMO2 for dense non-linear �ow/motion.
For comparison, we provide additional baselines. We use ERAFT [24] with the
provided DSEC weights to infer linear �ow over the whole prediction time. The
timestamps of the intermediate �ow are interpolated from the linear prediction.
Additionally, we provide results for the prediction of Paredes et. al. [44]. The
network is trained self-supervised on DSEC and performs recurrent prediction
steps in time in intervals of 10ms, inferring the total �ow at every step by accu-
mulation of the shorter �ows. We unroll this prediction over the whole interval
and take the accumulated �ow after each 50ms step as the predicted �ow.

Results. Table 2 presents the comparison of the three di�erent training modes.
The results of our self-supervised loss can improve the zero-shot performance
by nearly 30%. While direct supervision on EVIMO2 GT data delivers the best
results, note that this is only possible because we are comparing on a dataset that
was recorded with a motion capture setup and exact object models. Under real
conditions, pixel-level annotations of motion tracks are very di�cult to obtain.
Therefore, our loss delivers a promising tool in combination with synthetic pre-
training, substantially helping in overcoming the sim-to-real gap.

Figure 3 shows the qualitative comparison of GT tracks and the three training
schedules. It delivers insights into the failure cases that our method can over-
come. Speci�cally, the zero-shot model shows errors like overseen object motion
(Examples 2 and 3), wrong scale (Ex. 5), and prediction of non-existing motion
(Ex. 6), which are improved with self-supervised domain training.

Additionally, Fig. 4 shows the error for di�erent prediction time spans. Intu-
itively, the error increases for longer intervals. The visualization shows that our
loss improves zero-shot performance, especially for the long prediction times.



12 F. Hamann et al.

Table 4: Results on the DSEC optical �ow benchmark [24].

All interlaken_00_b interlaken_01_a thun_01_a

Method tinf[ms] EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑

E-RAFT (SL) [24] 46.33 0.79 10.56 2.68 1.29 1.39 6.22 6.19 1.32 0.90 6.88 3.91 1.42 0.65 9.75 1.87 1.20
IDNet (SL) [69] 0.72 2.72 2.04 � 1.25 2.11 4.35 � 0.77 2.25 2.60 � 0.57 2.66 1.47 �

Paredes et al. (SSL) [44] 40.10 2.33 10.56 17.77 � 3.34 6.22 25.72 � 2.49 6.88 19.15 � 1.73 9.75 10.39 �
RTEF (MB) [5] 4.88 � 41.95 2.51 8.59 � 59.84 2.89 5.94 � 47.33 2.92 3.01 � 29.70 2.39

EV-FlowNet (SSL) [77] 3.86 � 31.45 1.30 6.32 � 47.95 1.46 4.91 � 36.07 1.42 2.33 � 20.92 1.32
MultiCM (MB) [54] 9.9 · 103 3.47 13.98 30.86 1.37 5.74 9.19 38.93 1.50 3.74 9.77 31.37 1.51 2.12 11.06 17.68 1.24
Ours (poly, k = 1) 7.27 3.20 8.53 15.21 1.46 3.21 4.89 20.45 1.58 2.38 5.46 17.40 1.70 1.39 6.99 7.36 1.30

thun_01_b zurich_city_12_a zurich_city_14_c zurich_city_15_a

Method EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑ EPE ↓ AE ↓ %Out ↓ FWL ↑

E-RAFT (SL) [24] 0.58 8.41 1.52 1.18 0.61 23.16 1.06 1.12 0.71 10.23 1.91 1.47 0.59 8.88 1.30 1.34
IDNet (SL) [69] 0.55 2.07 1.35 � 0.60 4.56 1.16 � 0.76 3.74 2.74 � 0.55 2.55 1.02 �

Paredes et al. (SSL) [44] 1.66 8.41 9.34 � 2.72 23.16 26.65 � 2.64 10.23 23.01 � 1.69 8.88 9.98 �
RTEF (MB) [5] 3.91 � 34.69 2.48 3.14 � 34.08 1.42 4.00 � 45.67 2.67 3.78 � 37.99 2.82

EV-FlowNet (SSL) [77] 3.04 � 25.41 1.33 2.62 � 25.80 1.03 3.36 � 36.34 1.24 2.97 � 25.53 1.33
MultiCM (MB) [54] 2.48 12.05 23.56 1.24 3.86 28.61 43.96 1.14 2.72 12.62 30.53 1.50 2.35 11.82 20.99 1.41
Ours (poly, k = 1) 1.54 6.55 9.69 1.33 8.33 20.16 22.39 1.13 1.78 8.79 12.99 1.56 1.45 6.27 8.34 1.51

Sensitivity to motion prior. Table 3 compares our method for di�erent mo-
tion priors. While Bézier curves show slightly improved performance over the
two basis function methods, self-supervised domain training can improve perfor-
mance in all cases, which proves the robustness and generality of our method.

4.2 Results on Optical Flow Estimation

Dataset, Metrics and Details.We compare our method on the DSEC optical
�ow benchmark [24]. The dataset consists of sequences from a Prophesee Gen3
event camera, with a resolution of 640 × 480 px, mounted on a driving car.
Ground truth is calculated as the motion �eld from a co-deployed depth sensor.

We compare the common �ow metrics EPE, AE, and percentage of outliers
(%Out), where an outlier is a �ow vector with EPE > 3px. Additionally, we
evaluate the Flow Warp Loss (FWL) [57]. FWL > 1 means that the IWE is
sharper than pixel-wise event accumulation (i.e., IWE with zero optical �ow).

We use a simple U-Net [49] as the backbone in the linear �ow experiments
(similar architecture like EV-FlowNet [76]) and choose polynomial basis gj(t) =
tj of degree 1, which e�ectively leads to a linear motion prior. We use Ntraj = 32
nearest neighbors and Nbins = 15 time bins in the displacement map. The weight
for the regularizer is λ = 0.003. The network trains for 50 epochs with and Adam
optimizer, a learning rate of 10−4, and a total batch size of 28 on two RTX A6000.

Results. Table 4 shows the DSEC benchmark results, con�rming that our model
can generate high-quality optical �ow results without having access to any GT.
It furthermore achieves the best results among all contrast-maximization�based
methods on six out of seven sequences, and only methods directly supervised on
GT perform better. Within the self-supervised methods, it improves the AE by
19% and the number of inliers by 14%. The only exception is the night sequence
zurich_city_14. Contrast maximization is based on the brightness constancy
assumption, which is violated here by �ickering street lights. Hence, in these
areas, the contrast loss does not provide reasonable �ow predictions. While our
methods still provide a better AE and %Out at night, higher outliers in the
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Fig. 5: Results on DSEC. Image of warped events and predicted �ow by three methods.

�ickering regions prevent the di�erence in the average EPE from re�ecting the
improved performance of our method on the other six sequences.

Figure 5 shows qualitative results of our method. In comparison to another
self-supervised optical �ow method (d), the visualizations are noticeably sharper,
allowing for a more precise representation of the motion in the scene. More-
over, the model performs well in delineating the contours of foreground objects,
without the over-smoothing e�ect often observable in �ow methods. The IWE
(Fig. 5b) shows sharp results, aligning with the overall high FWL values re-
ported in Tab. 4. While the FWL metric also increases in event collapse (e.g., for
RTEF [5]), the IWE visualization reveals that here the model is well-regularized,
con�rming that the predicted motion aligns the events correctly. The third ex-
ample in Fig. 5 highlights how our model has improved predictions with a single
forward pass, where models relying on temporal recurrence (see (d)) fail at the
beginning and need a warm-up stage resulting in higher latency.
Inference time. Additionally, Tab. 4 provides inference times tinf for several
methods. Note that our method is about 5× faster than the competitive base-
lines. The reason is that we do not rely on any recurrence in this optical �ow
application, such as recurrence in time or RAFT-inspired re�nement steps.
Ablation and Sensitivity. Table 5 lists the performance under di�erent loss
settings. It con�rms that the number of neighboring trajectories Ntraj in the
KNN approach has a regularizing e�ect and is important for good performance.
The decreased performance on the benchmark for a lower Ntraj aligns with the
visual impression in Fig. 6: models with lower Ntraj show artifacts and a stronger
susceptibility to the aperture problem, as is observable on the rock pattern.

Table 5 con�rms that the multi-reference approach is crucial for regularizing
the contrast loss. While using three instead of one tref improves performance,
our approach using a randomized tref leads to an additional performance boost.
Lastly, the non-linear prior showed no performance improvement on DSEC.
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Table 5: Sensitivity and Ablation Study for DSEC. Ours corresponds to �Ours� in
Tab. 4. Con�gurations marked with ��� are unchanged from our main result.∆ speci�es
the change with respect to the original con�guration.

Ntraj Ntref Nc Motion prior EPE ↓ ∆EPE AE ↓ ∆AE %Out ↓ ∆%Out

Ours 32 ∼ U(0, 1) 1 polynomial 3.20 8.53 15.21

Number of neighbor 1 � � � 4.58 1.07 13.73 5.20 27.90 12.69
trajectories 8 � � � 3.51 0.31 13.20 4.67 23.39 8.18

Number of � 3 � � 4.46 1.26 14.43 5.90 28.60 13.39
reference times � 1 � � 7.26 4.06 18.72 10.19 44.75 29.54

Type and degree � � 5 learned 3.22 0.02 8.59 0.06 15.34 0.13
of motion prior � � 5 polynomial 3.28 0.06 8.61 0.08 15.68 0.47

Ntraj = 1 (some event collapse) Ntraj = 32 (Ours)

Fig. 6: Visual e�ect of the number of neighbors Ntraj on the predicted �ow.

5 Limitations

Like all CM-based methods, ours is based on the brightness constancy assump-
tion. Therefore, it shows limitations in estimating �ow from events that are not
caused by motion, e.g., from �ickering lights.

Our KNN interpolation shows a good trade-o� between granularity and regu-
larization; nevertheless, our method is limited by the aperture problem inherent
to optical �ow.

Lastly, during training, all raw events are passed to the loss module, increas-
ing training time. Furthermore, gradient calculation is performed through the
additional step of event warping. These steps increase memory requirements and
training time of our loss compared to supervised methods.

6 Conclusion

We introduced a new loss formulation based on the contrast maximization frame-
work, by combining it with a non-linear trajectory prior. It is a versatile tool that
works with a variety of model architectures and trajectory representations. We
presented an e�cient method to make the high-dimensional assignment between
millions of events and thousands of trajectories feasible. Our experiments show
clear advantages against supervised methods on unseen data, where under real-
world circumstances no GT is available. Additionally, a U-Net trained with our
loss shows state-of-the-art performance on the DSEC optical �ow benchmark,
while being substantially faster than the previously best methods.
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