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Abstract. For a given scene, humans can easily reason for the loca-
tions and pose to place objects. Designing a computational model to
reason about these affordances poses a significant challenge, mirroring
the intuitive reasoning abilities of humans. This work tackles the prob-
lem of realistic human insertion in a given background scene termed
as Semantic Human Placement. This task is extremely challenging
given the diverse backgrounds, scale, and pose of the generated per-
son and, finally, the identity preservation of the person. We divide the
problem into the following two stages i) learning semantic masks using
text guidance for localizing regions in the image to place humans and
ii) subject-conditioned inpainting to place a given subject adhering to
the scene affordance within the semantic masks. For learning semantic
masks, we leverage rich object-scene priors learned from the text-to-
image generative models and optimize a novel parameterization of the
semantic mask, eliminating the need for large-scale training. To the best
of our knowledge, we are the first ones to provide an effective solution
for realistic human placements in diverse real-world scenes. The proposed
method can generate highly realistic scene compositions while preserv-
ing the background and subject identity. Further, we present results for
several downstream tasks - scene hallucination from a single or multiple
generated persons and text-based attribute editing. With extensive com-
parisons against strong baselines, we show the superiority of our method
in realistic human placement.

Keywords: Spatial relations · Human inpainting

1 Introduction

Given a background scene, humans can easily visualize how persons can in-
teract with the scene in multiple ways. For, e.g., for a living room, one can
imagine a person sitting on the sofa, or walking towards the door. To under-
stand this relationship between humans and scenes, J.J. Gibson coined the term
affordances [22] which points to the interaction between objects and the envi-
ronment. Designing computational models for this task is extremely challenging
and is crucial for common sense visual understanding. Earlier methods for hu-
man affordance predictions are constrained by the specific datasets [12, 18, 66].
To generalize affordance predictions, a recent method [35] trained with a large

https://rishubhpar.github.io/Text2Place/


2 R. Parihar et al.

Edit prompt - 8… wearing 
NY yankee9s uniform9

`a comic book store9

Placing Person
Scene Hallucination

Text editing of subject Multiple person

Inputs Realistic Placement Variations

Semantic Mask
Prediction

Mask prompt -8a person 
sitting on sofa9

8a (        ) person sitting 
      on sofa9

Background Image Semantic Mask Placement result

Subject conditioned 
inpainting

Background

Background

Subject

Subject

Realistic Placement

Inputs a)

a) c)

b)

d)

Mask prompt -8a person sitting on sofa9

Mask prompt -8a person 
sitting on sofa9

Mask prompt -8a person 
sitting on sofa9

Fig. 1: (Top): Proposed approach for text-based placement of humans. Given a back-
ground image, we predict the plausible semantic region compatible with the text
prompt to place humans. Next, given a few subject images, we perform subject-
conditioned inpainting to realistically place humans in appropriate poses following the
scene affordances. (Bottom): Our method enables a) realistic human placements at
diverse locations and poses and several downstream applications b) scene hallucination
by generating compatible scenes for the given pose of the human c) text-based editing
of the human and d) placing multiple persons.

dataset of human videos to place humans in a given bounding box. However, this
formulation only models the local human affordance in the given bounding box
but cannot reason about the global human affordance, such as where a person
can sit or stand. In this work, we aim to learn generalized local and global hu-
man affordances without needing large-scale training. Specifically, we guide the
affordances through action prompts (e.g., ‘a person sitting on sofa’ ).

We model the human affordance of a scene as semantic masks covering plau-
sible image regions to place humans. Training a model to predict the semantic
masks for unseen objects (e.g. person) is challenging primarily due to the un-
availability of datasets. Typical image description datasets have annotations for
what is present in the scene, such as object locations or scene captions, and do
not provide information regarding the affordances. Existing approaches [35, 54]
for affordance prediction adapt these datasets by inpainting objects to create
synthetic datasets of image pairs with/without objects. However, these meth-
ods are extremely expensive to train and are limited to the objects on which
the model is trained. To facilitate a more flexible setting, we build upon large
text-to-image [55] (T2I) generative models. These models have rich priors for
object-scene composition; which are implicit in the generation process. Can we
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use these priors from T2I models to obtain text-guided affordances for a given
scene? To this end, we propose an insightful approach that uses score distil-
lation sampling (SDS) [49] from T2I models to optimize semantic masks for
learning human affordances. Specifically, given a background image and an ac-
tion prompt (e.g., ‘a person sitting on the sofa’ ), we use SDS loss to optimize
parametric semantic mask to localize regions to place humans. Naively parame-
terizing semantic masks in the pixel space leads to collapse where the optimized
mask covers the full image. To regularize the semantic masks, we propose a novel
blob-based parameterization that constrains the semantic mask to a suitable re-
gion according to the required human pose.

The obtained semantic mask is used to perform subject-conditioned inpaint-
ing for scene completion. Given a few images of the subject, we project it into
the text token embedding space of pretrained T2I model [55] using Textual In-
version [20]. Next, we use the learned token embedding and the action prompt
to place the subject using the inpainting pipeline [55]. Large T2I models have
excellent inpainting capability and can adjust the person’s pose given a semantic
mask for realistic scene completions (Fig. 1). We call this problem for placing
persons following affordances as Semantic Human Placement (SHP). To
the best of our knowledge, we provide the first solution to solve SHP for realistic
human placement in in-the-wild scenes.

We present extensive results for SHP on diverse indoor and outdoor scenes.
Further, we show multiple downstream applications of scene hallucination con-
ditioned on the single or multiple generated persons. Subject conditioned in-
painting with T2I models enables text-based editing of the generated person.
Additionally, our method generalizes to place diverse objects beyond humans in
the scene. We compare our method against several baselines, including recent
Vision Language Models models [1, 39], and achieve superior scene completion
with background preservation evident in quantitative evaluations and user study.
In summary, our primary contributions are:

1. A novel problem formulation of Semantic Human Placement (SHP)
for realistically placing a given subject in background scenes.

2. Method to effectively parametrize semantic masks and learning masks using
distillation from text-to-image models without large-scale training.

3. A subject conditioned inpainting pipeline to generate identity-preserving
realistic human placements from a few subject images.

4. Demonstrate the efficacy of our models on downstream tasks of person and
scene hallucination, composing multiple persons and placing other objects.

2 Related Work

Object and scene affordances. Inpired by the earlist notion of afforances [22],
several works have been proposed to perform affordance prediction [11, 13, 19,
24,25,30,38,50,67]. These works have focused on modeling human-object [7,23,
34,74,90] and human-scene affordances [6,37,64]. An interesting framework is to
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learn human affordances from videos [19,50,67]. In an insightful work [66] learn
human affordances from a large video dataset of sitcom shows. Specifically, they
learn plausible human poses for each of the sitcom scenes, which limits their
applicability in learning the affordances of diverse real scenes. Brooks [5] train
a generative model to learn pose-conditioned human and scene generation to
generate realistic compositions. Further, they allow for diverse scene generations
that are compatible with a given human pose. More recently, Kulal [35] trained
a large diffusion model to place humans in a defined bounding box with ap-
propriate local affordances. For learning object-scene, Ramrakhya [54] curated
a large-scale dataset of image pairs with/without the object of interest to train
object affordances for a given scene. A concurrent work SmartMask [60] performs
a large-scale training of diffusion model to predict object masks. All the above
methods, although learning good affordances, either rely on large-scale training,
require guidance as a bounding box, or do not generalize to novel object cat-
egories. Our work aims to learn local and global human affordances in diverse
scenes without a need for large-scale training and also to support affordance for
novel objects.

Inpainting. The task for inpainting is to fill a given masked region with plausi-
ble pixels to facilitate realistic image completion. Earlier attempts for inpainting
explore local image features [2, 4, 15, 44]. Later, several works were designed to
perform inpainting with large-scale training of CNNs [72,77,78,84,85] and trans-
formers [3, 17, 79]. Recent works leverage the exceptional generation quality of
diffusion models to perform inpainting [42, 57, 71]. The closest to our work is
guided inpainting by leveraging rich priors learned in large text-to-image dif-
fusion models [55]. A seminal work [71] performs a reference image-guided in-
painting instead of using the text prompts. Later, several works were proposed
that advanced the idea of reference-guided inpainting with single [70, 73, 83] or
multiple subject images [41] when given with an inpainting mask. In this work,
we condition the inpainting with text along with the reference image without
needing an inpainting mask.

Diffusion Models and personalization. Diffusion models have become state-
of-the-art for image generation and enable several downstream editing applica-
tions [14, 27, 28, 61, 69]. These models scale extremely well when trained with
large-scale image-text pairs for conditional generation [52,53,55,58]. In contrast
to GAN-based editing methods [29, 45–47, 59], which are limited to the data
domains they are trained on, text-to-image models enable exceptional editing
capabilities for in-the-wild real images [32, 43, 48] and enable various controls
in the generation process [8, 27, 63, 81]. The text-to-image models can be per-
sonalized for a given subject with few input images. In this line, popular works
like Dreambooth [56], Custom Diffusion [36] and Textual-Inversion [20] have
proven effective in embedding concepts within text-to-image models with test-
time tuning. Following this, there are several works [9,21,65,76,80,87] that aim
to improve personalization in terms of training efficiency and identity preserva-
tion. For simplicity, we use Textual inversion [20] for learning a given subject for
subject-conditioned inpainting. To distill the rich representations learned from
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Fig. 2: Our approach consists of two stages: a) Semantic Mask Optimization.
Given a background image Ib, we initialize a blob mask M parameterized as Gaussian
blobs and a foreground person image Ip. These two images are combined to form a
composite image Ic, which is used to compute SDS loss with the action prompt. During
optimization, only M and Ip are getting updated via Ic. After training M converge
to a plausible human placement region, which is then used for inpainting. b) Subject
conditioned inpainting. Given a few subject images, we perform Textual Inversion
to obtain its token embedding V∗. Next, we use the inpainting pipeline of T2I models
to perform personalized inpainting of the subject.

text-to-image models to other domains, Score Distillation Sampling (SDS) is
proposed. In the seminal work on dreamfusion [49], SDS loss is used to optimize
NeRF [68] for text-to-3D generation. Later, several modifications to the original
SDS loss are proposed [26,31,49] to improve high-frequency details. As our goal
is to optimize semantic mask instead of generation, we use SDS loss as it works
well in capturing low-level features.

3 Method

The goal of Semantic Human Placement (SHP) is to predict human affor-
dances in a given background scene to place a given subject realistically. Our
approach for SHP involves two stages, as shown in Fig. 2. Firstly, we learn hu-
man affordances defined as semantic mask in the background image with text
guidance locating the regions where a person can be placed plausibly (Sec. 3.1).
Next, we perform subject-conditioned inpainting using the semantic mask and
a few subject images for a realistic scene composition (Sec. 3.2).

3.1 Semantic mask generation

Predicting semantic masks for objects (humans) that are not present in the
scene is extremely challenging. The popular image description datasets only
describe the objects present in the image. Existing methods [38,54] adapt these
datasets by inpainting objects to create a paired dataset for object affordance and
perform large-scale training to predict affordance. We take a radical approach to
learning affordance using knowledge from T2I [55] models, eliminating the need
for data curation and expensive training. T2I models have excellent object-scene
compositional reasoning implicit in the generation process. An effective way



6 R. Parihar et al.

to distill this knowledge is to use Score Distillation Sampling (SDS) loss [49].
SDS and its variations have proven extremely effective for realistic text-to-3D
generation by optimizing underlying 3D representation [10,49,62].

The success of SDS loss raises a natural question: Can we use the SDS loss to
learn the semantic mask for object placements? If yes, what could be an effective
semantic mask representation for optimization? Directly learning the semantic
mask in the pixel space could easily lead to collapse covering all the image pixels
(supplementary). We propose a novel semantic mask representation, parame-
terized as a set of interconnected Gaussian blobs. The proposed representation
is extremely efficient, with only a few learnable parameters and fast rendering.
Furthermore, it’s highly compatible with learning through SDS loss.

Training. For effectively learning the parameterized semantic mask M on a
background image Ib, we create a framework involving a learnable foreground
person image Ip initialized as a copy of Ib. The major function of the Ip is to aid
the learning of semantic mask parameters. Specifically, at each training iteration,
we combine Ip and Ib using mask M to obtain a combined image Ic which will
be used to compute SDS loss. The intuition is that as the training progresses, Ip
will generate a person, and M will converge to the person’s location and shape.
This will, in turn, generate a person in Ic after composition, as shown in Fig. 3.
This formulation enables the learning of semantic plausible regions for human
placement in M. To compute SDS loss, a noisy version of Ic is passed through
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Fig. 3: Training progression, of semantic
mask M and person image Ip with SDS loss
with prompt ‘A person sitting on bed’. M starts
to converge at the appropriate person region fol-
lowing prompt.

the T2I model with an action
prompt (e.g.,‘a person sitting on
a bed’ ). The gradients of the loss
are computed with respect to Ic
and are further backpropagated
to compute gradients and update
the image Ip and parameters of
M. Once trained, we binarize the
optimized semantic mask M and
use it for subject-conditioned in-
painting on the background im-
age. We note that the optimized
mask is not pixel-perfect due to
the Gaussian blob parameteriza-
tion. However, the downstream
inpainting based on T2I models expects a coarse semantic mask to allow room
for adapting the foreground during inpainting Fig. 5. Further, this enables us
to generate pose variations of the subjects and text-based editing of the placed
person, which is not possible with a pixel-perfect mask Fig. 11.

Mask parametrization. For effectively learning of semantic mask using SDS
loss, we parameterize M as a set of K interconnected Gaussian blobs (Fig. 4).
Following [16], we use simple ellipsoid representation for blobs by defining
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center location x ∈ [0, 1]2, scale s ∈ R, aspect ratio a ∈ R, rotation angle
θ ∈ [−π/2, π/2]. We tie the blobs by keeping a fixed distance r ∈ R between
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Fig. 4: Blob mask parameterization.

the center of consecutive blobs. Pre-
cisely, the center location xi for the
ith (i > 1) blob is computed using the
previous blob center xi−1 using Eq. 1.

xi = xi−1 +

[
r · cos(αi)
r · sin(αi)

]
(1)

where αi ∈ R is the relative angle between the blob centers from x-axis. Finally,
the total blob parameters defining semantic mask are the following:

γ1 ≡ (x1, s, a, θ1) and γi ≡ (αi, s, a, θi) for i ∈ {2,K} (2)

Next, we use parameters γi to create a mask image Mi ∈ [0, 1]H×W for ith blob.
We perform this operation in a differentiable manner to enable optimization
of the parameters. Specifically, we compute the Mahanobolis distance between
every pixel coordinate location xgrid from the ith blob center (xi) to assign the
intensity value at xgrid

Dm(xgrid,xi) = (xgrid − xi)
T (R ·Σ ·RT )−1(xgrid − xi) (3)

Mi[xgrid] = exp(−0.5 ∗Dm(xgrid,xi)) (4)

where Σ = c.

[
δx

2 0

0 δy
2

]
, R is the rotation matrix based on θi , c = 0.02 controls

the sharpness of each blob and δx = s/
√
a, and δy = s

√
a. Finally, we obtain

aggregated semantic mask M by taking the pixel-wise mean of the individual
blob masks Mi. During training, we only optimize the first blob center location
x1, all rotation angles θi, and relative angles αi. This provides enough flexibility
for the mask to reach the appropriate location and adjust based on the required
human pose. Empirically, we have observed fixing s, a, and r to a constant for
all the blobs results in better convergence of the mask (suppl. material).

3.2 Subject conditioned inpainting

Given a few unposed images of a subject, we aim to place them in the background
image following affordances using the optimized semantic mask M. Inpainting
humans is extremely hard, as the person’s pose should be appropriately changed
based on the location of the mask (e.g. if we are inpainting a person on a chair, a
sitting pose is more suitable). Naively, following a reference-based inpainting [71]
does not consider these person-scene affordances and results in unnatural com-
positions (Fig. 9). We leverage rich human-scene priors from the T2I [55] models
to perform plausible inpainting of humans respecting the local affordances. The
text-guided inpainting pipeline of T2I models generates plausible outputs adapt-
ing the person’s pose according to the background. We ask: How can we adapt
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this inpainting pipeline for subject conditioned inpainting? We propose to pass
the subject-specific knowledge in T2I through the input text conditioning used
for inpainting (Fig. 2b)). Specifically, we learn a token embedding V∗ represent-
ing our subject from a few input images using Textual Inversion [20]. Next, we
use V∗ along with the inpainting prompt (e.g., ‘A V∗ person sitting on a sofa’)
to condition the inpainting pipeline of T2I model. This simplistic framework for
conditioning generates realistic human placements that follow the scene affor-
dances, capitalizing on the rich object-scene priors from the T2I models (Fig. 2).
Further, our inpainting can benefit from improved text-based personalization
methods in T2I models.

How accurate should the semantic mask be? We analyze the sensitivity of
our inpainting pipeline on the preciseness of semantic mask M in Fig. 5. Given
a background image, we first run our method to place a person in the scene to
obtain source image. Next, we compute the segmentation mask of the person
using SAM [33]. The obtained person mask is compatible with the background
and can be used for inpainting. We ablate over the coarseness of the mask by
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Fig. 5: Pixel-perfect mask is not effec-
tive for T2I inpainting.

iteratively dilating the segmentation
mask and performing inpainting. Us-
ing the original mask for inpainting is
too stringent and does not place the
person as the T2I inpainting pipeline
is stochastic. On increasing the dila-
tion, inpainting is successful but lead
to background distortions. We conclude that using a pixel-perfect semantic mask
hurts inpainting and a coarse mask is needed for realistic inpainting results. This
further motivates our blob parameterization which creates a coarse mask seman-
tic mask for placing humans.

4 Experiments

We perform extensive experiments to evaluate our method and provide detailed
ablations. We use Stable Diffusion models as our representative T2I models in all
the experiments. Given a background image, we perform test time optimization
to obtain the semantic mask for human placement. Specifically, we optimize the
blob parameters for the mask for 1000 iterations using SDS loss [49] with a guid-
ance scale of 200. Next, we perform subject-conditioned inpainting by performing
textual inversion with 3− 5 subject images. Further details about implementa-
tion are provided in the supplementary. In this section, we first discuss datasets
and metrics (Sec. 4.1) followed by experiments on placing persons (Sec. 4.2),
downstream applications (Sec. 4.4) and finally ablation studies (Sec. 4.5).

4.1 Dataset and metrics

Dataset. For evaluation, we collected a dataset consisting of 30 in-the-wild in-
door and outdoor background images from the web, along with a few manually
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Fig. 6: Realistic human placement in diverse indoor and outdoor scenes.

captured images in a university. For personalization, we select 15 celebrity im-
ages, including scientists, actors, sports persons, and tech executives, and collect
4− 5 images for each subject. For placement, we use action-based text prompts
such as ‘a person sitting on sofa’, based on the background image. Additional
details about the prompts are provided in the supplementary.
Metrics. We evaluate realistic human placement on the following three aspects:
a) Text Alignment - The generated image after placing a human should follow
the given action prompt for desired text-based placement. We compute the cosine
similarity between the CLIP [51] image embedding of the generated image and
CLIP text embedding of the provided prompt. Higher CLIP similarity (CLIP-
sim) signifies that human placement follows the given prompt.
b) Person generation - Inpainting model fails to generate a person if the
inpainting mask is incorrectly placed (e.g., a person sitting on a window). To
quantify correct person generation during inpainting, we detect humans in the
generated images by applying SAM [33] on the output and checking for an in-
stance of the ‘person’ class. We aggregate this metric as the percentage of images
where a person is detected (% Person), noting the accuracy of placement.
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Fig. 7: Our method enables several interfaces for realistic human placement.

c) Background Preservation - To quantify the background preservation, we
first segment out the human from the generated output using SAM [33] and
compute LPIPS [82] in the non-human regions between the background and
inpainted image. For perfect placement, the background should be preserved
during inpainting with lower LPIPS scores.

We want to highlight that there is an inherent tradeoff between these met-
rics: Higher CLIP-sim and % Person could be attained by using a large inpaint-
ing mask, but this results in significant background distortions (higher LPIPS).
Hence, we aim to balance these metrics well for desired results.

4.2 Placing humans

We present our qualitative results for Semantic Human Placement in Fig. 6.
Our method generates highly realistic placement results while preserving the
subject’s identity and background. The obtained semantic masks properly local-
ize the region in the background corresponding to the given action prompt. Also,
observe the mask shape changes according to the desired human pose, which is
compatible with the background (e.g., sitting pose in backgrounds 1 and 3 and
bike riding pose in background 6). Further, the proposed Text2Place enables
diverse human placement interfaces as shown in Fig. 7.
Placing multiple persons sequentially (Fig. 7a)) can be easily done by
iteratively optimizing for two semantic masks. While optimizing for the semantic
mask for the second subject, we add additional loss to minimize the overlap
between the two masks. This helps generate disjointed semantic masks that are
needed to place multiple persons.

Table 1: Baseline comparison
Method LPIPS ↓ CLIP-sim ↑ % Person ↑

GracoNet [86] 0.1090 0.2601 53.48
TopNet [88] 0.1162 0.2617 67.3
LLaVA [39] 0.1296 0.2501 20.91
GPT4V [1] 0.1059 0.2615 64.18

Ours (center) 0.0845 0.2613 55.52
Ours 0.0934 0.2726 88.55

Diverse placement with text
guidance, (Fig. 7b)) is achieved by
providing different location prompts
during semantic mask optimization.
Placing kids. Our notable blob mask
representation enables the placement
of smaller subjects by initializing with
a relatively small blob size. This enables the realistic placement of kids in diverse
scenes with background preservation. (Fig. 7c).
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Fig. 8: Baseline Comparison: Notably, LLaVa generates masks with semantically
incorrect locations, while GPT4v produces excessively large mask sizes. GracoNet and
TopNet predict bounding boxes at the correct location but of inaccurate size, whereas
our method accurately determines the optimal location and size for person insertion.

4.3 Comparisons

Human placement comparisons. We compare our approach against the fol-
lowing baselines: Object placement baselines 1) TopNet [89] and 2) Gra-
coNet [86] trained on large-scale object placement dataset OPA [40]. The OPA
dataset contains significant human placement examples, making these baselines
suitable for comparison. Additionally, we compare with state-of-the-art VLMs
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Fig. 9: Inpainting comparison with PbE [71]

- 3) GPT4V [1] and 4)
LLAVA [39]. These mod-
els have excellent multimodal
reasoning capabilities. For our
experiments, we provide them
with a background image and
a prompt ‘predict a bounding
box location for placing a hu-
man on the chair’. From all
the above baselines, the ob-
tained bounding box coordi-
nates are then used to create
a semantic mask for inpaint-
ing in the next stage. To analyze the importance of the shape of the semantic
mask vs the location, we compare it against baseline - 5) Ours (center), where
we parameterize the semantic mask as a single blob with a learnable center. The
scale s is fixed to be 0.9, and the orientation angle is randomly selected. The
comparison results are present in Fig. 8 and Tab. 1.
Analysis. GracoNet and TopNet are able to localize the bounding box correctly
but struggle with generating the appropriate size of the box, resulting in unnatu-
ral placements. Likewise, in ours (center), the mask converges to the appropriate
location for placement; however, it cannot place the person following local affor-
dance due to the inappropriate shape of the semantic mask. This underscores the
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importance of semantic mask shape for forming realistic poses during placement.
Bounding box masks generated by LLAVA and GPT4V are not able to cover the
appropriate region to place a human. LLAVA mostly generates boxes on the left
or bottom of the background image, resulting in no human placement or place-
ment with unnatural poses. GPT4V generates masks at appropriate locations
but fails to capture the shape needed to place humans. This results in unnatural
human placement results. The same is evident from quantitative results, where
GPT4V achieves the second-highest %-Person score in comparison. Our method
generates a person in most cases as both the semantic mask has an appropriate
shape and location that follows the action prompts. Quantitatively, ours (cen-
ter) achieves the best LPIPS score, suggesting the best background preservation;
however, it has a lower CLIP-sim than ours, suggesting that the person is not
appropriately placed following the text.

8V* person sitting 
on sofa9

8in a library 
full of books9

8in a
restaurant9

Person hallucination

Single person scene hallucination

Fig. 10: Person and scene hallucination

Inpainting comparison. We
compare our inpainting method
with a state-of-the-art reference-
based inpainting method Paint-
by-example (PbE) [71] in Fig. 9.
PbE is trained to inpaint a ref-
erence subject image given with
an inpainting mask. For compari-
son, we use the semantic mask ob-
tained from our method for both
the inpainting methods. As PbE
does not allow for text condition-
ing, it mostly generates a stand-
ing person. Moreover, the identity
and the pose of the placed sub-
ject are inconsistent in general-
purpose PbE.

4.4 Applications

Person hallucination. Given a background scene, we can hallucinate new per-
sons by passing action prompts without subject conditioning (e.g., ‘a person
sitting on sofa’ ) (Fig. 10). Our inpainting pipeline generates realistic outputs
with humans in diverse poses consistent with the background, follows the text
prompts, and preserves the subject’s identity.
Scene hallucination. Another interesting application is to conditionally gener-
ate a scene compatible with the given pose of the person (Fig. 10). To this end,
we first place a human subject in the background using the predicted semantic
mask. Next, we invert the semantic mask and perform outpainting of the region
covered by the subject using the same T2I-based inpainting pipeline. We can
conditionally generate diverse scenes by providing text prompts specifying the
background (e.g., ‘a library full of books’).
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V* person 
sitting 
on a sofa

… wearing 
sunglasses and 
a black suit

 … wearing a 
spacesuit

V* person 
sitting 
on a sofa

 … showing 
thumbs up

… waving at 
the camera

Text based editing of generated person

Pose Variations of generated person

Placing kids

Fig. 11: Applications of inpainting

Applications of subject con-
ditioned inpainting. The pro-
posed pipeline for inpainting en-
ables various downstream appli-
cations to control the generated
image, as shown in Fig. 11.

• Firstly, we can perform text-
based editing of the generated
person by changing the text
prompt for inpainting (e.g., ‘per-
son -> person wearing a hat’ ). As
the inpainting is bound to modify
only the semantic mask region, we
achieve highly disentangled and
localized editing of the generated
subject.

• Secondly, as we are using T2I
diffusion model-based inpainting,
which is inherently stochastic,
we can generate diverse plausible
poses of the person from the same semantic mask and the action prompt. Note
that our mask parameterization as a set of blobs allows us to generate diverse
subject poses.

Pose ControlNet + Text2Place

IP-Adapter + Text2Place

Fig. 12: Additional Conditioning

Additional Conditionings. Our
method can be integrated seam-
lessly with other conditioning ap-
proaches such as pose-conditioned
ControlNet [81] and IP-adapter
[75] for explicit conditioning on
face identity (Fig. 12).

Placing objects beyond hu-
mans. perform these semantic
edits requiring a loose semantic

8A sofa in living 
room9

8A bean bag in 
living room9

8A dinning table in 
living room9

8A sofa in 
living room9

8A bean bag in 
living room9

8A chair in 
living room9

8A Piano in 
living room9

8A bean bag in 
living room9

8A chair in 
living room9 

Background

Background Image
8A Piano in room9 8A chair in room9 8A guitar in room9Background Image

Fig. 13: Placing objects beyond humans.

mask, which would be challeng-
ing with a pixel-perfect semantic
mask. Our method can easily be
adapted to generate placements
of various objects (Fig. 13). The
obtained placements look highly
realistic, with accurate placement
of objects showing our approach’s
generalization without additional
training.
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4.5 Ablations

We ablate over the following blob parameters. Qualitative results for ablations
are provided in the supplementary.
Scale of blob (s). is a crucial hyperparameter that controls the size of the blob;
having a large s value results in significant background change, and a small s
restricts the full body generation during the inpainting task. Empirically, we
found s =0.6 gives the best results from Table 2a).

Table 2: Ablation of blob parameters.
(a) Ablation over blob scale s

Scale LPIPS ↓ CLIP-sim ↑ % Person ↑
0.3 0.0537 0.2594 41.1
0.4 0.0806 0.2663 69.0
0.5 0.0858 0.2712 81.5
0.6 0.0904 0.2736 90.6
0.7 0.1074 0.2729 96.0

(b) Ablation over # blobs
#blobs LPIPS ↓ CLIP-sim ↑ % Person ↑

1 0.1318 0.2780 93.0
3 0.1305 0.2797 94.9
5 0.0904 0.2736 90.6
7 0.0780 0.2749 75.0

Number of blobs. Using a single blob
doesn’t give freedom to generate the full
body image of a person in different poses,
so we use n number of blobs and fix the
distance between each adjacent blob as
discussed in Section 3.3, and the number
n is a hyperparameter in our method, hav-
ing fewer blobs restrict the mask diversity,
but more blobs can cause bigger masks,
leading to more background change. From
Table 2b), we can see that n=5 gives a
good balance between diversity and back-
ground change.

5 Discussion

Limitations. While our approach excels in many aspects, it does have limita-
tions (Fig. 14. Notably, it may not effectively handle the placement of relatively

‘A burger on table’‘A pizza on table’ ‘An apple on table’

Fig. 14: Failure cases.

small objects in a scene. This is
because our blob mask represen-
tation occupies a significant im-
age region. Using larger masks for
inpainting results in changing the
background or placing objects of
inappropriate scale. Furthermore,
our method lacks precise control over the generated person’s poses, as tighter
masks may hinder inpainting using T2I models shown in Fig. 5.
Conclusion. In this work, we propose the first method to learn text-conditioned
human affordances for realistic human placement for in-the-wild scenes. We lever-
age rich priors learned in text-to-image (T2I) diffusion models to optimize plau-
sible semantic masks for human placement. The obtained masks are then used to
perform subject-conditioned inpainting to place a given subject. Semantic masks
are parameterized with a novel blob representation that adapts to the human
pose during optimization with score distillation sampling in T2I models. The
proposed method enables several downstream applications, including human and
scene hallucination, placing multiple persons in a scene, and text-based editing
of the generated subject. In summary, we propose a robust approach to perform
text-guided placement of realistic humans in scenes without large pertaining.
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