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A More Ablation Studies on Generalization

Table a: We conduct Ablation studies in the in-domain (NYUv2, 500 points), sparser
inputs (NYUv2, 100 points), denser inputs (NYUv2, 10 000 points), and cross-dataset
(VOID, 500 points) scenarios. All metrics are in [mm].

Test Datasets NYUv2 [6] NYUv2 [6] NYUv2 [6] VOID [11]
Points 500 100 10 000 500

Methods RMSE MAE RMSE MAE RMSE MAE RMSE MAE

(a) Without DDI 128.6 44.9 199.0 87.9 73.5 22.6 620.5 237.9
Ours With DDI 112.2 38.0 171.5 72.7 53.0 13.9 605.0 229.0
(b) 1 GRU iteration 114.0 39.9 171.7 73.0 54.0 14.3 634.6 241.5
(c) 3 GRU iterations 112.4 38.2 171.6 73.0 54.1 14.3 641.5 247.1
Ours 5 GRU iterations 112.2 38.0 171.5 72.7 53.0 13.9 605.0 229.0
(d) 7 GRU iterations 112.3 38.0 172.5 71.8 52.0 13.6 649.2 257.5
(e) RGB backbone 121.3 43.1 176.9 79.4 67.8 18.1 659.9 273.9
(f) RGBD (w/o masking) 110.1 36.9 292.3 149.1 59.1 15.1 792.8 371.6
Ours RGBD (w/ masking) 112.2 38.0 171.5 72.7 53.0 13.9 605.0 229.0
(g) Without SPN 113.0 38.3 170.9 71.3 68.1 21.3 662.8 265.2
(h) With NLSPN [7] 112.8 38.5 179.0 76.2 64.1 20.5 693.2 286.0
Ours With DySPN [5] 112.2 38.0 171.5 72.7 53.0 13.9 605.0 229.0
(i) Without D̂up loss 113.2 38.6 178.7 77.0 55.7 14.4 643.2 252.8
(j) Without Ĝ loss 112.5 38.1 171.5 71.7 54.1 14.0 634.0 252.2
Ours With both losses 112.2 38.0 171.5 72.7 53.0 13.9 605.0 229.0

To better understand how the generalization of OGNI-DC is affected by dif-
ferent components in our depth completion pipeline, we conduct ablation studies
by varying the sparsity levels and datasets. Specifically, we test models on the
NYUv2 [6] validation set with sparser inputs (randomly sampled 100 points)
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and denser inputs (randomly sampled 10 000 points). We further test the cross-
dataset generalization by constructing a validation set for the VOID [11] dataset
by randomly choosing 800 images from the VOID500 [11] training set. Finally,
for easier reference, we copy the numbers from the main paper for the in-domain
cases (NYUv2 [6], randomly sampled 500 points). Results are shown in Tab. a.
DDI. We train a baseline model without DDI, where the ConvGRU directly
generates updates on the depth map. Comparing (a) to ours, our model with DDI
outperforms the baseline model by large margins under all settings, proving that
DDI is the key to achieving both in-domain accuracy and strong generalization.
Iterative Refinement. To prove the effectiveness of iterative refinement, we
train different models where the ConvGRU are unrolled 1 ∼ 7 times. Compared
to 1 or 3 iterations, 5 iterations consistently improve the performance under all
settings. For example, when tested on VOID, 5 iterations improve MAE from
634.6mm to 605.0mm compared to 1 iteration. The benefits of further unrolling
7 iterations are not clear, as 7 iterations achieve slightly better results in the
NYUv2 10 000 points case and worse results when tested on VOID. Therefore,
we use 5 iterations as a good balance between performance and speed.
Backbone Inputs. We test against the baseline where we input only the RGB
image to the backbone ((e), RGB backbone). We further test against a baseline
where we input both the image and the sparse depth to the backbone, but do
not randomly mask out the sparse depth map during training ((f), RGBD (w/o
masking)). Our full model consistently outperforms the RGB baseline, proving
that sparse depth inputs are helpful for depth gradients prediction. Compared
to ours, the model without masking archives better in-domain performance, but
has worse generalization overall. In conclusion, RGBD w/masking provides the
best balance between in-domain performance and generalization.
SPN. We ablate the effect of the SPN layer in our model. Comparing (g) ∼ (h),
the model without an SPN works best under 100 samples on NYUv2, whereas
the model with DySPN [5] works best for 500 points, 10 000 points, and on
VOID. The model with NLSPN [7] works worse in all cases. In conclusion, our
model works best with DySPN [5], but can also work well without an SPN.
Auxiliary Losses. Comparing (i) ∼ (j) to ours, supervising the up-sampled
depth D̂up and the depth gradients Ĝ both contribute to better performance
under all test setting. The contribution of the supervision on D̂up is more sig-
nificant. That’s probably because supervising the output of the SPN layer is not
enough for regularizing its input, and therefore intermediate supervisions are
necessary.

B KITTI Sparsity Genealization with Retrained Models

To analyze our model’s performance more thoroughly on sparser inputs, we run
experiments under the setup of CFormer [12], where all models are retrained on
sub-sampled lidar lines and tested under the same sparsity. To be consistent with
CFormer [12], instead of using the entire training set, we use the file list they
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provide, where they randomly sample 10 000 training images. We test under the
sparsity of 8, 16, 32, and 64 lines. We don’t test even sparser inputs because no
autonomous driving vehicles are equipped with Lidar sparser than 8 lines.

Results are shown in Tab. b. The 64-Lines and 16-Lines numbers are copied
from CFormer [12]. The 32-Lines and 8-Lines numbers are reproduced by our-
selves with their official training code. Our model still consistently outperforms
all baselines under all sparsity levels in this retrain setting.

Table b: Robustness to the number of Lidar lines on the KITTI [10] validation dataset.
All methods are retrained under the corresponding sparsity levels with 10 000 images.
All metrics are in [mm]. Our model consistently outperforms baselines.

Lidar Scans 64-Lines 32-Lines 16-Lines 8-Lines

Methods RMSE MAE RMSE MAE RMSE MAE RMSE MAE
NLSPN [7] 889.4 238.8 1052.2 285.0 1288.9 377.2 1584.0 501.9
DySPN [5] 878.5 228.6 - - 1274.8 366.4 - -
CFormer [12] 848.7 215.9 994.8 265.8 1218.6 337.4 1513.2 457.7
Ours 813.7 205.4 967.9 252.3 1196.7 324.3 1510.6 444.0

C Details of the Differentiable Depth Integrator (DDI)

C.1 Backward Pass Details

Let L be the loss of the network. The input to the backward function is its
gradient on D̂, i.e., ∂L/∂D̂. We want to compute ∂L/∂Ĝ. Recall from the
paper that we have:

∂D̂

∂b
= (A⊺A)−1A⊺,

∂b

∂Ĝ
=

IH(W−1) 0 0

0 I(H−1)W 0

⊺

. (1)

Therefore,

∂L

∂Ĝ
=

∂L

∂D̂
·
∂D̂

∂b
·
∂b

∂Ĝ
(2)

=

(A⊺A)−1 ·

∂L

∂D̂

⊺⊺

·A⊺ ·

IH(W−1) 0 0

0 I(H−1)W 0

⊺

. (3)

The first part can be computed using the same conjugate gradient solver as
in the forward pass. Since A⊺ and ∂b/∂Ĝ are sparse, the rest of the matrix
multiplications can be done efficiently.
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C.2 Speed Optimizations

Stopping Conditions. We stop the conjugate gradient solver when the optimal
solution is found, i.e., when the relative residual is smaller than 1e − 5 or the
residual has no improvement more than 1% for 10 steps. This avoids unnecessary
conjugate gradient steps compared to optimizing for a fixed number of steps.

Initialization from Current Solution. We assume the refinements on depth
gradients to be small for each iteration, therefore the correct solution can be
used as an initial guess for the next round. We store D̂t as a dummy variable
and use it to be the initial value of D̂t+1 in the conjugate gradient iterations.
We do a similar thing for the backward pass by storing (A⊺A)−1 · ∂L/∂D̂, but
this time using the result from the (t+ 1)-th step to initialize the t-th step.

C.3 Confidence on Sparse Depth Observations

The sparse depth observations in the KITTI [10] dataset contain bleeding arti-
facts due to the baseline between the camera and the Lidar sensor (see Fig. a (g)
for an example). This has been observed in several previous works [2,7, 8]. This
issue is especially critical for OGNI-DC, since the noisy inputs directly affect
the outputs of DDI and the error cannot be corrected. Therefore, we predict a
confidence map Ĉ ∈ [0, 1]

H
4 ×W

4 for the sparse depth observations from the 1/4
resolution feature with a Conv-Sigmoid layer. Ĉ works by down-weighting the
observation energy term for the noisy pixels in the optimization problem, i.e.,

D̂ = argmin
D
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√
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b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

. (4)

Applying Ĉ in the forward pass is straightforward. However, since we don’t
have ground truth for Ĉ, we must learn Ĉ directly from the loss on the integrated
depth map. Therefore, we have to compute the gradient of D̂ with respect to Ĉ.
This can be done by applying the chain rule (remember D̂ = (A⊺A)−1A⊺b):
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(a) Ground Truth (b) Pred w/ Conf. (c) Pred w/o Conf.

(d) RGB Input (e) Error w/ Conf. (f) Error w/o Conf.

(g) Sparse Depth (h) Conf. Prediction

Fig. a: Our model learns a confidence map (h) to filter out the noisy sparse observations
in (g). Compare (e) to (f), the model with confidence prediction is more accurate.

(A⊺A) · D̂ = A⊺b ⇒
∂(A⊺A)

∂Ĉ
· D̂+ (A⊺A) ·

∂D̂

∂Ĉ
=

∂(A⊺b)

∂Ĉ
(5)

⇒
∂D̂

∂Ĉ
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∂(A⊺b)

∂Ĉ
−
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∂Ĉ
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 , (6)

where
∂(A⊺b)

∂Ĉ
= diag

(
α ·M ·O

)
,

∂(A⊺A)

∂Ĉ


ijk

= α ·Mi · 1i=j=k. (7)

We demonstrate the effectiveness of the predicted confidence map in Fig. a.
Fig. a (h) shows that confidence is high (red) in most areas while being low
(blue) at the noisy regions on the car and the traffic sign. Comparing Fig. a
(e) with Fig. a (f), the errors are greatly reduced in those areas with predicted
confidence map. The results show that our model successfully learned to filter
out the noisy inputs even without the ground truth.

D Network Architecture

We use the CompletionFormer [12] as our backbone. CompletionFormer is a U-
Net-like architecture with a series of down-sample and up-sample layers. The
architecture of our update block is illustrated in Fig. b. We use the same Con-
vGRU as RAFT [9]. Please refer to [9] for details.
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Fig. b: The detailed architecture of our update unit.

E More Visualizations

E.1 NYUv2 Sparsity Generalization

We qualitatively compare our method’s generalization ability to different sparsity
levels on the NYUv2 [6] dataset with NLSPN [7], CFormer [12], and SpAgNet [3].
Results are shown in Fig. c and Fig. d. This image is the first one in the NYUv2 [6]
test set and is not cherry-picked. Our model works better than baselines under
all sparsity levels.

E.2 KITTI Sparsity Generalization

Results are shown in Fig. e and Fig. f. This is the first image in the KITTI
validation set and is not cherry-picked. While all methods do equally well with
64-Lines input, our method is significantly better when the inputs are sparser.
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Ours CFormerNLSPNInputs & GT

20000P

5000P

1000P

Fig. c: Generalization to denser inputs on NYUv2 [6]. For each sparsity level, the first
row is the inputs/error maps, and the second row is the gt/predicted depths. Our model
works better than baselines although not trained on these sparsity levels.
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Ours CFormerSpAgNet NLSPNInputs & GT

5P

50P

100P

200P

500P

Fig. d: Generalization to sparser inputs on NYUv2 [6]. For each sparsity level, the
first row is the inputs/error maps, and the second row is the gt/predicted depths. Our
model consistently outperforms baselines under all sparsity levels.
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CFormer

Ours

NLSPN

LRRU

SpAgNet

Inputs/Error Maps GT/Predictions
8 Lines

CFormer

Ours

NLSPN

LRRU

SpAgNet

Inputs/Error Maps GT/Predictions
16 Lines

Fig. e: KITTI [10] results with 8 and 16 lines inputs. Red colors mean larger errors.
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CFormer

Ours

NLSPN

LRRU

SpAgNet

Inputs/Error Maps GT/Predictions
32 Lines

CFormer

Ours

NLSPN

LRRU

SpAgNet

Inputs/Error Maps GT/Predictions
64 Lines

Fig. f: KITTI [10] results with 32 and 64 lines inputs. Red colors mean larger errors.
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F Dataset Descriptions

NYUv2. NYUv2 [6] contains 45 205 training images, 2 379 validation images,
and 654 test images from 464 indoor scenes. Dense depth maps are collected with
the Microsoft Kinect sensor, and 500 points are randomly sampled to provide
sparse observations. Following previous works [7,12], we resize the original 480×
640 images to 240× 320 and then center-crop to 228× 304.
KITTI. The KITTI depth completion dataset [10] contains 86 898 training im-
ages, 1 000 selected validation images, and 1 000 online test images. Images and
depths are collected from an autonomous driving vehicle with a Velodyne HDL-
64E Lidar sensor. All images have resolution 352 × 1216. Following previous
works [7, 12], during training and validation, the images are bottom-cropped to
240× 1216 as no Lidar points are available in the sky areas.
VOID. The VOID [11] dataset contains 56 sequences of indoor scenes. Depth
ground truths are collected with an Intel RealSense D435i camera, and sparse
observations are from a visual odometry system at 3 different sparsity levels, i.e.,
1 500, 500, and 150 points, corresponding to 0.5%, 0.15%, and 0.05% density.
Each test split contains 800 images at 480× 640 resolution.
DDAD. DDAD [4] is an autonomous driving dataset with depth ground truth
captured by a long-range, high-resolution Luminar-H2 Lidar. Following the split
and pre-processing of VPP4DC [1], we evaluate on 3 950 images under 1216×1936
resolution captured by the front-viewing camera. We randomly sample about
20% points as the input sparse depth, resulting in ∼ 0.21% density.
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