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1 Overview

In the appendix, we first present a detailed proof of the Lemma, Theorem, and
Proposition in Section 2. In Section 3, we present additional experimental results
and a detailed explanation of the experimental setups. Finally, we present more
visual results in Section 4.

2 The detailed proof.

2.1 Preliminary

In this section, we first review the forward process and assumptions of DDPM.
For any time t, the conditional distribution qt(xt|x0) in DDPM [2,3, 5] is

qt (xt | x0) = N
(
xt | e−

t
2x0, (1− e−t)I

)
(1)

Meanwhile, we have the following assumption.

Assumption 1 For the diffusion process described by Equation (1), assume
there exists a constant δ > 0. For any t ∈ [0, T ] and any point xt in high-density
regions, the score ∥∇x log qt(xt)∥ is bounded by δ, i.e.,

∥∇x log qt(xt)∥ ≤ δ.

This ensures that the score of the data distribution is bounded in the vicinity of
high-density data throughout the diffusion process.

� Corresponding authors.
This work was done during Tianyi Zheng’s internship at vivo.

https://orcid.org/0009-0007-5270-4746


2 T. Zheng et al.

2.2 Proof for Lemma 1

Lemma 1. Consider the forward diffusion process as described by Equation (1).
When t → 0+, the time derivative of the distribution qt(xt) is predominantly
governed by the second-order derivative term, encapsulated in the relationship:

∂

∂t
qt(xt) = ∇2

xt
q(xt), (2)

Proof of Lemma 1. Consider the forward diffusion process as described by the
probability density function qt(xt), given by

qt(xt) =
1√

2π (1− e−2t)
exp

(
− (xt − e−tx0)

2

2 (1− e−2t)

)
. (3)

We aim to compute the time derivative ∂
∂tqt(xt) and show that as t → 0+, it

is predominantly influenced by the second-order spatial derivative ∇2
xt
qt(xt).

Based on the Fokker-Planck Equation of Equation (1), we have the following
relationship

∂

∂t
q(xt) = ∇xt

q(xt) +∇2
xt
q(xt). (4)

First, we compute the first-order spatial derivative with respect to xt, denoted
by ∇xtqt(xt). Applying the chain rule, we have

∇xt
qt(xt) = −

(xt − e−tx0) exp
(
− (xt−e−tx0)

2

2(1−e−2t)

)
√
2π(1− e−2t)(1− e−2t)

. (5)

Next, we find the second-order spatial derivative ∇2
xt
qt(xt) by differentiating

∇xtqt(xt) with respect to xt again:

∇2
xt
qt(xt) =

exp
(
− (xt−e−tx0)

2

2(1−e−2t)

)
√
2π(1− e−2t)

[
− 1

(1− e−2t)
+

(xt − e−tx0)
2

(1− e−2t)2

]
. (6)

As t → 0+, the term e−2t approaches 1 from below, causing the denominator
1 − e−2t to approach 0, leading to a rapid increase in the magnitude of the
second-order term compared to the first-order term. This indicates that the
second-order spatial derivative term ∇2

xt
qt(xt) becomes the dominant factor in

the time derivative ∂
∂tqt(xt), as postulated. □

2.3 Proof for Theorem 2

Theorem 2. Consider the forward diffusion process described by Equation (2).
The norm of the time derivative of the distribution qt(xt) is bounded by the
following inequality: ∥∥∥∥ ∂

∂t
qt(xt)

∥∥∥∥ ≤
∥∥∥∥qt(xt)

2t

∥∥∥∥ . (7)
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As t → 0+, the norm of the derivative of the distribution qt(xt) may become
unbounded. This is indicated by the limit superior:

lim sup
t→0+

∥∥∥∥qt(xt)

2t

∥∥∥∥ = ∞. (8)

Proof of Theorem 2. Consider the H(t, x) = 1

(4πt)
n
2
e−

|x|2
4t , which is a funda-

mental solution to the Equation (2) and hence satisfies Equation (2). We have
the following relationship of H(t, x):

∇x logH(t, x)− ∂tH

H
=

x

2t
. (9)

Given a non-negative, continuous, bounded function q0(x0), the solution qt(xt)
at time t can be expressed as a convolution with the H(t, x):

qt(xt) = (H(t, ·) ∗ q0)(xt). (10)

Define νt,x(y) = H(t,x−y)q0(y)
qt(xt)

, we can verify that
∫
Rn νt,x(y) dy = 1, making

νt,x(y) a probability measure of y. Then we have the following relationship:

∇qt(xt) =

∫
Rn

∇H(t, x− y)q0(y) dy, (11)

∂tqt(xt) =

∫
Rn

∂tH(t, x− y)q0(y) dy. (12)

Utilizing the relationship established for H(t, x), we derive the following inequality
for the score of the qt(xt):

∇x log qt(xt) =

∣∣∣∣∫
Rn

∇H(t, x− y)

H(t, x− y)
νt,x(y) dy

∣∣∣∣2 (13)

≤
∫
Rn

∣∣∣∣∇H(t, x− y)

H(t, x− y)

∣∣∣∣2 νt,x(y) dy (14)

=

∫
Rn

(
∂tH(t, x− y)

H(t, x− y)
+

n

2t

)
νt,x(y) dy (15)

=
∂tqt(xt)

qt(xt)
+

n

2t
. (16)

Given that ∂tqt(xt) < 0 in the forward diffusion process, and considering Assump-
tion 1, we conclude with the following bound on the time derivative of qt(xt):∥∥∥∥ ∂

∂t
qt(xt)

∥∥∥∥ ≤
∥∥∥∥qt(xt)

2t
− δqt(xt)

∥∥∥∥ ≤
∥∥∥∥qt(xt)

2t

∥∥∥∥ . (17)

□
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2.4 Proof for Proposition 2

Proposition 2. Given a timestep sampling method utilizing the B-TTDM with
a Beta distribution parameterized by α < 1 and β = 1, the tuned error at the
initial time position t is

(
1
T

)α, where T is the total diffusion steps.

Proof of Proposition 2. First, we recall the probability density function (pdf)
of the Beta distribution, given by

f(t;α, β) =
Γ (α+ β)

Γ (α)Γ (β)
tα−1(1− t)β−1, (18)

where Γ (·) denotes the Gamma function. Setting β = 1, the pdf simplifies to

f(t;α, 1) =
Γ (α+ 1)

Γ (α)Γ (1)
tα−1 = αtα−1, (19)

where we use Γ (1) = 1 and Γ (α+ 1) = αΓ (α).
The cumulative probability of selecting a timestep within the interval [0, 1

T ]
is given by the integral of f(t;α, 1) over this interval:∫ 1

T

0

f(t;α, 1) dt =

∫ 1
T

0

αtα−1 dt =

(
1

T

)α

. (20)

Hence, the tuned error of selecting a timestep within the initial interval [0, 1
T ]

under the B-TTDM is
(
1
T

)α.
□

3 Additional results and analysis

3.1 More Quantitative and Qualitative Comparison.

Parameters of the beta distribution. Our analysis in manuscript Section
3.3 highlight that the α = 1, β > 1 configurations don’t fully align with the
forward diffusion’s non-uniform properties. In this section, We try this α and
β configurations on AFHQ-D datasets. The results in Table 1 show that this
configurations also improves the performance of the diffusion models, but does
not reach our improvement. This emphasizes the limitations of uniform timestep
sampling in the training stage of diffusion model.
More Diffusion Framework. To examine B-TTDM’s generalizability across
different diffusion models, we conduct further experiments within various diffusion
model frameworks. We comapre B-TTDM with NCSN [7] and EDM [4] on
the CIFAR-10 dataset. With B-TTDM, NCSN’s FID improved from 11.89 to
10.24, despite its simpler U-Net architecture. Moreover, EDM uses a log-normal
distribution and set greater weight to "middle" noise values. When adjusted to
follow the B-TTDM trend, the FID score improves from 1.92 to 1.81. Therefore,
B-TTDM has greater generalizability and is suitable for a wider range of diffusion
frameworks.
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Table 1: Ablation study on the parameters of Beta Distribution for AFHQ-D (256×256).

Beta Distribution AFHQ-D (256×256)
α β FID sFID Recall Precision
1 1.2 15.44 48.82 0.570 0.778
1 1.5 15.00 45.43 0.629 0.715
1 1.8 16.46 48.70 0.561 0.798
1 2 17.12 50.52 0.553 0.766
1 1 17.21 49.03 0.553 0.738

Latent Diffusion Model. Recently, the DiT [6] has been widely adopted
in latent diffusion model. The DiT achieves impressive generation results by
compressing the image into a latent space using VAE before diffusion. In Figure
1, we compare the performance of B-TTDM within the lightweight DiT-S/8
in latent space on ImageNet256 dataset. The results demonstrate that B-TTDM
also enhances the performance of the latent diffusion model.

×1.43

Fig. 1: FID scores concerning the number of training iterations on ImageNet (256×256).

More Qualitative Comparison. We present a visual comparison between
B-TTDM and other re-weighting methods in Figure 2 on AFHQ-D and CelebA-
HQ. It is evident from the figure that the images generated by B-TTDM exhibit
better quality details. We randomly choose the three generated images without
cherry-pick in each dataset.
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Fig. 2: Qualitative comparison. Unconditional generation results for B-TTDM and
other re-weighting methods

3.2 Hyper-parameter

In this section, we list more details about the hyper-parameter and training
details of B-TTDM in Table 2. It is worth noting that for large resolution (256
× 256) datasets, we use a lighter version of ADM [2] following previous work [1].

Table 2: The hyper-parameter of B-TTDM method in different resolution datasets.

32 × 32 64 × 64 128 × 128 256 × 256
Diffusion Step 1000 1000 1000 1000
Noise Schedule Cosine Cosine Cosine Linear

Channels 128 192 256 256
Residual Blocks 3 3 3 3
Channel multiple (1, 2, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2) (1, 1, 2, 2, 4)
Head Channesl 32 64 64 64

Attention resolutions (16, 8) (32, 16, 8) (32, 16, 8) (16)
Learning Rate 1e-4 1e-4 1e-4 2e-5
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4 Visual Results on Different Datasets

In this section, we present additional results of unconditional generation using
our B-TTDM method across various datasets. We utilize the B-TTDM model as
reported in Figure 3 of the manuscript.

Fig. 3: More visual results on CIFAR 32 × 32. (FID = 2.89, 1000 inference steps.)
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Fig. 4: More visual results on ImageNet 32 × 32. (FID = 2.87, 1000 inference steps.)

Fig. 5: More visual results on Celeba 64 × 64. (FID = 2.98, 300 inference steps.)



Beta-Tuned Timestep Diffusion Model 9

Fig. 6: More visual results on FFHQ 128 × 128. (FID = 10.28, 100 inference steps.)

Fig. 7: More visual results on CelebAHQ 256 × 256. (FID = 13.62, 100 inference steps.)



10 T. Zheng et al.

Fig. 8: More visual results on AFHQ-D 256 × 256. (FID = 13.81, 100 inference steps.)
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